ABSTRACT. We show that a theorem of Chavel and Karp follows from the spectral theorem and elliptic regularity.

Recently Chavel and Karp [1] proved the following:

Let \(M \) be a noncompact Riemannian manifold with Laplace-Beltrami operator \(\Delta \) acting on functions on \(M \), \(\lambda =: \lambda(M) \) the bottom of \(\text{spec}(-\Delta) \), and attendant minimal positive heat kernel \(p(x, y, t) \) (where \((x, y, t)\) is an element of \(M \times M \times (0, +\infty) \)).

Theorem. For all \(x, y \) in \(M \) we have the existence of the limit

\[
\lim_{t \uparrow +\infty} e^{\lambda t} p(x, y, t) =: \mathcal{F}(x, y),
\]

for which we have the following alternative:

Either \(\mathcal{F} \) vanishes identically on all of \(M \times M \), in which case \(\lambda \) possesses no \(L^2 \) eigenfunctions, or \(\mathcal{F} \) is strictly positive on all of \(M \times M \), in which case \(\lambda \) possesses a positive normalized \(L^2 \) eigenfunction \(\phi \) (normalized in the sense that its \(L^2 \) norm is equal to 1) for which

\[
\lim_{t \uparrow +\infty} e^{\lambda t} p(x, y, t) = \phi(x)\phi(y)
\]

locally uniformly on all of \(M \times M \).

Our goal here is to show that this result is essentially an immediate consequence of the spectral theorem and elliptic regularity.

The following well-known lemma follows directly from the spectral theorem and the Lebesgue monotone convergence theorem.

Lemma. Let \(A \) be a selfadjoint operator and let \(f(x, t) \) be a measurable function on \(\sigma(A) \times [0, \infty] \) so that \(f(x, \cdot) \) is monotone for each fixed \(x \) and \(f(x, \infty) = \inf f(x, t) = \lim_{t \to \infty} f(x, t) = f(A, \infty). \)

For \(t < \infty \), let \(f(x, t) = e^{-t(x - \lambda)} \) and let \(f(x, \infty) = \delta_\lambda(x) \), the characteristic function of \(\{\lambda\} \). Then \(f(-\Delta, \infty) \) is the projection \(P \) onto the space \(S \) of

Received by the editors October 5, 1991.
1991 Mathematics Subject Classification. Primary 35K05, 53C99.
Research partially supported by USNSF under grant number DMS-9101715.
all L^2 eigenfunctions with eigenvalue λ. Since $p(x, y, t)$ is strictly positive, the Perron-Frobenius theorem (see [2, §XIII.12]) implies that either $S = \{0\}$ or is one-dimensional with a unique element φ so that $\varphi(x) > 0$ and $\|\varphi\|_2 = 1$. Thus, either $f(-\Delta, \infty) = 0$ or $f(-\Delta, \infty) = (\varphi, \cdot)\varphi$ as operators.

Equation (1) therefore holds from the lemma if convergence is intended in the L^2 sense. To turn this into pointwise convergence (even local C^∞), we need only appeal to elliptic regularity.

By elliptic regularity, $C^\infty(H) \equiv \bigcap_n D(\Delta^n) \supset \text{Ran}(e^{it\Delta})$ consists of C^∞ functions. Thus, $f \mapsto (e^{i\Delta}f)(x)$ is a bounded functional on L^2. By duality $g_x(y) \equiv (e^{(\Delta+i\lambda)})(x, y)$ is in L^2. Thus, by the strong L^2 convergence and the semigroup property,

$$e^{\lambda(t+2)}p(x, y, t+2) = \int g_x(z)e^{it}p(z, w, t)g_y(w) \, dt \, dw$$

converges to $(g_x, Pg_y) = P(x, y)$. This proves the theorem.

We close with several remarks:

1. Since elliptic regularity implies that $C^\infty(H)$ consists of C^∞ functions, it is not hard to see that the convergence is in the C^∞ topology.

2. We did not provide a proof of the last statement in the main theorem of [1] that $\lim_{x \to \infty} \varphi(x) = 0$ if M is noncompact Riemannian with bounded geometry. This should follow by a general subsolution estimate that bounded geometry implies that

$$|\varphi(x)| \leq c \int_{\rho(x, y) \leq 1} |\varphi(y)| \, dy.$$

3. By the proof, the operators $A_t = e^{it}e^{\Delta t}$ are monotone decreasing in t. This implies that $(\delta_x, A\delta_x) = A(x, x)$ is monotone as noted by Chavel-Karp but also that $A(x, x) + A(y, y) \pm 2A(x, y) = (\delta_x \pm \delta_y, A(\delta_x \pm \delta_y))$ is monotone, providing a direct proof of pointwise convergence.

REFERENCES
