THE WEYL TRANSFORM AND L^p FUNCTIONS ON PHASE SPACE

BARRY SIMON

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. This is primarily a negative paper showing that a bound of the form $||W(f)||_{\text{operator norm}} \leq c||f||_p$ fails for the Weyl transform if p > 2. L^p properties of Wigner distribution functions are discussed as well as Cwikel's theorem.

Trace ideal properties of operators of the form $f(x)g(-i\nabla)$ on $L^2(\mathbb{R}^n)$ have been an important element in the study of Schrödinger operators (both scattering theory and, via the Birman-Schwinger principle, bound state problems) and Yukawa quantum field theories (see [4, Chapter 4]). The main results here are

Theorem 1. If $f, g \in L^p(\mathbb{R}^n)$, $2 \leq p < \infty$, then $f(x)g(-i\nabla) \in \mathcal{F}_p$ and $\|f(x)g(-i\nabla)\|_p \leq \|f\|p\|g\|_p$.

Theorem 2 (Cwikel). If $f \in L^p(\mathbb{R}^n)$ and $g \in L^p_w(\mathbb{R}^n)$, $2 , then <math>f(x)g(-i\nabla) \in \mathscr{I}_p^w$ and $||f(x)g(-i\nabla)||_{p,w} \leq c_p ||f||_p ||g||_{p,w}$.

It is natural to try to extend this to some nonproduct functions. Define for $F \in \mathscr{S}(\mathbb{R}^{2n})$

$$W(F) = (2\pi)^{-n} \int \widehat{F}(k, y) e^{i(kX+yP)} dk dy,$$

the Weyl quantization, and its asymmetrical form

$$A(F) = (2\pi)^{-n} \int \widehat{F}(k, y) e^{ikX} e^{iyP} dk dy.$$

Then $A(f(x)g(p)) = f(x)g(-i\nabla)$, so one might expect that Theorem A extends to a result of the form

(1)
$$||A(F)||_p \le c||F||_p$$
 or $||W(F)||_p \le c||F||_p$.

At first sight this might seem incompatible with the fact that $f, g \in L_w^p$ does not imply that $f(x)g(-i\nabla)$ is even compact (consider $f(x) = g(x) = |x|^{-n/p}$); but in fact, it is consistent, for $f \in L_w^p$ and $g \in L_w^p$ does not imply that f(x)g(y) on \mathbb{R}^{2n} is in weak L^p , e.g., $f(x) = g(x) = |x|^{-n/p}$ where $|\{(x, y)|f(x)g(y) \ge 1\}| = \infty$. But $f \in L^p$ and $g \in L_w^p$ imply that $f(x)g(y) \in$ $L_w^p(\mathbb{R}^{2n})$ by a simple argument. Indeed, for f fixed, $f(x)g(y) \in L_w^p(\mathbb{R}^{2n})$

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page

Received by the editors February 21, 1991 and, in revised form, April 19, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42C99, 46L99.

Research partially funded under NSF grant number DMS-8801918.

for all $g \in L^p_w(\mathbb{R}^n)$ if and only if $f \in L^p(\mathbb{R}^n)$. Thus if (1) holds, a simple consequence would be Cwikel's theorem via a standard application of weak interpolation theorems.

On the other hand, since it is natural to view the map $F \mapsto A(F)$ as an operator-valued Fourier transform [2], one would not expect Theorem A to extend to a result of the form (1). This is confirmed in the following theorem.

Theorem 1. Let $p \ge 2$. Then (1) holds if and only if p = 2.

That (1) holds if p = 2 follows formally from

$$\operatorname{Tr}(e^{\iota(kX+yP)}) = (2\pi)^{n/2}\delta(k)\delta(y) = \operatorname{Tr}(e^{\iota kX}e^{\iota yP}),$$

which yields

$$Tr(W^*(F)W(F)) = Tr(A^*(F)A(F)) = (2\pi)^{-n} \int |F(x, k)|^2 dx dk.$$

A proof of this well-known fact [1, 3] follows from the Plancherel theorem and the explicit form of the integral kernels for W and A:

$$W(F)(x, z) = (2\pi)^{-n} \int \widehat{F}(k, z - x) e^{ikx} e^{ik(z - x)/2} dk,$$
$$A(F)(x, z) = (2\pi)^{-n} \int \widehat{F}(k, z - x) e^{ikx} dk.$$

So we turn to proving that (1) fails for p > 2. Indeed, we will even prove that

$$||A(F)||_{\infty} \le c ||F||_{p}, \qquad ||W(F)||_{\infty} \le c ||F||_{p}$$

both fail where $\|\cdot\|_{\infty}$ is the operator norm.

This will follow from the simple duality argument. If we define for $\psi \in L^2(\mathbb{R}^n)$

$$\rho^{A}(\psi)(x, p) = (2\pi)^{-2n} \int e^{-ixk} e^{-ipy} \langle \psi | e^{ikx} e^{iyP} | \psi \rangle \, dk \, dy \,,$$

$$\rho^{W}(\psi)(x, p) = (2\pi)^{-2n} \int e^{-ixk} e^{-ipy} \langle \psi | e^{i(kx+yP)} | \psi \rangle \, dx \, dy$$

(with $\langle \psi | B | \psi \rangle = (\psi, B \psi)$); then

$$\langle \psi | A(F) | \psi \rangle = \int F(x, p) \rho^{A}(\psi)(x, p) \, dx \, dp \,,$$

$$\langle \psi | W(F) | \psi \rangle = \int F(x, p) \rho^{W}(\psi)(x, p) \, dx \, dp \,.$$

From this we conclude:

Proposition. If $||A(F)||_{\infty} \leq c||F||_p$ (resp., $||W(F)||_{\infty} \leq c||F||_p$), then for p' = p/p-1 we have that $||\rho^A(\psi)||_{p'} \leq c$ (resp., $||\rho^W(\psi)||_{p'} \leq c$) for all $\psi \in L^2(\mathbb{R}^n)$.

By straightforward calculation,

(2)
$$\rho^{A}(\psi)(x, p) = (2\pi)^{-n/2} e^{ipx} \psi^{*}(x) \hat{\psi}(p),$$

(3)
$$\rho^{W}(\psi)(x, p) = (2\pi)^{-n} \int e^{ipy} \psi^{*}(x - \frac{1}{2}y) \psi(x + \frac{1}{2}y) \, dy.$$

1046

From (2) we see that $\rho^A(\psi) \in L^q$ if and only if both ψ and $\hat{\psi}$ lie in L^q . Since ψ is arbitrary in L^2 , there are ψ with $\rho^A(\psi) \in L^q$ if and only if q = 2; so by the proposition, $||A(f)||_{\infty} \leq c||f||_p$ only if p = 2.

The Weyl case is a little more subtle. Note first that if ψ is supported in $\{x | |x| \le 1\}$, then by (3), $\rho^{W}(\psi)(x, p) \ne 0$ only if there is a y with $|x \pm \frac{1}{2}y| \le 1$; so $|x| \le \frac{1}{2}|(x + \frac{1}{2}y) + (x - \frac{1}{2}y)| \le 1$, i.e., $\rho^{W}(\psi)(x, p) = 0$ if $|x| \ge 1$. Suppose that $\int |\rho^{W}|^{q} dx dp < \infty$. Then it follows, since the characteristic function of the unit ball is in $L^{q/q-1}$, that we have for any $\theta(x, p)$

(4)
$$\int \rho^{W}(x, p)e^{i\theta(x, p)} dx \in L^{q}(dp).$$

We will find ψ and θ in (4) false if $1 \le q < 2$. Pick $\theta(x, p) = 2px$. Then by (3)

$$\int e^{i\theta(x,p)} \rho^{W}(x,p) \, dx = (2\pi)^{-n} \int e^{2ip(x-y/2)} \psi^*(x-\frac{1}{2}y) \psi(x+\frac{1}{2}y) \, dy \, dx$$
$$= (2\pi)^{-n} \int e^{2ipu} \psi(u) \psi^*(z) \, dy \, dz$$
$$= (2\pi)^{-n/2} \overline{\psi(0)} \psi(2p).$$

Now take

$$\psi(x) = \begin{cases}
|x|^{-\alpha}, & |x| < 1, \\
0, & |x| < 1
\end{cases}$$

with $2\alpha < n$. Then, $\psi(0) \neq 0$ and $\hat{\psi}(p) \sim |p|^{-(n-\alpha)}$ for p large; so $\rho^W \notin L^q$ if $q(n-\alpha) < n$. Since α can be arbitrarily closer to n/2, q can be chosen anywhere in [1, 2). This concludes the proof of Theorem 1.

Along the way, we proved the following of independent interest:

Theorem 2. In general, $\rho^A(\psi)$ may not lie in any L^p , $p \neq 2$. In general, $\rho^W(\psi)$ may not lie in L^p , $1 \le p < 2$.

It is easy to show $\rho^W \in L^{\infty}$ so in L^p , $2 \le p \le \infty$. Since ρ^W is a "density", $\int |\rho^W| dx dp = \infty$ is notable!

References

- 1. A. Grossman, G. Loupias, and E. M. Stein, An algebra of pseudodifferential operators and quantum mechanics in phase space, Ann. Inst. Fourier (Grenoble) 18 (1968), 343-368.
- 2. A. Klein and B. Russo, Sharp inequalities for Weyl operators and Heisenberg groups, Math. Ann. 235 (1978), 175-194.
- 3. J. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Phys. 7 (1966), 66-76.
- 4. B. Simon, Trace ideals and their applications, Cambridge Univ. Press, Cambridge, 1979.

Division of Physics, Mathematics and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125

E-mail address: bsimon@caltech.edu