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We consider Schrodinger semigroups e, H=—-4+V on R" with
V~—clx|7% as |x| > 00, 0<c<[(1/2)(n—2)]*> with H>0. We determine the
exact power law divergence of |le ~'7|, , and of some lle="¥,. , as maps from L’
to L9 The results are expressed most naturally in terms of the power o for which
there exists a positive resonance # such that Hp =0, n(x)~ x| ™%  © 1991 Academic

Press, Inc.

1. INTRODUCTION

We study the asymptotic behavior as t— co of the L? norms of e~/
where H= —4+ V is a non-negative Schrodinger operator on L*(RY). If
H has a zero energy resonance y such that n(x)~ |x| ~* as |x| - oo we find
that the L norm remains bounded as ¢t— oo if 2< p<N/o. When
Njo< p< oo, we find the precise power law which governs the divergence
of the norm as ¢ — o0. See Theorems 11 and 15 for the precise statements
of these laws. We also obtain pointwise bounds on the heat kernel which
indicate the increasing influence of the resonance as t— +oo. See
Theorems 16 and 18. Our results apply under a variety of somewhat
different technical conditions on ¥ and #, but are relevant when
V(x)~ —c|x| "% as {x| = co for some ¢ >0. Such potentials just fail to lie
in the class L¥?~ ¢~ L"?** to which most earlier results concerning
resonance phenomena have been restricted.
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We suppose that H= —A4 + V where V', is K¢ and V_ lies in the Kato
class K,. We consider various subcriticality and resonance conditions and
assume throughout that H = 0 as an operator on L*(R"). We only consider
the problem in dimension N > 3, since resonance behavior is different for
N=1,2. Tt turns out that a few results are different or simpler to treat
when N =5, but we discuss this when it becomes relevant.

One says that V is short range if Ve L¥?~ ¢~ LV?*¢ for some &> 0.
Since the study of resonances and criticality is fairly extensive under this
condition (see Pinchover [10], Zhao [15], and references therein), we
consider potentials outside this class. One also says that V' is subcritical
if for all We C” one has H—eW =0 for small enough ¢>0. Of more
importance in this paper is a modified notion. We say that H is strongly
subcritical if H—¢V _ >0 for small enough £>0. The status of this
definition is clarified by the following lemma.

LEMMA 1. If we put
A=V (=44+V )t Ve
then H =0 if and only if ||A|| < 1. The following are equivalent:

(i) V is strongly subcritical.
(i1) [|4] <.
If, moreover, V _e LY, then (i), (ii) are equivalent to

(ii) For all 0K WeLN? one has H—eW =0 for all small enough
> 0.

Proof. Assuming (i) we have

—A4+V,2(1+e)V_=0
and hence

12(—44+V )" +e)V_ (—4+V,) 2= (1+¢) BB*,

where
B=(—d+V, ) 2V~

Thus
(Al = |B*B| =||BB*| <(1+¢) .

This proves (ii). The proof of (ii) == (i) is similar. (ii) = (iii). If 0 < We L"?
then there exists ¢ < oo such that

W<e(—d)yse(—4+V,).
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Therefore
O0S(—A+V ) P W(—a+V,) <
$0
=4+ V) PV _+eW)=4+V,) <4l +ec<]
for small enough &> 0. This implies that
0K (—A+V,) "2 (V_+eW)—4+V,) <1
$0
V_+eW< —-4+V,
and
H—-e¢W2>=0.
(iii) = (i) is trivial if V_e LY?. |

We comment that if V' _ is short range then A4 is a compact operator on
L*(R”™). Thus strong subcriticality is equivalent to assuming that the
largest eigenvalue of A is less than one, and this is also equivalent to
subcriticality. We show in Example 5 that subcriticality and strong
subcriticality are not equivalent in general.

Our main interest is in finding upper and lower bounds on fe "], ,
where || X, , denotes the norm of an operator X from L” to L% It turns
out that if V(x)~ —c|x| ? as |x| = oo, where ¢ >0, then a much wider
variety of phenomena can occur than are found in the short range case.

From the point of view of the potentials V, it appears that we are
analyzing very special cases, albeit borderline and thus interesting ones.
For if ¢>0 and V'~ —cx ** at infinity, then a > 2 means short range and

o <2 means not subcritical. However, if one thinks of Dirichlet forms and
writes H=UHU ' as

(o, ﬁcp)=f Vo> n*dx; (o, <p)=f @™’ dx,

where Hn =0, then all short range cases correspond to 5y~ ¢ at infinity
while we are looking at # ~ |x| % From this point of view it is the short
range case that looks special.

Finally we close by noting why ||-|, , are of .considerable interest:

(1) |le "] ..., bounds provide pointwise bounds on the heat kernel.

(2) lle ""|l,., bounds provide pointwise bounds on eigenfunctions.
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Since bounds on || , imply bounds on e~ » by interpolation,
our results show that those of Journé et al. [5] do not extend beyond short
range potentials.

E. B. Davies thanks D. Wales for the hospitality of the Caltech
Mathematics Department, where much of this work was done.

IH“ "

2. REsuLTS NoT DEPENDING ON RESONANCES
We start with a result of Simon [11, 12].

PrROPOSITION 2. If H>0 then there exists ¢ < oo such that
lle™ 1 .o (T +0)™2

for all t 0. Moreover, e ™|, ,< oo for all p<gq and t > 0.
q.p

Under strengthened hypotheses on the negative part of V' we may say
more.

THEOREM 3. If Hz=0 and V _ e L?, for some p>2 then
le™ ™)) .0 S (1 + )72, (2.1)
If also V is strongly subcritical then

le ™" oo oo Se(1+ )72 712 (22)

Proof. 1f we put K= —44V, then
€7HI=EWK’+J4 €7HXV,, efk(r—s) dS.
s=0
Therefore

t
0<e’”’1=e”"1+f e MV _e K= ds
s=0

1+j e "V _(1)ds
and

4
OSe*”“*”lSe‘”l+J e HOY (Y ) ds.
s=0
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We deduce (by interpolation) that

le= MDY =l D1,
<t | e eI ), ds (23)
s=0
t
o I [ A I Fre ) M P
5=0
(24)
If we put

n(t)=sup{lle 7TV} :0<s<1}
and use the estimate

|le7H(.c+ [)H

oS le ™l calle™ ™, < e
then 0 <t < T implies
e #U+D) o L <ey+en(T) 7T
This easily yields |
n(T)<csTn(T)' — 7
for all T>1, and hence

le™ N0 <M(T) < T#?

as required to prove the first statement of the theorem.
If H is strongly subcritical, then H>a’H, for some a>0, where
Hy,= —A. Therefore

IH =2 <o g Al < el flanpv+2)

for all fe L? ~ L*¥V*2 by a standard Sobolev inequality. Therefore
le=fll,=1""e "{(Ht)" H S|,
<t TH T,
<est 2 fllanpw+ 2y

It follows that

—H - _
lle™ ™ ann—2y.2=lle Hll|z,21v/uv+2)<c3t 12 (25)
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and this implies that
“371-"14r 1)” w2 S ca(l+1)" 12,
We now substitute this into (2.4) to get

m(T)<e,+csn(T) ~¥PTI - VP

en(D)' 2P T VP

for all 7> 1. This yields (2.2), as before. §

Sometimes by further interpolation, one can do better. For example,
if N=8 and p=2, then we can interpolate between |le 7|, < Ct
and Jle g, <Ct ? to see that [e |59 53<Cr ® and so
lle ™355, < Ct—>* and thus [le || . ,, < Ct'~¥® which we could iterate

and improve.

THEOREM 4. If H=0, V_eLY? N=>=3, and V is strongly subcritical
then

le™ ) oo (14 1)VE7 12

for all 1t =0.

Proof. If N=5, this is an immediate corollary of Theorem 3, so
suppose N=3 or 4. If t > 0 then

~H(1+1)||

lle o, 2N/(N + 2)

—H(/2+

”‘/’—H/SH 50, 2N/(N — 2) le 1/3’“21\'/(1\/7 2),2 ”€7H([/2 M 1/3)”2.2N/(N+2)

<
<C3(1 +t)‘].

We combine this with the bound

t
e #UH D <oyt |l D)L
0

— H{s i
NG v IV - aga dt

x |le
where (1 — 1)/o0 + A((N +2)/2N)=2/N, to obtain
mT)<e, +en(TY A T4
for all 7> 1. This implies

n(T)scsTl/;tflZCST(N+2)/4~]:CSTN/471/2. I
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3. RESONANCE EIGENFUNCTIONS AND UPPER BOUNDS

If H= -4+ V>0 and Ve K% then there always exists at least one
positive continuous function # on RY such that Hy=0 in the sense of
distributions. This function need not be unique or bounded, but in the
applications we have in mind, it is both. Since this problem has already
been studied in detail by Murata [6-8], we simplify our treatment by
defining a resonance to be a positive continuous bounded function # on R”
such that e~ #'n =y for all 1>0, where e " is the semigroup on L* con-
sistent with the usual self-adjoint semigroup on L2 We do not exclude the
possibility that ne L? and so is a proper bound state. We start with an
example discussed by Murata [6-8].

ExaMpLE 5. Let N>3 and put H= — 4+ V where

0 if |xl<1
—of|x]?2 i x> 1

V(x)={

so that H>0 if and only if ¢ <((N—2)/2)%. The same condition ensures
that ¥ is subcritical, but for strong subcriticality we need ¢ < ((N—2)/2)%
Assuming 0 < ¢ < ((N —2)/2)?, there are two radial solutions of Hy=0 on
{x:|x| > 1} namely |x| ~* and |x| ™™ where

0ey N=2_ [[N22Y N-2
) 2 ) T

———N_2<cx’—N_2+ (N—2 —c<N=2
2 =T T\ T2 ===

There is one positive radial solution 4 of Hn=0 on the whole of R¥ and
this satisfies n(x)~ |x| ~* as |x| = cc.
We say that a resonance n >0 is slowly varying with index a >0 if
n(x)

m<c1(1+|x—yl)“ (3.1)

for all x, ye R". We say that 7 is regularly varying if

_ n(x)

6;1<T<C2

n(y)

whenever

Ix =yl <3(1+1y))
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Both of these conditions are satisfied if
e M+ IxD) 7 <n(x)<es(1+[x]) (3.2)

for all xe RY.

LeMMAa 6. If H=—A+ V=0 has a slowly varying resonance n with
index o< (N—2)2 then V is subcritical. If (3.2) holds for some
a<(N—2)/2 then V is strongly subcritical.

Proof. We define the unitary operator U from L*(R", n?dx) to
L*(R™, dx) by Uf =nf and put H=U ~'HU so that A has the quadratic
form

O(f)= | IV/1*n* dx.
We next observe from (3.1) that
n(x)Z el +|x})~"

for all xe R", so n>c,n,, where 5, is the zero energy resonance of the
operator H, of Example 5, with ¢ =a(N—2 —«). Since the potential ¥, of
Example 5 is subcritical, given We C> there exists ¢ >0 such that

O(f) =<3 | IVf 120} dx

>3 [ 1117 eWn? d

‘l”’]z
=c2 | |f12e—2n?dx.
3f ’12

1

Therefore
wn3

H>e n

and H is subcritical.
If 0 <@ < ((N—2)/2)* then (3.2) implies

-1
C3 N SHKC3Ny.

If We LY? then by the strong subcriticality of H, there exists ¢ >0 such
that

[ vf1i2nd dxze [ 19617 Wt ax
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Therefore
[1vr12n? dx>ecy* [ \VfI? Wy dx

and
Hzeciy*W. |

We now define K(z, x, y) to be the heat kernel of e "' In our next
proposition one can replace 5 by (4 +¢) for any ¢>0.

ProrosiTioN 7. For any H, one has

2
0<K(t, x, yy<et™ V2 exp[—lx 5ty| ]

for all 0 <t< 1. If H>0 has a slowly varying resonance one also has

_ 2
0<K(s, x, y)<cexp[—|—x—5ty—|—]
for all t=1.

The first statement is taken from [137] and the second fom [3].

TueoreM 8. If H >0 has a slowly varying resonance n with index o, then

le™ "l o oo S (14 0)720°

Sfor all t=290.

Note. Apart from the possible elimination of &> 0, it follows from

Theorem 14 below that this is the strongest result possible under the stated
hypothesis.

Proof. We put
(e~ "1)x)=[ K(t, x, y)dy=1, + I,

where

1, =j K(t, x, y) dy
|x—yl<R

1) 1

g‘[‘leyl<RK(t, %) o U=y

<c(l1+ R)" ,,(x)\lj K, %, 9) () dy
lx—-ylsR

Lc(1+R)
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Assuming 7> 1 we use Proposition 7 to obtain

w
2 _
Izzj K(1, x, y)dygcj e "N ar
lx—yl>R R
o< bd
=ctN/2'f e PN ds.

R\

We now put ron R=1"2*%* to obtain

OS(B-'Hll)(X)éC(l + t1/2+s/a)u

-
_ 2 .
+ctN/2f e PsNlds

=c(1+ 172 L o(1) < (1 + 1) *"
The proof is completed by using the identity

le™ Ml =lle" 1. 1
If the resonance n does not lie in L? then the “projection”

Pf=<{fin>n

is not a bounded operator on any L? space. Nevertheless the presence of
n increasingly dominates the heat kernel as ¢ increases. The following upper
bound on the heat kernel gives an impression of its effect. See also
Theorem 18 for a lower bound.

THEOREM 9. If H =0 has a regularly varying resonance then

_ 2
0<K(t, x, y) < csalt, x) alt, y) exp [ - I@M

for all 6>0 and t >0, where

a(t, x)=max{(1 + |x]) ™ =N}

Proof. We first note that if we transfer the problem to the weighted
space L3(R", n? dx) in the usual way, the new heat kernel K is related to
K by

- K(t, x, y)
=" 33
K(t, x, p) ) 10) (3.3)
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We now apply the methods of Theorem 3 of [3] taking the bounded
geometry radius r(x) at xe R" to be

r(x)=3(1+|x]).

We obtain
0<K(1, x, y)<c|B(x, s{7)| 2 |B(y, s3%)| 712
ol o2 1232
-exp[—“x T )+] (34)
4(t+s,+s5)

provided 0 <s, <t, 2s}> <r(x), 253> < r(y) where, according to [3]

B nl=]  n(»)Pdy.

lv—xl<r
By the assumption that 5 is regularly varying, we see that
¢ 'n(x)? r¥ <|B(x, r)| < cnp(x)* r? (3.5)

for all r < r(x). Combining (3.3), (3.4), and (3.5) we obtain

ol G2 L12y2
0<K(1, x, y)sclsl”“s;”/"exp[—”x 4}(i+5‘+ sf )*] (3.6)
Sy T8>

under the stated conditions on s,, 5s,. We now put

2
§, =min {r(;c) , 821}

2
§, =min {r(y) , szt}

4
and estimate the exponential factor in (3.6). If |x — y| = ¢'/? then

x—yIP (=20 (x—yl=5"=5")7% _Ix—)P’
4r(1+2¢%) 4(t+5, +55) S 4

and if |x — y| <t"? then

<(|x—y|—s}/2—s;/2)2+<|x—y|<1
= 4(t+ 5, +5,) sS4 T

In both cases the theorem follows upon putting

1+ 2¢2
{46=—T2E
=02 |
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An immediate corollary of this theorem is that

lim K(¢f, x, x) <c(1 + |x])™ " (3.7)

I — oc
However, it follows directly from the spectral theorem that

lim K(z, x, x)=0

11— a0
unless # € L>(R"), in which case

lim K{(¢, x, x)=n(x)*

= o0
assuming # is normalized. Note that the RHS of (3.7) just fails to lie in
L'(RY).

4, CENTRAL POTENTIALS

In this section we obtain some essential improvements on the upper
bounds of |e~"|, , as t > oo under the assumption that the potential ¥’
is central, or approximately so. We start with a result of Murata [6-8].

PROPOSITION 10. Let H= —A+ V where V<0 is a subcritical potential
which is radial and increasing with V(r)~ —c/r* as r— o, where
0<c<(N—2)/2)% Then there is a unique positive radial resonance n of H,
and this satisfies

niry~r

as r— oo where

_N-2 [[N—2
o= — 2 —C.

In our terms the resonance 7 is both slowly and regularly varying, since
it satisfies (3.2). Moreover V is strongly subcritical by Lemma 6.
We say that an operator A4 is bounded on L% if

1AS oo < €l fll
for all fe L? where
I pw=sup{|{x: fx)=A2}|"" Ai:0<i<o0}.

Note that this is not a norm (but it is equivalent to a norm [14]).



NON-CRITICAL SCHRODINGER SEMIGROUPS 107

THEOREM 11. Under the conditions of Proposition 10, e ="' are uniformly
bounded on LY for 0 <t < oo. Hence

e ", ,<c, <o
for all t>0 and 2< p < Nfa. Also
— Hr 2/2 - N/2p+e¢
lle™ ™l , S cp (14227 N

for all t >0, >0, and Njo < p< 0.

Proof. Let * denote the (non-linear) operator of symmetric decreasing
rearrangement [1]. If 0 < fe LY then

Hf* “ Njaw = ”f“ Njo,w

and
0<f*(x) <l f e lxl ™
The Brascamp-Lieb-Luttinger theorem [ 1] implies that
0< (e "f)*<e (f*)

< CHfH N/m,weiHI(lx| 70() < C”f“ N/oz,we4H(17 1)g’
where

0<g=e "(|x| ) eL¥* AL
is a bounded symmetric decreasing function. Hence
0<g(x)<eyn(x)
for some ¢, < o0 and all xe RY. We deduce that
0< (e "f)* ()<l fllnmmere ™™ U =c| fll wmwern
and this implies that
lle™ " ngae = 1€ ) * | e

K cey ”f“N/a,w“ﬂH Now S Cz“f” Nio,we

The second statement of the theorem follows by interpolation between the
bound of Theorem 8 and
<

—H
le™ ™ Nia—bNja-8 CNju— 8+ |

Remark 12. One can extend this result to some non-central potentials
if the spherical rearrangement of the potential yields a subcritical one.
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5. Lower BounDs oN HEAT KERNEL NORMS

In this section we show that the upper bounds on |e~ "', , given by

Theorem 11 are essentially sharp. We obtain corresponding lower bounds
on the norms by adapting some estimates of Nash [9, 4, 2]. In this section
it is not necessary for V to be a short range perturbation of a central poten-
tial. [From Theorem 18 we can also obtain lower bounds similar to those
in Theorem 14; see Section 6]. '

Throughout this section we assume that H >0, that V is strongly sub-
critical, and that H has a resonance # >0 in L"* which is slowly varying
with index o where 0 <o < (N —2)/2.

LEMMA 13. Let 2< p< oo and let
n,(t)=sup{lle |, ,:0<s<t}

Then
“eiH’“p,Z S Ct‘ynp(t)

Sfor all 1>0, where y= N(p—2)/4p.
Proof. We first note that if 1/p+ 1/p’' =1 then

(RAIPES ”f||§N/(N«2)”f”,l,’7i3

where

or equivalently

Putting this into the Sobolev inequality

I/ gN/(er) <cQ(f)

we get the Nash-type inequality
LAIZA < eQUf) IS0,

If u,= | f,]5 where f,=e *f, we deduce that

d 1 du .
E (u:*1/1)= (1 —z> u*l/i_tEZC’“f’”;Z(l—/.)/A.
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Integrating this we obtain

t d )
3 [ e
>Cltnp(z)72(1~n/,‘. Hf”l;?-(lwi)/a

and hence

[flla < eat™ 72D £ n (1)
=cat 7 fllpmp(e)-
The inequality
le™ "My, <et™

which follows yields the lemma by taking adjoints. |

THEOREM 14. For any ¢>0 and 0 <t < o0 we have
1+ 27 K fle ™™l o S (1 +1)72 7 (5.1)
and

Cy MU+ ) o le T Y| o, S ea b VAL 4 1) TE (5.2)

Proof. The upper bound of (5.1) was proved in Theorem 8. Lemma 13
with p = oo now yields the upper bound of (5.2). Assuming > | we obtain
by interpolation

I, =lle” “nll . <lle” HrHI—/ lle —HIHOCQH”’“N/:;”,
where
o A 1-1
Nz’z"f"?o-*.
Therefore
“’7”w$|levH’|]1*’c {(a/2—= N +e)h
and
le P, o3 eyt B NEROR =) o o g-ar2 =

The lower bound on |e ™|, , for t> 1 follows in a similar manner.
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Finally the lower bounds for 0 < ¢< 1 follow on general grounds without
any of the conditions on V of this section [13,2]. |

We finally give a converse to Theorem 11, admittedly under somewhat
different conditions.

THEOREM 15. [ft20 and 2 < p < N/o, then

lle="1l,,,> 1.

PP
If t20, >0, and Nja < p< 0 then

lle™ M1, p = ¢, (14 0)2 7 M2,

Proof. The first inequality is a simple interpolation:

1= ”e~Ht||2’2< '|€7HII|;;,I,||€7H1“ 1—4 ”6’71{1”

p.p PP

where

A 1-=1
:—+—l—
p p

N | ~—

In order to prove the second inequality we combine Theorem 11 and
Lemma 13 to get

“efﬁt”p‘zSclth(p—Z)/étp(l + t)(pafN)/2p+e<C2t(21JN)/4+s

if t>1. Also

Inl, < lle ™"y o he ™00 A 1mh agm, s
where
a i 1ok
N 2 p
or equivalently
1 p(N-2a)
L 2pa—N)

This implhies

— _ (AL
le=" 1, , = calle™ ™, 54 =z et
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where

4 P(N —2a)
__poc——N_ ,
==
e N
T2 2

If 0 <t<1, then the second inequality of the theorem follows from the
first, which is actually valid for all p.

6. FURTHER POINTWISE HEAT KERNEL BOUNDS

In this section we obtain pointwise upper and lower bounds on heat
kernels which go beyond Proposition 7 and Theorem 9.

THEOREM 16. Suppose that V is strongly subcritical and that H >0 has
a resonance 1 >0 which is slowly varying with index o < (N —2)/2. Then for
any ¢>0 and t =1 we have

0<K(t, X, y)gcsta_N/z-FE exp[ - |x— ylz/aet]
for some positive constants a,, c,.

Proof. By combining Theorem 8 with Lemma 13 for p = oo, we obtain
forr>1

I P T AR
This implies that
le=# 0.1 < Ile‘”’/zl\io,z ey 77V
We then note that
le™#"ll ., = sup{K(t, x, y): x, ye RV}
=sup{K(¢, x, x): xe RV} (6.1)
to obtain

O0<K(t, x, p)<ey 0 2 M2+e

580/102/1-8
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We also have the upper bound

2
0< K¢, x,y)scexp[~|i5t—y|—]

by Proposition 7. Therefore

_ 1-4
0<K(ta X, ,V)S {CZ.E/2t17N/2+8/2})‘ {C €Xp l:— |x51y|i|}

for any 0 <2< 1. The theorem follows by taking A close enough to 1,
specifically
= N2 —a—e
N2 —a—¢g/2

COROLLARY 17.  Under the same conditions the Green function G of H '
satisfies

0<G(x, y)<cylx—yIP Y 4eylx— y|2F 2 Nre

Proof. We have

G(x, y)=f0°° K(t, x, y) dr

1 el
=j K, x, y)dz+j K(t, x, ) dt.
0 1

The two integrals are estimated using Proposition 7 and Theorem 16,
respectively.

Our final theorem is of a rather limited character but indicates that the
power of ¢ in Theorem 16 is the correct one.

THEOREM 18. Let V be a subcritical central potential whose resonance
n > 0 satisfies
lim r*n(r)=a

r— o

rm'(r)

lim /2= _

r>w 1(r)

Ll

where a>0, 0 <a < (N—2)/2. Then for large enough t>0 and all x with
[x| < t'? we have

K(t, x, x) = c n(x)? 2~ V2,
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In particular

”e—Hl” >Cztoth/2'

oc,l =

Remark. Note that the proof of Theorem 18 is independent of the proof
of Theorem 14, so it provides an alternate proof of the lower bound half of
(5.2) since

- - - —Hiy2
ey o < lle ™y 2 lle ™Mo = lle ™13 .-

Proof. Let ¢>0 be the ground state eigenfunction of —A4 on
{x:]x| <1} normalized by |¢|,=1 and subject to Dirichlet boundary
conditions. Let E>0 be the corresponding eigenvalue. We define a spheri-
cal symmetric function fon {x: |x| < Rf} by

r) {n(r) if 0<r<R
F) =
yr@(r6z/R) if R<r< R/,

where v, and 0, are determined by the conditions
N(R)=7r0(0g)
n'(R)=yx0rR™"0'(0r)
O0<Oz<1.

Eliminating 7, one of the conditions is

09'(0x) _ Ru'(R)
0(0:)  nR)

As 0 increases from 0 to 1, the LHS decreases from 0 to — oo, so far large
enough R this equation has a unique solution. Moreover

lim 8,=0,

R—
where 0 <6 <1 and
Bp'(0)/(0) = —a.
The first consistency condition now yields
7r="(R)/9(0)
SO

lim R*yr=a/p(0).
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4 DAVIES AND SIMON

The function fis the ground state of the Schrodinger operator

Ho=—4+V,

on {x: |x| < R/gg} subject to Dirichlet boundary conditions where

Si

Vix) if |[x]<R

Vl(x)z{—E()i/Rz if R<|x|<R/0g.

nce

Vi+EOL/RP 2V

within {x: [x| < R/8} one has

K(t, x, x} = K,\(t, x, x) exp[ — EO%t/R*]

f(xy?
113

=2

exp[ — EO0 t/R*]

whenever |x| < R/6,. Now

" Ribx. 2 1 2
3= | ey e dr e [ e s R

as R— co. If we put R=1r"? then for large enough ¢ and all |x| < t'/? we
obtain the first statement of the theorem. The second follows from the

id

1

2.

3.

entity (6.1).
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