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In the present paper we consider Neumann Laplacians on singular domains of
the type “rooms and passages” or “combs” and we show that, in typical situations,
the essential spectrum can be determined from the geometric data. Moreover, given
an arbitrary closed subset S of the non-negative reals, we construct domains
Q= Q(S) such that the essential spectrum of the Neumann Laplacian on Q is just
this set S.  © 1991 Academic Press, Inc

INTRODUCTION

Going back to Weyl’s celebrated article on the asymptotics of Dirichlet
regions in two dimensions, there is an enormous literature on Laplacians
associated to regions of R”. Much of the literature is on the Dirichlet case
which is easier, in part, because of compactness results. In this paper, we
want to contribute to the study of the Neumann case, most particularly to
identify the essential spectrum for Neumann Laplacians for some special
regions.

Given an open region, @, in R”, we let 2(—4%) be the set of all
functions in L?%(£2) whose distributional gradients are in L, and we define
— A% via the quadratic form relation

(4, — 42> = [ IVo(x)|* d"x.
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It is a well-known result of Meyers and Serrin (cf, e.g, Adams [1],
Gilbarg and Trudinger [10]), that the functions in 2(—4%) which are C*
in the interior are dense in 2(—4%). The closure of CF(Q2) is the form
domain of the Dirichlet Laplacian.

Dirichlet Laplacians of bounded regions have discrete spectrum since it
is not hard to show their resolvents are compact. On the other hand, it
has been known for many years that Neumann Laplacians of bounded
regions need not have purely discrete spectrum. Mind you, if the region is
sufficiently regular, the Neumann Laplacian is compact—for example, if
there is a piecewise smooth boundary. The following is an example of a
region going back at least to Courant and Hilbert known as “rooms and
passages.”

To construct a typical rooms and passages domain (as shown in Fig. 1),
take a sequence of rooms (= open rectangles R,, contained in the unit ball
of R%, keN, R, symmetric with respect to the x-axis, and such that
R.nR;=, k+j), which are joined together by passages (= rectangles
P., ke N, P, symmetric with respect to the x-axis) of height much smaller
than the height of the adjoining rooms R, and R, _,.

If the passages are narrow enough, the Neumann Laplacian for this
region has 0 in the essential spectrum. For, let ¢, be a function which is a
large constant in the nth room and which drops linearly to 0 between the
room and the midpoint of the adjacent passages. Choose the constant so
that ¢, has norm 1. Since they have disjoint supports, the ¢, are orthonor-
mal. The size of [Vg, | is proportional to the width of the passages adjacent
to box n and that can be made arbitrarily small.

One of the goals in this note is to actually show that for the rooms and
passages example, the essential spectrum is exactly {0}, if the passages are
narrow enough. Our main theorem is

FiG. 1. Rooms and passages.
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THEOREM 0.1. Let S be any closed subset of [0, «0) and let n be given.
Then there exists an open, connected subset 2 of the unit ball in R" so that

aess(—Aﬁ):S and o’ar(_A%)=@~

If S contains 0, we will be able to construct £ as a modification of rooms
and passages—essentially, we will add a partition accross each room with
a hole in it. For general S, we will modify instead another class of regions
known as “combs.”

To construct combs (as shown in Fig. 2), we attach a sequence of teeth
(i.e., rectangles of bounded length and shrinking width) to a fixed square
Q = R? Here it is somewhat simpler to stack the teeth together instead of
having empty space between them.

Basic to our entire strategy is that one can decouple into simpler regions.
In the rooms and passages type regions, we will decouple into separate
rooms and passages; in the combs, we will decouple the teeth of the comb
from the handle Q. In the rooms and passages, the barriers we put in will
have Neumann boundary conditions on the room side and Dirichlet condi-
tions on the passage side. What we will show is that putting in such barriers
on the infinity of room-passage joins will mean a compact perturbation of
the resolvent so long as the passages are narrow enough (and a trace class
perturbation on the level of squares of the resolvents). Since o, is left
invariant under compact perturbations, we will reduce the determination of
the essential spectrum to that of decoupled regions. Since each individual

Fic. 2. A comb domain.
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region has discrete spectrum, the essential spectrum will be the set of limit
points of spectra of the regions and that will be easy to compute.

The somewhat surprising element of our decoupling is that from the
passage side, the boundary condition is Dirichlet. We call this the organ
pipe lemma because it is a reflection of the known fact that closed and
open organ pipes have opposite boundary conditions. The reason that
eigenfunctions in the passages must vanish near the boundary of the
passage is the following: Because the passages are so small, for them to
matter, the wave function must live in the passage and not much in the
rooms. If these functions were not much smaller at the edge of the passage
than in the middle, they would “leak” out into the rooms. This idea is
made precise in Section 1, where we investigate the behavior of eigenvalues,
eigenfunctions, and resolvents of the Neumann Laplacian on two domains
2, and Q, which are joined by a passage of width w, in the limit of w going
to zero (Propositions 1.4 and 1.5). In Proposition 1.9, we deal in a similar
manner with the situation where a family of small handles is attached to a
fixed domain §2,. There has been previous discussion of the effect of narrow
passages and handles, not unrelated to our organ-pipe lemma; see Jimbo
[11] and Arrieta, Hale, and Han [3].

In Section 2, we construct rooms and passages domains £ by succes-
sively joining a sequence of rooms by narrow passages and obtain norm-
resolvent convergence of certain approximating Laplacians H, to —4%. As
in Simon and Spencer [16], the spectral results then follow from the fact
that (H, 4+ 1) 2= (—4%+ 1) * s trace class. Upon replacing each room in
the above construction by a small rectangle with a partition, each of these
modified rooms will contribute (to the spectrum of H,) an eigenvalue O
plus another low-lying eigenvalue 4,, while the remaining eigenvalues will
be very large. By this construction, we can achieve to have

o..(H;)={0} U {limit points of {4,}}.

(Domains similar to a union of finitely many rooms and passages have
been used by Colin de Verdiére [4] to specify a finite part of the Neumann
spectrum.)

In an analogous manner, we analyze combs in Section 3, beginning with
simple combs of the type described above and then proceeding to combs
with small teeth D, where each D, has a partition (with “door”) to make
sure that each D, contributes precisely one low-lying eigenvalue 4, to the
spectrum of the fully decoupled comparison operator. As a consequence,
we find that the essential spectrum of the Neumann Laplacian is given as
the limit set of the sequence {4,}. Since this sequence can be preassigned
in the construction of examples, Theorem 0.1 follows.

R. Hempel thanks D. Wales and G. Neugebauer for their hospitality at
Caltech.
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1. ORGAN PIPES

In this section we analyze the Neumann Laplacian on domains consist-
ing of two “rooms” which are joined by a narrow passage of width w, w
small. It turns out that we have a natural Dirichlet boundary condition on
the sides of the passage attached to the rooms (corresponding to the
natural boundary condition for the pressure in an organ pipe at its open
end). To be more precise, we will see that the resolvent of the Neumann
Laplacian on the full domain is well approximated (in the operator norm)
by the resolvent of a certain decoupled operator which has pure Neumann
boundary conditions along the boundary of the two rooms and mixed
Dirichlet and Neumann boundary conditions for the passage.

Here a word about the definition of Laplacians with Neumann or mixed
boundary conditions is in order. For a general open domain Q = R", the
Neumann Laplacian is most naturally defined via quadratic forms, starting
from the Sobolev space #'(2)= W"'*(Q). This Sobolev space may be
obtained as the completion of the function space

{fe C*(82) | Hf”;fl(g)( oo}

under the norm |||, = ||| 414, Where
1 Vevar= | 1712+ 19712

Then —A4% is defined (as in Reed and Simon [15, Sect. XIII.15]) as the
unique non-negative, self-adjoint operator whose domain 2(—4%) is
contained and dense in #'(£2), and which satisfies

(=A%u, vy = (Vu, Vo), ue P(—4%), veH#'(Q).

Similarly, Laplacians with mixed Neumann and Dirichlet boundary condi-
tions can be defined in the following way. Suppose I'= I = 89 is given. Let

H Q) (Q)
be the completion of

{fE COC(Q) l ”f”x"l(g)< o0, SUPPfﬁF=@}

and consider the unique self-adjoint operator associated with # 1.(Q); this
operator will be said to be the Laplacian on € with Dirichlet boundary
condition on I" and Neumann boundary condition on §Q —I".

For ue 9(—A4%), we have the a priori information ue #'(Q) and
du e L,(£2), but for irregular domains it may be very hard or impossible to
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obtain useful bounds for sup |u|. In Lemmas 1.1 and 1.2 we shall show,
instead, that control of the #'-norm gives certain precise bounds on

J ulx, y)dxdy
A)

for small rectangles S (we are in R? now). These bounds will subsequently
play the role of a weak substitute for a Dirichlet boundary condition in
Lemma 1.3.

LemMa 1.1. Consider a rectangle R<R?, R=(0,1)x (0, h), made up of
two adjacent subrectangles, R,=(0,1)x(0,w) and R,=(0,1)x(w,h),
where O <w < h, Then, for ue #'(R) we have

1 1
_Lludxdy—h

w — W

f u dx dyl < ()2 |Vul].
Rz

Proof. Since C*(R) is dense in #'(R) and R is convex, it is clear that
we can assume u to be C*(R), without loss of generality.
Define

/
f(y)=f0 u(x, y)dx

and
mo= [ f()dy=] ulx, y)dxdy
e Ry

mo=[ Sy dy=| ) dxdy

W

Clearly, there are points y,e[0,w] and y,e{w,h] such that
Sy =m/w, f(y,)=m,/(h—w), and it follows that

» 2 ol
b i [ rw dy' < [ el dxdy< ) g
as claimed. Q.E.D.

The important point in the following simple lemma is to have the powers
of w and / in the asymmetric version w -1

LEMMA 1.2, Let QO=(0,r)x{(0,h) and let S=(0,1)x(0,w) (with
O0<i<rand O <w<h/2) be a subrectangle of Q.
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Then, for ue #*(Q) we have

[ s dy| <ot ful
S

with a constant C depending on h only.

Proof. Let

0=(0,)x[w,h), Q@*=Sul.

Applying Lemma 1.1 to Q*, we obtain

HE

1
< 12 P R
(lh) HquLz(Q )+(h—w)“‘Qul

<G Yl ey
with C,, = h'/*(1 + 2/h), and the result follows. Q.ED.

In the subsequent lemma we consider a passage P, =(0, L) x (0, w) of
fixed length L and width w < L, with two adjoining rectangles S, and S,
of length I=1,=w"? S, =(—-1,0]x(0,w), and S,=[L, L+1)x (0, w).

Let — 4%x, denote the Laplacian on P, with Dirichlet boundary condi-
tions at the ends of P, and Neumann on the long sides of P,. Also, let

O<pySp;< - S < -

denote the eigenvalues of —47,, repeated according to their multiplicities,
and let {y,},.~ denote a complete orthonormal set of eigenfunctions
satisfying

_Agy}\/l//izlujlpjs j=12, ...

Clearly, any function v in the form domain of —4%s, which is orthogonal
to ¥, ..., ¥, satisfies the inequality

IVoll? 2 py o N0l
We wish to extend this property to a family of functions

v, e XS, P, uS,) which do not really obey a Dirichlet boundary
condition, but instead, satisfy the condition

j b, =OWI"?) as w—0.
S‘]
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LEMMA 13. Let keN, be fixed. Suppose we are given a family
{Vwto<we Of functions v, € XS, UP,US,) which satisfy the following
conditions:

(1) 100 %050 poo s < Cor 0<w< 1, for some constant Co.
(i) vy >—=0,w—0,j=1 .,k
(iii) |fs, vl SAWI'?, g=1,2, 0<w<1, for some constant A.

Then, for any ¢ >0 there exists w, such that
“va [_ PM'HZ = Hi 1 ”UH‘ r }>wl|2 —& 0 <ws W,.
Remark. We will apply this lemma only in cases where (v,, ;> =0,
j=1,..,k

Proof. Again, we may assume v,,€ C*(S, U P, US),)
On S, U P, uS, we define the functions =7, by

! JW v(x, z) dz.

blx, y) == .

(Note that  is constant in the y-direction.) We then have

Vo[ PP IVl P12

Sr P> PU2i—w2lol P2 (L.1)
”Ur w” /”Ur w“ W Hl"— w“l'

In order to prove (1.1), expand v| P, in terms of eigenfunctions of — A4
ol Py= ) (pqle,,,

p.q€No

where i#(p, g) = <v, e, ,> and the e, , are given by
w~ 2L 12 cos (EIL)—X> cos (@) p,geN,
W

with normalizing factor between 1/2 and 2. Clearly,

(U_ﬁ)r Pw: z f’(P’ q)ep.q

p.q€No
q#0

and, since v[ P, HYP,)=2(—A%),

2

2
Vo[ P |2=7* Y (p +%>|ﬁ(p,q)l2

T2
pgrt0.0) NET W
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so that
2

. , w? , W
[(w=2) Pol* <= Vo[ P,* <= Co. (1.2)
7 n
Next, assumption (1i) implies that there exist —/<x;<0 and
L <x,< L+ such that
[6(x;, MISAITZ 0<y<w

Let £, =0 and £, =L, so that &, is the x-coordinate of the left or right end
of P,.. We then have

16(E, MI<Aw 1 0<y<w (1.3)

by the following easy argument. Let kA, = |#(x;) — ()| for i=1, 2, so that
|5(&,, y)| < A7 4 h; for 0 <y < w. Using the trivial inequality

FO-fP<t [ 57 ds. fer' 00

we obtain : 12
[0t izaxz2E o<y<w

x;

implying

2
o> (Vo1 [ [ 10,50 0 dedy> [y whl !

w w
0 0

so that 42 < Cyl/w, and (1.3) follows.
Now let ¢ = ¢(x, y) be the (affine) linear function on P, which makes

(F—@)&H y)=0, ~i=1,2, 0<y<w

By (1.3) (and since the length of P, is held fixed), we have
gl =0w"?),  w—0. (1.4)

As & — ¢ belongs to the form domain 2(—A41%%) and satisfies
[Ki—d, ¥ D1<2e  j=1,.,k, O<w<w,
(by (i1) and (1.2)), we obtain
V@ =) Pull® 2 e (1T =) T PN — dke?)
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for 0 <w<w.. Using (1.1) and (1.4), it finally follows that
Vol P22 |IVE[ P2 = V(@ —¢)[ P.lI>—e¢

2 (5= P,lI7—4de)—¢
> e ol Pul® + O(e)

for 0 <w<w/, and we are done. Q.E.D.

We now consider two domains 2, and £, in R% Q, nQ,= ¢, with
piecewise smooth boundaries and (~4%+1)"! compact, joined with a
passage P, = (0, L)x (—w, w), as shown in Fig. 3. Note that we prefer P,
to be symmetric with respect to the x-axis, in this context. We require our
domains Q, and Q, to satisfy the following two conditions:

1. P.n(Q,u,)=g
2. (—=5,0)x(—s,8)=Q,and (L, L+s)x(—s,5)cQ,,

for some s>0. We require conditions 1 and 2 because it simplifies nota-
tion, and because they are satisfied by the examples we try to understand.
They could be relaxed to require only that the boundary of the domains be
smooth (with non-zero x-derivative) around the points where the passage
is attached, and that O£, intersects the line segment [0, L]x {0} only
once, for g=1, 2.

We define P, = [0, LT x (—w, w),
sz'QlUP;'UQZ’ sz '—Aﬁw
and

H,=—A42® — A0 @ — 42,

F1G. 3. Two domains joined by a passage.
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Let A,=A,;(w), for i=1, 2, ... denote the eigenvalues of H,,
O=4A, €4, < <4, < -+

repeated according to their multiplicities, and let {¢,} denote an associated
orthonormal basis of eigenfunctions, ¢,=¢,(w). Similarly, Z,=7,(w),
@; = @,(w) denote the eigenvalues and eigenfunctions of A,,. Associated with
the @, we also consider their extension € #'(R2,), defined as follows:

1. 1If ¢, is an eigenfunction of — A%, it will be extended as 0 inside
Q,q=12

2. In the case where @, is an eigenfunction of —A4%', the Sobolev
Extension Theorem (see Gilbarg and Trudinger [10, Theorem 7.25])
allows us to extend @, to a domain that contains 2, U P,. (Note that in
our example, since 02, N B,(0) is a straight line, a simple reflection argu-
ment would do.) Denote these extensions by g, and let j(x) be a smooth
function satisfying j(0)=1 and j(L)=0. We then define

_[gidx,¥)-f(x) onP,
Vil )= {0 on 2,.

It is clear, by dominated convergence, that i, — @, goes to zero in L,(£2,)
and that |,[ P,ll 4ip,,—0, as w—0.
The eigenfunctions of — 4% are dealt with in the same way.

It is our aim to show that the differences of eigenvalues A,(w)—1,(w)
(and eigenfunctions ¢,(w)— @;) go to zero as w— 0. To avoid notational
difficulties in the case of degenerate eigenvalues, we consider the spectral
families {E,},. g and {E,},_g for H, and A, and prove the following:

PrROPOSITION 1.4.  Suppose the above assumptions are satisfied, and let
A >0 and ¢ >0 be given. Then there exists w, such that

IEx(w)— Ex(w)l <, O<w<w,

for all 1< A satisfying dist(4, o(H,)) > ¢.

Proof. Let 0=j, <jfi,< --- <fi;< --- denote the points of ¢(H,) and
let ke N be such that i, < 4, and f,,,, > A. Note first that for w small
enough, i, <A+1 and Z,< A+ 1 are independent of w.! Without loss of
generality, we may assume that |4 —fi, | >¢&, |4 — [, .| >¢ and that ¢ is
small enough so that the 2e-balls around the points f, .., fi;, do not
intersect.

! Although this is not essential for the proof, it slightly simplifies the picture.
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(A) In this part of the proof we show that, for 1< 4,
(i) dim R(E; . o)>dim Z(E,);
(il) dim 2(E,_,)<dim R(E,);
for w small (here #(E,) denotes the range of E,).

Suppose 4, < --- <1, <4, while 7,, ,> 4, so that #(E,) is spanned by
@15 s @,. Defining

Mz Span{lzl, ees Jp},

where the ; are the extensions to all of £, of the functions ,, we clearly
have (for w sufficiently small)

IVYIP< (R, +82) IW)% yeM
and
dim M =dim #(E,) =p.
Since M is contained in the form-domain of H,, min-max implies that H,,
has at least p eigenvalues below 1 + ¢, proving (i).

If (ii) were not true, we could find ue Z(E, _,), ||u|| = 1, u orthogonal to
the range of E;, whence

{u, @, » =0, i=1,.,p. (1.5)

Although u will not in general belong to the form domain of H,, we
nevertheless conclude from (1.5) that

IVul @02>7,, ul 241

and similarly for Q,, while combining Lemmas 1.2 and 1.3 yields an
estimate

(Vul P 222, lul P,li*—¢/2
for w small; we therefore end up with
IVuli>=7, . ul®>—e/2 (1.6)

for w small.
On the other hand, ue Z(E;_,) implies [[Vu|?<(4—¢) Uu|? in con-
tradiction with (1.6) and Ip +1> A. This proves (ii).
(B) Denote the points where the e-balls around the ., 1 <k <k,,
intersect the real line by x, < --- <x;< --- <xy,, so that x, = [, +¢,

Xop =il —¢, and let x,= — c0. Defining
’?}:E.\'j—Ex/,1 '@szx,_Ex/,ly

580/102/2-14
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it is evident that # =% =0 (as x, = —¢ and x,= — o0), and that £ =0 for
J odd. Applying (i) and (ii) successively at the points x,, it is easy to see
that all eigenvalues of H,, in [0, A] lie inside the intervals (A —&, fi,+¢),
k=1, .., kqy; furthermore, if uea(H,), p< A, is an eigenvalue of multi-
plicity m, then there are precisely m eigenvalues of H , inside the 2e-interval
centered at this y, counting multiplicity.

(C) Finally, we are in a position to prove that, for w small,
12—P) <e,  1<j<2k,.

There i1s nothing to be proven for j=1, and we assume now that the
assertion holds for 1, ..., j — 1 < 2k,. By part (B) of our proof, we have

dim #(2) = dim R(P). (1.7)

If j is odd, then Z=0 and also =0, by (1.7), and we are done.
If j is even, let m dim %(9 ) and suppose that I = - =A,,,_ are
in the inteval (x;_,, x;), so that 4,, .., 4,,,_, lie in the interval (x;_,, x;)

while /1,,+m>7l,,+m ¢, by part (B) Then
2,= V@, I1>= V{17 +o(1), w—0,
where (noting that §,e #'(2,,) = 2(H!?))

IVF 1= 102 = [ AdIE,T,1"

By the induction hypothesis, we know that “Ex,_1$p”2 -0, as w— 0, and
it follows that

Ly 2 dp 1B+ Ay (L= E )17 + (1),
Letting
d=min{|f, — | |1 <k, I<ky, k#1}
so that 4, ,, > 4,4 d— 2¢, we may conclude that

(d—2¢) (1 — E),I°
<A +e—2, l(1—E, ) g, 12 +o(1)<e—o(l), w—0

as ||(1 ——'Exjfl)tﬁpnz =1+ o0(1). This implies [|¢p,—2F,ll* <2e/d+o(1), as
w— 0, since ¢ <d/4. Repeating the same argument for the eigenfunctions
Bpits s @pim_ and using (1.7), it is easy to see that |2 — P| <e for w
small enough. Q.E.D.
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Using Proposition 1.4, it is now straightforward to estimate the dif-
ference of the resolvents of H,, and H,,.

ProPOSITION 1.5. Let H, and H, as before, and assume that
(=A% + 1) ""eB,, the trace class, for =1, 2 and for some m> 1. Then

H A+ —(H,+1)7" =0, w-0
and
H(Hw+l)fm_(ﬁw_*_l)—m”%l—)o’ W—’O,

where || - || 4, denotes the trace norm.

Proof. As in the proof of Proposition 1.4, let 0=/, < f, < --- denote
the points of o(H,) and let 1*(w) denote the (repeated) eigenvalues of
AP @ —A%r@® — 4. By assumption, (—45+1) "e4,, and, by
inspection, (—A4%+1)""ed,. Since the eigenvalues of —A% are
monotonically non-decreasing, as w—0, and since A;(w)=i¥(w),
A{w)= i¥(w), it follows that for ¢’ >0 given, there exists A4 >0 such that
1/4<¢ and

Y (mwy+ D+ Y (Tw)y+ 1) (1.8)

ii>A Ti>a
for 0<w<s Now let w,.>0 so small that the 1,(w)e[0, 4+ 1] are
independent of w, for O0<w<w,, and suppose that peN is such
that 7,(w)< 4, while 7,, ;> 4, for 0<w < w,. Finally, let K& N be such
that i, , <A, while fiz> 4. Let 0<e<¢' be such that the 2e-intervals
around the points ., k=1, .., K, do not intersect, and let x,, = ji, +¢,
X 1=fx—8 B=E,—E, ,P=E —E_  j=1,.,2K, as before.

For the first statement

2K
(H+ D) = (A, + 1)< Y I12H, + 1) =Z(H,+1) 7Y

Jj=1

(1= EL ) H, + D7+ 11— EQ ) H, + 1)1

Here the last two terms are bounded by 247 '<2¢. In the sum, the
contributions coming from j odd are zero. For j even, j = 2k, say, note that

(jfl’x)_(#k &, ﬂk+6) Y
ZH A+ =1+
and

IB(H, + 1) = (e +1) ' 2] <e/(1-e)
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so that (¢ < 1/2, without restriction)
1Z2(H,+1) = 2(H, + 1) | <||2—-P| + 2.

Using Proposition 1.4, it is now easy to obtain the first statement. For the
second statement, we proceed in a similar way:

I(Ho+ D" = (B + 1) "a, < X IBH A1) "= P(H,+ 1) 4,

(= Eq ) Hy+ 1) "y + (0= E ) H, + 1) 7",

Here the last two terms are less than ¢, by (1.8). In the sum, we again have
to consider j even only, where we now estimate

IB(H,+1)""—B(H,+1) "]
<2 — Pl 5, + 26 | Pl 4, <2 dim R(P) | P — P|| + 2¢ dim R(P)
<2p |2 —P| +2ep<dep

for w small, by Proposition 1.4, and the result follows. Q.E.D.

On the intervals of length w, where the passage P, meets the rooms 2,
the decoupled operator A, has Neumann boundary conditions from the
side of the rooms and Dirichlet boundary conditions from the side of
the passage. As we will see now, we might as well decouple with a pure
Dirichlet boundary condition on these intervals. In view of later applications,
we consider ‘the Neumann Laplacian on a domain Q and investigate the
influence of a Dirichlet boundary condition on the interval

I,=[0,8]x{0}cR% 520
note that we do not require I; < 6Q. We have:

PROPOSITION 1.6.  Suppose Q is an open subset of R? with (—A4%+1)!
compact. Let — A%, denote the Laplacian on Q — I;, with Dirichlet bound-
ary condition on 15, and Neumann boundary conditions on the remaining
portions of 0Q. Then, given £ >0, there exists 8, >0 such that

]|(—Ag6N+1)"—(—A£+1)*1H<s, 0<d<d,.

Proof. Suppose we associate the objects 4;, ¢, u,, E; with the operator
—A4%, and 71, etc,, with — géN, as in the proof of Proposmon 1.4. While
the basic strategy of proof is the same as the one leading to Proposi-
tions 1.4 and 1.5, we now use the p,’s instead of the fi,’s as reference points,
the p, being independent of §. Furthermore, there are substantial



NEUMANN LAPLACIANS ON SINGULAR DOMAINS 463

simplifications in the details; in fact, we shall need neither Lemma 1.3 nor
the extension process @,— ;. In particular, the estimate

dim #(E;)>dim #(E,), 1€R (i)

is now an immediate consequence of the fact that — A%< —47 ,, in the
sense of quadratic forms. Let £¢> 0. To obtain the estimate

dim #(E,)<dim #(E,,,), i<4 (ii)

for 6 small, suppose that ¢,, .., ¢, span 2(E;). Applying Lemma 1.7,
below, to ¢, .., ¢,, we obtain functions V,,..,¥,e2(—4% ) which
satisfy

lo,— ¥l =0, 0—0.

Letting M =span{y, .., ¥}, we again see that dim M =p and that

IVull> < (A+e) llul®,  ueM

for § sufficiently smalil, and (ii) follows. This corresponds to part (A) of the
proof of Proposition 1.4. Applying the above estimates successively to
the points u,+e, we see that the eigenvalues of —A49 , lie in the
e-neighborhood of the eigenvalues of —A4%. The argument given in part
(C) of the proof of Proposition 1.4 is slightly simplified as ¢, € 2(—4%), so
that the proof can start from

7, =198, = id |E.5,I>

The rest of the arguments used in proving Propositions 1.4 and 1.5 remains
basically unchanged. Q.E.D.

LeMMA 1.7. Let Q<R? open and ue #'(Q). Then, there exists a
sequence {u,} < #'(Q) such that u, vanishes on the ball of radius 1/n,
centered at the origin, and |lu—u,||, =0 as n — .

Proof. For ¢>0 given, there exists M >0 such that the function
uy € #'(Q) given by

u(x, y) if Ju(x, y)I<M

up(x, y)= {u(x, ¥Yu(x, )| otherwise

satisfies w,, € #,(22) and |u —u,,||, <& (This follows easily from the chain
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rule (Gilbarg and Trudinger [10, Theorem 7.8]) via dominated con-
vergence. )

Now, let ¢ e C”(R?) enjoy the properties 0< o<1, o(x, y)=1 if
x*+y?=4, and o(x, y)=0 for x2+ y? < 1. Also, define

oi(x, y)=olkx, ky),  keN.
From
lleps — @rutpsll = O, k— oo
and ||V(@,u,)| <const., it follows that there exists a sequence {k;}=N

such that ¢, u, —u, weakly in 3#'(£2). Therefore, the Banach-Saks
theorem implies that

M=

Qi lipng = Uy, strongly in 5 (2)
1

1
Nj

as N — oo, and the result follows. Q.E.D.

This concludes the preparations needed for Section 2. We note at this
point, that our proofs can be easily modified to obtain results similar
to Propositions 1.4-1.6 in dimensions n>1 (the condition m>1 in
Proposition 1.5 then must be replaced with m > n/2).

For the construction of various combs in Section 3, we shall need
variants of Lemma 1.3 and Propositions 1.4 and 1.5 adapted to the situa-
tion where a thin “tooth” or handle is attached to a given domain. In view
of Theorem 3.7, we will allow for the handles to be slightly more general
than mere rectangles.

We begin with a variant of Lemma 1.3, dealing with a family of handles
D,, 0<w<wy<1, which are of the following type: for 0 <w < w,, each
D, is a bounded, open, connected subset of the right half plane in R?
satisfying

D,o{(x,»)eR*|0<x</w}=(0,/w)x(0,w), O<ws<w,. (19)

(This means that D, begins with an actual rectangular handle on the
left-hand side.) Letting —4%% denote the Laplacian on D,, with Dirichlet
boundary conditions on {0} x [0, w] and Neumann boundary conditions
everywhere else, we require that (— 4% + 1)~ ! is compact.

Also, let O0<p; < --- <p;< --- denote the (repeated) cigenvalues of
— AP+ with associated normalized eigenfunctions V;, j=1,2,... Finally,
we need the adjoining rectangles S, = (— \/;, 0] x (0, w).

With the above notation and assumptions we have the following lemma.
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LeMMA 1.8. Let keN,, wy>0, and suppose we are given a family
{Vu}ocweny Withv, e #' (D, US,) satisfying the following conditions:

(1) Hvull wrp,os,y < C for 0 <w < wo and some constant C.
(i) <Y,0,>0,as w0, forj=1, ..,k
(iil) |fs, v.l <AWY4, for some constant A and 0 <w < w,.

Then, for any ¢>0 there exists w, such that
”vaer||2>#](+1 ”vw[_Dw“Z“E, 0<W<WF

Proof. The simple averaging used in the proof of Lemma 1.3 has to be
refined. We write v=v,,, /= ﬁ, and use the notation

h,=(=11)x(0, w)<R?

[
e, (%, y)=c,, cosﬂ;lilcos E%X, (x, y)eh,

for p,geN, and suitable normalizing constants ¢ also, put

0,,=<v, e,,>. Writing

p.q?

Up= ) By 0€p g U=vl h,—Uy= )Y, Uy y€pqs

peNg peNy
q=0 geN

we now define, for (x, y)e D,

5x, ) = {v(x, ), x=/w

’ Uo(x, N +8u(x)Us(x, »),  —w<x<w,
where ¢,,(x)e C*(R) is such that ¢,(x)=1 for x>./w, ¢,(x)=0 for
x<0,0<¢,<1, and max |¢, | <2w V2

As in the proof of Lemma 1.3, the assumption ||[Vov||?<C implies
|U,||? = O(w?) for w small, so that ||v — || = 0. To estimate |V5| 2 we first
observe that d,U, =0, so that

J, 0.02<] 11,0 < 13,00

On the other hand, looking at the x-derivative 0.5=0,Uy+ ¢, (x)U, +
9.(x)0,U,, we first note that

[ 160012 10,12 < max 18,7 10,7 < Cw w2,

W
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Furthermore, as ¢=0 in U, and ¢>=1 in U,, Fibini’s theorem implies
{0,Uy, 0, U,»=0 and it follows that

f Iaxﬁlzzj IarU0|2+j |¢w(x)i2’a.xUl|2+OWII/2)
hy By I
<[ 10,017+ 00w,
by

We therefore conclude that ||V5(> < |Vol|? + O(w'/?). The rest of the proof
is similar to the proof of Lemma 1.3; here, however, we will have to
subtract from § a piecewise linear function which is 0 for x > ﬁ Q.E.D.

We now join handles of the type described above to a fixed domain
Q = R? where we assume that

(=50, 0)x (=50, 50) = 2
for some sq >0, and
QnD, =, O<w<w,.
We will also require

D, {(x, y)|0<x<w!™}=(0,w")x (0, w)

which implies (1.9), for w< 1.

Now, letting 2, =Qu D,,, where D, =D, ({0} x (0, w)), we define
H,=—A% and H,=—49® — 459 Also, let 1{w), i=1, 2, ..., denote the
eigenvalues of H,, repeated according to multiplicity. We have

ProrosITION 1.9, In addition to the above assumptions, suppose that
(—4%2+1) "> B, and that, more strongly,

Y (A(w)+1)"2 -0, N—-

izN

uniformly for 0 <w< wq. Finally, assume that, for any A>0 given, the
eigenvalues of — A%y, in [0, A] are independent of w, for w small enough.
Then, as w — 0,

WH,+1) "= (A,+1)" ' >0
and

I(H,+1) 2= (. +1) |, ~0.



NEUMANN LAPLACIANS ON SINGULAR DOMAINS 467

Proof. Using Lemma 1.8 in place of Lemma 1.3, we closely follow the
strategy of proof which led to Propositions 1.4 and 1.5. Note that D, now
has a rectangular handle (0, w'/*) x (0, w), so that we can use the old exten-
sion and cut-off process to extend the eigenfunctions @; of A,, to functions
¥, defined on all of 2, §,e #'(2,), and such that ||, Dl »1p, — 0,
as w— 0. Q.E.D.

Remarks. (a) The assumption that the eigenvalues of —Ap% in any
interval [0, 4] be independent of w, for w small, is very restrictive.
However, it is easy to see that the proof of Proposition 1.9 can be modified
to cover the situation where, for any i, the eigenvalue Z,(w) of —45y
converges to some limit 1, as w -0, with 1, > o0 as i — oo.

(b) Some related results on shrinking handles attached to a fixed
domain can be found in Courant and Hilbert [5, p.420] and in Arrieta,
Hale, and Han [3].

2. RooMSs AND PASSAGES

In Section 1, we considered the Neumann Laplacian on domains con-
sisting of two rooms, joined by a narrow passage. We now analyze the case
where an infinite number of rooms are joined by narrow passages and we
determine the essential spectrum of the associated Neumann Laplacian.
More specific results will be obtained by choosing the rooms to be either
rectangles (Corollary 2.2) or rectangles with a partition (Corollaries 2.4
and 2.5). Rooms with partitions are particularly useful in attacking the
inverse problem

Given a closed set S< [0, c0), does there exist a bounded
connected domain Q = R? such that ¢, (—4%)=S? (IP)

We now define the general setting for rooms and passages (cf. Fig. 4).

Suppose we are given two bounded, strictly increasing sequences {x,},
{x,}=[0, ) which interlace in the sense that x, <xj<x.,,, for
k=1,2,... We also assume x,=0, for simplicity. For k=1,2, .., let
R, = R? be open sets satisfying the following three conditions:

(—AR+1)"2 is trace class (2.1)
R, = {(x, y)|xk<x<x;(} (2.2)
OR, 0 B ((x;0, 0)) = {x} X (— &, )s (23)

OR.n B, ((x}, 0)) = {xk} X — &g, &)
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FiG. 4. The construction of rooms and passages.

for some ¢, >0, where B, ((x,, 0)) denotes the ball of radius ¢, centered at
the pont (x,,0). Conditions (2.2) and (2.3) in particular imply that the
right half of B, ((x,,0)) and the left half of B,((xi,0)) are contained
in R,.

We then define the kth passage, joining R, with R, , |, by

Pi=Pi(wi) = (Xie, Xpe 1) X (— Wy, W), 0 <w, <min{e,, &4 J- (2.4)

While the rooms R, may be considered as being fixed, the widths w, will
be determined later on. For a sequence {w,} satisfying the requirements in
(2.4), we now define the rooms and passages domain 2 by

o0

Q=Q({wifien)= U (ReuU Pp), (2.5)

k=1

where Pj =[xk, X4 1] X (=W, w,). Also, define the domains obtained by
joining the first n rooms

2 =2 ((wideer n )= U (ReUP)UR, (2.6)

ey

and the approximating operators

Hn=Hn({Wk}keN)=—Aﬁ"®<® (—AZ"NC@—A?“)) (2.7)
k=n

H,=H,({wi}ien)= —Agﬁv(@(@ (A5 @ —435" ) (2.8)
k=n

Here the boundary conditions for — A%k, are as in Section 1, while the
Laplacian — 4%, obeys Dirichlet boundary conditions on the line segment
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where the passage P, meets Q,, and Neumann conditions on the remaining
parts of the boundary 0Q,,. Similarly, — 45, has Dirichlet boundary condi-
tions on the line segments where the passages P, , and P, are attached,
and Neumann boundary conditions on the rest of R,. Hence H, is the
Neumann Laplacian on €2, with all but the first » rooms and all but the
first n—1 passages decoupled by pure Dirichlet boundary conditions.
(Note that the meaning of the “~” differs from Section 1.)

The fundamental result of this section reads as follows.

THEOREM 2.1.  Suppose we are given R, cR? k=1, 2, ..., satisfying con-
ditions (2.1)+2.3). Then, there exists a sequence of positive numbers w,,
w, =0 as k — oo, such that the Neumann Laplacian on Q = Q({w,}) enjoys
the following properties:

(1) Gac(_Az):@.
(1) Uess(—Ag) = Gess(@zo:l _A}’\e/k) — ngl (Ukzn O.(_Axk))Closure_

Remarks. (a) Any isolated point of g, (—4%) is an eigenvalue of
infinite multiplicity or an accumulation point of eigenvalues. In particular,
if 0 is an isolated point of o.( —4%), then it is necessarily an accumulation

point of eigenvalues.

(b) The result of Theorem 2.1 holds true for all sequences {w,}
which tend to 0 fast enough; cf. Theorem A.1 in the Appendix.

(c) It has been known for some time that rooms and passages
examples may have a non-compact embedding of #'(Q) into L,(Q) (cf.
Courant and Hilbert [6, p. 521]), in which case the essential spectrum of
the Neumann Laplacian cannot be empty. More recently, Amick [2] and
Evans and Harris [7, 8] analyzed various fundamental properties of rooms
and passages type domains related to Poincaré’s inequality and the
measure of non-compactness of the embedding of #'(Q) into L,(£2); they
also determined the bottom of the essential spectrum in some cases.

Proof of Theorem 2.1. (A) We first show that we can find a sequence
{w,} of positive numbers such that

1 1
JH, A D)™ = (Hy DSy I+ 1) = (Hy 4 1) 7, <
(2.9)
and
~ 1
(H,+1)"'—(H,+1)7! < ¥ e (2.10)
kzn

holds, for all n=1, 2, ....
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To achieve this, we first apply Proposition 1.6 to all the rooms R, to
obtain a sequence {w,}, w, >0, such that

||(—A';;k+1)*1—(—A§;,+1)*’1|S% (2.11)
provided O0<w,<w, (recall that —AR, obeys Dirichlet boundary
conditions on the line segments {x.}X(—w,;_;,w,_,) and on
{Xi} X (= we, we)).

We now proceed by induction. For n=1, (2.10) follows directly from
(2.11), as H, and H, are fully decoupled. By Proposition 1.5, we can find
0<w, <w, such that (2.9) holds for n = 1. (Note that for H, as well as for
H, the rooms R,, k>3, are decoupled.) Now supose that O0<w,<w,,
j=1,.., n—1, have already been found. We then employ Proposition 1.5 to
join 2., P,, and R, ., together: Again, since the rooms R,, k>n+1, are
decoupled for H, as well as for H,,,, in order to control (H,+1) ' —
(H,,,+1)" it is enough to estimate

(—4%® - 4700 @ — 4%+ 1) = (= 4%+ )

and therefore Proposition 1.5 provides us with a 0 < w,, < w,, such that (2.9)
holds for 0 <w, <w,. Applying also Proposition 1.6 to @,, we can find
0 <w, <w, such that

1
l(=a%+ 1) = (= 4%+ D ' <

(B) Now we fix a sequence {w,} which meets all the above
requirements. Clearly, the form domains 2(H,)= 2(HY?) satisfy
2H, <= 2H,, ) H(Q)=2(—47)
for all ne N, and, by Lemma 1.7, they exhaust 3 '(£2) in the sense that

2(H,) is dense in # ()

s

n=N

for all N e N. Since these quadratic forms are given by [|Vul|?, for ue 2(H,)
or ue 9(—A4%2), we may conclude that A, —+ — 4% in the strong resolvent
sense, by standard convergence theorems for quadratic forms (cf, e.g.,
Kato [12, Theorem VIII-3.6 or Theorem VIII-3.11] or Reed and Simon
[13, Theorem S.16]).

Combining this result with (2.9) and (2.10), we see that H, —» —A4% in
the norm resolvent sense, and that

(H +1)" 2= (—42+ 1) 2e 3B,
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so that o,(—4%)=0,(H,) by Kato-Birman theory (see, e.g., Reed and
Simon [14, p. 30, Corollary 3]) and g .(—4%) = 0.(H,) by a theorem of
Weyl and the spectral mapping theorem. Now, since H, is the fully
decoupled operator, with Neumann boundary conditions in the rooms and
Dirichlet-Neumann boundary conditions in the passages, it is clear that
Jac(Hl ) = @ and

Uess(Hl) = Oegs ( @ - Al]ff)
k=1

(Note that the operators — 4%+, cannot contribute to o, (H,) since the
bottom of their spectrum goes to oo, as k — 00.) This completes the proof
of Theorem 2.1. Q.ED.

We now consider more specific R, and begin with classical rooms and
passages where each R, is a rectangle. Let

Rk=(xk7x;()x(_%’7ka%r’k) (2.12)

for some bounded sequence {7}, n,>0. As |x, — x| =0, k > oo, it is easy
to see that

O ess ( éi) —A,’f,k> ={0} U {m’r’ameN, ae X},
k=1
where
2 = {limit points of {n, *}} (2.13)
and we obtain the following resuit:
COROLLARY 2.2.  Suppose the rooms R, are given by (2.12), with {n,} a
bounded sequence of positive numbers. Let X be as in (2.13). Then, there

exists a sequence of widths {w,}, w, -0, such that the Neumann Laplacian
on 2 =Q({w,}) satisfies

m2x.

1

Oes(—4%)={0} Un?

iCs

Remark. By Theorem A.l in the Appendix, Corollary 2.2 can be
generalized to hold for all sequences {w,} which go to zero fast enough.
We believe that the result holds true if w, — 0 at some exponential rate
while the other quantities behave polynomially.

Corollary 2.2 determines the essential spectrum of the Neumann
Laplacian on typical rooms and passages (for very narrow passages).
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FiG. 5. A room with partition.

However, due to the somewhat special structure of the set {J2_, m’2, it
does not provide a really satisfactory answer to the inverse problem (IP).
While the best answer to (IP) will only be obtained by the construction of
modified combs in Section 3, we shall now make some progress by
replacing each room R, by a small square room with a partition leaving
open a “door”, as shown in Fig. 5.

These “double rooms” R, of side length k —2 will be chosen in such a way
that — A% has an eigenvalue 0, one low-lying cigenvalue less than %k’
(which can be adjusted by choosing the width g, of the “door”), while the
remaining eigenvalues are larger than n’k* . In fact, we have the following
lemma.

LEMMA 2.3. For 1>0 and 0< p <I, consider the open set in R?

Qs p)=((=L0)u (0, 1)) x (=L 1)U ({0} x (—p, p)).

Then, for any e (0, n2/41?), there exists p € (0, 1) such that the (repeated)
eigenvalues J.,(p), j=0, 1, 2, ..., of the Neumann Laplacian on Q(I; p) satisfy

Z

4
12

Ao(p)=0,  Alp)=p,  A(p)2z5 (722).

N

The proof of this lemma will be given at the end of this section. In the
construction of rooms and passages, let us now assume that |xj — x| =k~
and that each room R, is replaced by R,, where R, is a square with a
partition, leaving open a door of width a,, as shown in Fig. 5. We then
have:
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CoROLLARY 2.4 (Modified Rooms and Passages). Let 4,(a,) denote the
first non-zero eigenvalue of — A 7. Then, for suitably chosen widths w, of the
passages P, the Neumann Laplacian on Q = Q({w,}) satisfies

Oess(— A%) = {0} U {accumulation points of {1,(a;)}}.

An immediate consequence is the following inverse result:

COROLLARY 2.5. For any closed set S< [0, o), there exists an open,
bounded, connected set Q < R? such that

Gus(—42)={0} US.

In Section 3 we will construct examples which do not necessarily have 0
in the essential spectrum.

Proof of Lemma 2.3. We first exploit the monotonicity of the Sobolev
spaces #'(Q(/; p)) with respect to p,

HNQULp ) A Qs p)),  0<p<p'<l

to conclude that 4,(p)<4/p’), for j=0,1,2,..and 0<p<p' <.
For p =0, we clearly have

, n’
1o0)=11(0) =0, 1(0)= 3
s0, by monotonicity,
2

Since 4,(0)=0 and A,(/) = n*/4/>, the result will follow if we can show that
A1(p) depends continuously on pe [0, /].
To prove continuity at 0, we choose a function y € C*(R?), satisfying
Uix, y)=1, x4y’ >4
and let
Volx, y)=¥(p~'x,p7'y),  p>0.
Letting x and y, denote the characteristic functions of the right and left

portion of Q(/; 0) respectively, we define

i,= l//p “(Xr—X1)-
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We have that i, is orthogonal to the constant functions, i, e # Yo p)),
IVi, || <const, and @, xz—x, in L? as p—0. Thus, for a suitable
sequence {p;} converging to 0, we have @i, yz—x, weakly in
A#1(Q(1;0)), and the Banach-Saks theorem yields that the averages

Hp,
1

Dy

INIE

z|-

J

converge to yx — X, strongly in #'(Q(/; 0)). Therefore, given ¢ > 0, we can
find a function w, of norm 1, w_e # ' (Q(/; p)), for small p, satisfying

IVw. || <e, j w,=0.
QL p)

This proves 4,(p) < ¢ for p sufficiently small.
Continuity of 4,(p) in 0 < p </ follows by monotonicity and a simple
dilation argument. Q.ED.

3. ComMBs

We now apply the techniques of Sections1 and 2 to Neumann
Laplacians on comb-like domains. Qur combs are constructed by attaching
an infinite number of thin “teeth” (rectangles) of finite length to a fixed
square forming the basis of the comb; each tooth plays the role of one
room and one passage simultaneously. In the second part of this section,
we shall produce combs with more sophisticated teeth (teeth of shrinking
size with partitions, similar to the double rooms in Section 2), which
provide a complete answer to the inverse problem (IP) of Section 2. Each
of the teeth with partitions will contribute to the spectrum of the decoupled
comparison operator precisely one low-lying eigenvalue which again can
be adjusted by choosing the opening of the “door,” while the remaining
eigenvalues will be very large.

We first describe ordinary combs.

Let the basis (or the “handle”) of the comb be the set
2,=(0,1)x(—1,0)cR? and suppose we are given a bounded sequence
{n.} of positive numbers. The 5, give the length of the kth tooth,
k=1,2, ... The width w, of the kth tooth will be determined inductively.

Suppose {w,} is some sequence of positive numbers such that 3" w, < 1.
We then denote the initial x-coordinate of the kth tooth by

k-1
a =Yy w, k=12, .. (3.1)

j=1
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and the total width occupied by teeth as

A=Y w,. (3.2)
k=1
For the kth tooth, let
D =(ay, ar+w;) x (0, 1), Di=(ay, a,+w ) x[0,n,).  (3.3)
The comb domain is then given by
Q=Qou< U D;), (3.4)
k=1
while the approximating comb with only the first » teeth left, is given by
.(2,,=QOU< U D}(). (3.5)
k=1

As in the rooms and passages example, we will also need two kinds of
approximating operators,

H,1=—A‘N?"@<® —Aﬁsv>, neN, (3.6)
k>n
and
=450 @ -a%)  neN, (37)
k>n

where the boundary conditions are chosen in the following way: —4%%, has
Dirichiet boundary conditions on the line segment [a,, a, + w;] x {0} and
Neumann boundary conditions on the rest of dD,; — 4%, has Dirichlet
conditions on the line segment [a,,;, 4] x {0}, and Neumann boundary
conditions on the remaining portions of 72, (cf. Fig. 6 below). In par-
ticular, all the teeth are decoupled from the basis Q, for the operator H,.
Similarly, for w, ..., w, given, —Agg ~ Will denote the Laplacian on £, with
Dirichlet boundary conditions on the line segment [a, ,,a,,,+8]x {0},
for 0 <é <1—a,,; and Neumann boundary conditions on the rest of 0€2,,.
Note that, for fixed {n,}, the domains and operators defined above will
depend on the sequence {w,,}.

ProrosiTION 3.1. Suppose w,,..,w, are given, with w,>0, for
k=1,..,n,and 37 _, w;<1. Then there exists W, . >0 such that

IH,+ 1) = (H,  + D) I<(n+1)),  n=0 (3.8)
(H,+ 1) > —=(H,,,+1) |4 <l(n+1) nz0 (3.9)

580/102/2-15
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Fi1G. 6. The line segment [a,,,, A]x {0} where —4%, has Dirichlet boundary condi-
tions.

provided w,,, , <W, 1, for any choice of w, ., W, 3, ..., but still assuming
>we<l.

Proof. Since the teeth D, ,, D, ;, .. are decoupled for H, as well as
for H,,,, it is enough to compare (—A%@® —45y'+1)"' and
(—4%+1+1)"", and the result will follow if we can show that the assump-
tions of Proposition 1.9 are satisfied: Clearly, the small eigenvalues on the
teeth are independent of w, for w small, while Neumann bracketing yields
that (— A%+ 1) 2 is trace class. Q.ED.

We also have to consider the difference between the resolvent of H,
and A,.

PROPOSITION 3.2. Let n=1 and suppose w, ..., w, are given, with w, >0,
Jor k=1,..,n and Y w,<1. Then, there exists 5, >0, such that

~ 1
II(H,,+1)“—(H,,+1)*‘II<; (3.10)

Jfor any choice of w,,, |, W, 2, ..., provided Y ; .., W, <0,.

Proof. Since the teeth D, ,, D, ,,, .. are decoupled for H, as well as
for H,, it is clearly enough to ensure the existence of a d, such that

1
||(fA2n+1)--‘—(—A‘;;N+1)*‘x|s; (3.11)
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for all 0 <d <4, (recall the definition of —Agg ~» given at the beginning of
this section). Hence the desired result foliows from Proposition 1.6. Q.E.D.

Again, the form domains 2(H,) are non-decreasing and they exhaust
H#'(Q), the form domain of —A4%, in the following sense:

ProPOSITION 3.3. Let {w,} be a sequence of positive numbers with
S w,< 1. Then \J*_, 2(H,) is dense in #'(Q), for NeN.

Proof. Let ue #'(Q). Lemma 1.7 provides a sequence {u,} < #'(2)
such that |u—u,{|, = 0 and u.(x, y)=0 for (x, y) in the ball of radius 1/k,
centered at the point (4, 0). Hence u, € 2(H,), for n sufficiently large, and
the result follows. Q.E.D.

We are now ready to put the pieces together.

THEOREM 3.4. Suppose we are given a bounded sequence of lengths {n,},
N >0. Then there exists a sequence {w,} of widths, w,>0, such that the
Neumann Laplacian on the domain Q=Q({n,}, {w,}), defined as in
(3.1)(3.4), enjoys the following properties:

(1) —A4% has no abslutely continuous spectrum.
N ] 14

(1) Ooe(—AD) =12 UZ_o (2m+1)/2)> X, where X is the set of limit
points of the sequence {n, *}.

Remark. Fleckinger and Métivier [9] consider a class of combs with
compact (— A4+ 1), and derive results on the asymptotic distribution of
eigenvalues. Note that the comb shown in Fig. 2 has no essential spectrum.

Proof. By Proposition 3.1, we can find some w, > 0 such that (3.8) and
(3.9) hold. Using Propositions 3.1 and 3.2 we then choose w, >0 induc-
tively, making sure that (as we pass from & to K + 1)

(1) Wy, <Wg,, with W, as in Proposition 3.1,
(i) Thriw,<¥s_ w40, fors=1,..,k,

with o, as in Proposition 3.2. (The meaning of condition (ii) is the
following: If w, .., w, have been defined, then Proposition 3.2 imposes the
restriction Y, ., w,<d,, and this is for s=1,2,...) Hence, for this
sequence {w,}, (3.8) and (3.9) hold for all ne N.

As H,>H,, ,>--- >0, we may use Proposition 3.3 and Kato [12,
Theorem VIII-3.6 or Theorem 3.11], to conclude that A, — —A4% in the
strong resolvent sense. It follows by (3.8) and (3.9) that H, » — 4% in the
norm resolvent sense, and that

(Ho+ 1) 2 — (=48 + 1) e 4,

SO that Uess( _Aﬁ) = O-ess(HO) and Qac(—Ag) = O-ac(HO)'
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Again, it is evident that ¢,.(H,) = & and

O'ess(IJO) = Oess ( @ _AII;,}V>

k=1

={(2m+1)2)’n’a|meN,, ae X}
and we are done. Q.E.D.

In order to arrive at a full solution of our inverse problem (IP), we now
modify the comb construction, using teeth of shrinking size with partitions
of the following precise type.

For w>0 and 0<y<w, the tooth D(w,y) is a rectangle of height
w+w'* and width w, with a horizontal partition at height w'/* which
leaves open a door of width y (cf. Fig. 7). In the actual construction, we
will attach a sequence of such teeth to 2,=(0, 1)x(—1,0). Again, let
— 4547 denote the Laplacian on D(w, y) with Dirichlet boundary condi-
tions on the bottom and Neumann boundary conditions on the remaining
parts of the boundary. We will use the following analogue of Lemma 2.3 to
determine the parameter y in the further construction.

LEmMMA 35, Let O<py, < - <su,;< -, u,=p,(w,y), denote the
(repeated) eigenvalues of — A5\, for 0<w <1 and 0 <y <w. We have:

(a) w;(w, )= u;{w,0), for ie N. In particular, u, - v as w - 0, and,
more strongly, 3., (4, +1)"2 >0 as w— 0, uniformly in 0<y < w.

174

W +w

NVI/L) —p—

FiG. 7. The tooth D(w, y).
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(b) Suppose 1>0 is given, and w;, >0 is such that u,(w,0)> 4, for
0<w<w;. Then, for any 0 <w<w;, there exists a y=y(w, 4) e (0, w) such
that

mlw, 7w, ) =4, O<w<w;.

The proof is similar to the proof of Lemma 2.3.

Suppose now we are given a sequence {A,}c< (0, ). The preceding
lemma enables us to find w,>0 and functions y,(w), defined for
0<w<w,, such that the first eigenvalue of the Dirichlet-Neumann
Laplacian on D(w, y,(w)) is just 4,, whereas the second eigenvalue is
greater than k. We denote these families of teeth by D (w), 0 <w<w,. (In
fact, in the actual construction of combs, we will use translates of these D,
but we will not make this explicit in the notation.)

Next, we define the objects a,, Q,, Q?, H,, and H, as in (3.1)—(3.7), with
the only difference that each tooth is now a set D,(w), translated in the
x-direction by an amount of a,. Clearly, statements and proofs of Proposi-
tions 3.2 and 3.3 apply essentially unchanged. By Lemma 3.5(a), and since
i (— A28y = J,, by construction, we are in the position to apply Proposi-
tion 1.9 (also note that, by Neumann bracketing, (—A4%"+1) % is trace
class, for all n), and we obtain the estimates (3.8) and (3.9) of Proposi-
tion 3.1. This leads to the following main result.

THEOREM 3.6. Suppose we are given a sequence {A,}<(0, o). Then
there exists a bounded, open, connected set Q = R? such that ¢, (—A4%)= &
and

Oess —4%) = {limit points of {4} ).

Proof. Again, we use (analogues of) Propositions 3.1-3.3 in order to
find a sequence {w,} of positive numbers so that all the estimates
(3.8)~(3.10) hold.

As before, H,>H,,,> --- 20, and so Proposition 3.3 combined with
the usual convergence theorems for quadratic forms implies that
H,— —4%2 in the strong resolvent sense. By (3.8)-(3.10) this yields
H,— — A% in the norm resolvent sense, and

(Ho+ 1)’2—(—A5,3,+ 1) ?ea,.
Hence, ,(—4%)=0,.(H,)= & and

Gess(—Ag) = O g ( (_D —Ag’;\(,wk)>

k=1
= {limit points of {4,}}
and we are done. Q.E.D.
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It is clear that we can construct Q2 as small as we please, without chang-
ing the result of Theorem 3.6. This leads to the following solution of the
inverse problem (IP).

COROLLARY 3.7. For any closed set S < [0, o0), there exists a bounded,
connected set Q contained in the unit ball of R?, such that

Oess(—A%)=S.

APPENDIX

In this appendix, we discuss the main modifications needed in Proposi-
tions 1.4 and 1.6 to derive the following stronger version of Theorem 2.1.

THEOREM A.l. Suppose we are given a sequence of open domains
R, cR? k=1,2, .., which satisfy conditions (2.1)-(2.3). Then there exists a
sequence {W,} of positive numbers such that

o-ac(—A}[\zl):g’ Gess(wA/%)ZUess<® __Aﬁk)
k=1
for any sequence {w,} satisfying 0 <w, <w, keN, where Q=Q({w,}) is
given by (2.5).

We shall need the estimates provided in Propositions 1.5 and 1.6 in a
form which is largely independent of the domains involved, in the sense
that w, can be chosen simultaneously for a family of domains Qf,",
0<r<1, ¢g=1,2 In the sequel, let B, denote the ball of radius p, centered
at the origin in R?, for p>0.

LEMMA A.2. Consider a family of domains Q1, 0 <t <1, QY contained
in the left half-plane in R?, satisfying
(_SO’O)X(_S07S0)CQ(”s O0<t<t

for some 5,>0. Then, for any M >0 there exists a C> 0 such that

Sup |l// r on/2| + Sup IV(// l_ Bso/ZI < C
for any normalized eigenfunction  of — 49" associated with an eigenvalue
A<M

Proof. Let te[0,1], A<M, and suppose YeD(—42") satisfies
l¥ll=1 and —A%“’d/:ll}/. Reflection along the y-axis yields a function
¥ € #'(B,), which is a weak solution of — A =i} in B,, for 0 <s<s,.
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The desired result then follows by repeated use of the a priori estimates
given in Gilbarg and Trudinger [ 10, Theorem 8.10], and an application of
the Sobolev embedding theorem. Q.E.D.

We now join two families of domains 2" and Q'” by a narrow passage
P, =[0, L]x(—w, w). In view of Lemma A.2 we require Q" to be of the
type described above, while the domains QY should lie to the right of
{L} xR and should contain the set (L, L+ 54) X { — g, $). We furthermore
require the operators (—4% +1)~' to be compact, for g=1,2 and
0< 1< 1. Again, let \” and (" denote the (repeated) eigenvalues of

HO = — A%
where
Qtw)=2" U P, uQY
and of the decoupled operator
A= —25"® - Al ® - 4%,
respectively, where the mixed boundary conditions on the passage are

chosen as in Section 1. Let {E{’}, {E{"} denote the spectral families
associated with H{" and A", respectively. We have

PROPOSITION A.3. In addition to the assumptions made above, suppose
that for any A >0 there exists a constant C , such that

#lilZ"<A}<C,, 0<t<1.

Then, for any £¢> 0, there exists w,>0 such that

|EV—EV)<e,  O<w<w,

for all A< A which satisfy dist(A, a(H")) > e.

Proof. Using Lemma A.2, we are in a position to control the extension
process @, ,, described just before Proposition 1.4, in a t-independent
way: We obtain

;T Plly =0, w—0

uniformly in ¢. The rest of the proof is similar to the proof of Proposi-
tion 1.4, Q.ED.

It is now easy to obtain the following generalization of Proposition 1.5:
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PROPOSITION A4. Let Q, g=1,2, 0<t<1 be as above, and suppose
that, in addition,

Y (A04+1) 250, N-oow

i>N
uniformly in 0<t< 1. Then
IHO+ 1) — (A + 1) -0,  w—0,
I(HD+1) 72— (AP +1) 8,0,  w—0,
uniformly in 0 <1< 1.

Proof. There are only some obvious changes in the proof of Proposi-
tion 1.5. QED.

We finally have to change Neumann boundary conditions on the line

segment {0} x [ —w, w] into a Dirichlet boundary condition.

PROPOSITION A.5. Let Q' be as in Lemma A2, and let — AL, obey
Dirichlet boundary conditions on {0} x [ —w, w], and Neumann boundary
conditions on the remaining portions of 02'°. Also assume that

AM'> o0, i o0,

uniformly in 0<t< 1, where the A" denote the (repeated) eigenvalues of
— 42" Then

(=42 +1) ' = (=48, + 1) 50, w-0,
uniformly in 0 << 1.

Proof. The proof is similar to the proof of Proposition 1.6 but it
requires a f-independent version of Lemma 1.7 for eigenfunctions; see
Lemma A.6 below. Q.E.D.

LEMMA A.6. Let 2 be as above, and let A>0. Then there exists a
sequence of cut-off functions ¢, € C*(R?) with the following properties:

(a) 0<¢,<1,
(b) @, vanishes in a neighborhood of the origin,
(¢) for any £ >0, there exists kqe N such that for k >k,

llu -— ¢ku'|xl(gm) <é

Sfor all normalized eigenfunctions u of —Aﬁ“’, associated with eigenvalues
smaller than A, for 0<t< 1.
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Proof. Applying the Banach-Saks theorem to the sequence of cut-offs
@, used in Lemma 1.7, we see that, for a suitable sequence {k;} cN

N
z ch,F B,

J=1

-0, N — 0.
H(B)

J 1
| N
We then may define ¢, =1/N Z‘}':l ¢« for NeN. As the eigenfunctions u

(together with their gradients) obey a uniform bound on the ball B, ,, by
Lemma A.2, the result follows by straightforward estimates. Q.E.D.

Proof of Theorem A.1. The proof now follows closely the lines of proof
of Theorem 2.1, using Propositions A.4 and A.S in place of Propositions 1.5
and 1.6, respectively. Q.E.D.
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