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ABSTRACT.This is primarily a negative paper showing that a bound of the 
form 1 1  W (f ) I I o p e r a t o ,  .., 5 cllf l i p  fails for the Weyl transform if p > 2 . LJ' 
properties of Wigner distribution functions are discussed as well as Cwikel's 
theorem. 

Trace ideal properties of operators of the form f (x)g(-iV) on L ~ ( R " )  have 
been an important element in the study of Schrodinger operators (both scatter- 
ing theory and, via the Birman-Schwinger principle, bound state problems) and 
Yukawa quantum field theories (see [4, Chapter 41). The main results here are 

Theorem 1. If f ,  g E LP(Rn), 2 5 p < m ,  then f(x)g(-iV) E 4 and 
Ilf(x)g(-iV)Ilp 5 l l f  Il~llgllP. 


Theorem 2 (Cwikel). If f E LP(Rn) and g E L$(Rn),  2 < p < m, then 

f (x )g ( - iV)  E q and Ilf(x)g(-iV)llp,w 5 cpllf llPllsllP,w. 


It is natural to try to extend this to some nonproduct functions. Define for 
F E 9'(IWZfl) 

W(F)  = ( 2 ~ ) ~ ~g ( k  , y)ei("+yP) d k  dy ,S 
the Weyl quantization, and its asymmetrical form 

Then A( f (x)g(p))= f (x)g(-iV) ,so one might expect that Theorem A extends 
to a result of the form 

At first sight this might seem incompatible with the fact that f , g E Lk 
does not imply that f(x)g(-iV) is even compact (consider f (x)  = g ( x )  = 
I ~ l - ~ l p )  and g E LP, does not imply ; but in fact, it is consistent, for f E L$ 
that f (x)g(y)  on RZn is in weak LP, e.g., f ( x )  = g(x)  = I X ~ - ~ I Pwhere 
I{(x, y)lf(x)g(y) 2 111 = m .  But f E LP and g E L& imply that f ( x ) g ( y )  E 
L{,(IWZn) by a simple argument. Indeed, for f fixed, f (x )g (y )  E L{,(R~") 
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for all g E LP,, ( R n )  if and only if f E L*(Rn). Thus if ( 1 )  holds, a simple 
consequence would be Cwikel's theorem via a standard application of weak 
interpolation theorems. 

0; the other hand, since it is natural to view the map F - A ( F )  as an 
operator-valued Fourier transform [2] ,one would not expect Theorem A to 
extend to a result of the form ( 1 ) .  This is confirmed in the following theorem. 

Theorem 1. Let p 2 2 .  Then ( 1 )  holds i fand only If p = 2 

That ( 1 )  holds if p = 2 follows formally from 

which yields 

T r ( W * ( F )  W ( F ) )  = T r ( A * ( F ) A ( F ) )= (27cPnJ I F ( x ,  k)12 d x  d k .  

A proof of this well-known fact [ I ,  31 follows from the Plancherel theorem and 
the explicit form of the integral kernels for W and A : 

So we turn to proving that ( 1 )  fails for p > 2 .  Indeed, we will even prove 
that 

I l l 5 I I P IIW(F)Ilm 5 cllFIlp 

both fail where I 1 , is the operator norm. 
This will follow from the simple duality argument. If we define for cy E 

L 2  ( R " )  

From this we conclude: 

Proposition. If IA(F)II,  5 clFllp (resp., 1 1  W ( F ) ,  5 c lFIIp) .  then for p' = 
p l p - 1 we have that IIpA(cy)IIpl 5 c (resp., Ilpl'.(cy)Ipl 5 c )  for all cy E L ~ I I W " ) .  

By straightforward calculation, 

n / 2  ipx
( 2 )  p"cy)(x,  P )  = ( 2 ~ ) -  e c y * ( x ) @ ( p ) ,  

( 3 )  pl+.(cy)(x,p)  = (2n)-"  /e ipJ1  y * ( x  - i .~)cy(x+ f y )  d y .  
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From ( 2 )we see that pA(cy) E L4 if and only if both cy and @ lie in L 4 .  
Since y is arbitrary in L2  , there are cy with pA( y )  E L4 if and only if q = 2 ; 
so by the proposition, IIA(f ) l l m  5 ell f l i p  only if p = 2 .  

The Weyl case is a little more subtle. Note first that if y is supported in 
{x i  1x1 < 1 } ,  then by (3) ,  pW(cy ) (x ,  p )  # 0 only if there is a y with I x k  iy l  5 
1 ; so 1x1 5 i l ( x  + i y )  + ( x  - 4y)l 5 1 ,  i.e., p U ' ( y ) ( x ,  p)  = 0 if 1x1 2 1 .  
Suppose that J l p W  14 d x  d p  < m . Then it follows, since the characteristic 
function of the unit ball is in ~ 4 1 4 - I  , that we have for any 8 ( x , p)  

We will find y and 8 in ( 4 )  false if 1 < q < 2 . Pick 8 ( x ,  p )  = 2px . Then 
by (3)  

Now take 

with 2a < n . Then, cy(0)# 0 and @ ( p )  I P ~ - ( ~ - " ) $! 	pWlarge; so pfor L4 

if q ( n  - a )  < n . Since a can be arbitrarily closer to n / 2 ,  q  can be chosen 
anywhere in [ l  , 2 ) .  This concludes the proof of Theorem 1. 

Along the way, we proved the following of independent interest: 

Theorem 2. In general, p A ( y )  may not lie in any LP , p # 2 .  In general, 
p W ( c y )  may not lie in LP, 1 < p  < 2 .  

It is easy to show pW E L m  so in LP , 2 5 p 5 m . Since pW is a "density", 
J lpW1 d x  d p  = m is notable! 
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