LARGE TIME BEHAVIOR OF THE HEAT KERNEL: ON A THEOREM OF CHAVEL AND KARP

BARRY SIMON

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We show that a theorem of Chavel and Karp follows from the spectral theorem and elliptic regularity

Recently Chavel and Karp [1] proved the following:

Let M be a noncompact Riemannian manifold with Laplace-Beltrami operator Δ acting on functions on M, $\lambda =: \lambda(M)$ the bottom of spec $(-\Delta)$, and attendant minimal positive heat kernel p(x, y, t) (where (x, y, t) is an element of $M \times M \times (0, +\infty)$).

Theorem. For all x, y in M we have the existence of the limit

(1)
$$\lim_{t\uparrow+\infty} e^{\lambda t} p(x, y, t) =: \mathscr{F}(x, y),$$

for which we have the following alternative:

Either \mathscr{F} vanishes identically on all of $M \times M$, in which case λ possesses no L^2 eigenfunctions, or \mathscr{F} is strictly positive on all of $M \times M$, in which case λ possesses a positive normalized L^2 eigenfunction ϕ (normalized in the sense that its L^2 norm is equal to 1) for which

(2)
$$\lim_{t\uparrow+\infty} e^{\lambda t} p(x, y, t) = \phi(x)\phi(y)$$

locally uniformly on all of $M \times M$.

Our goal here is to show that this result is essentially an immediate consequence of the spectral theorem and elliptic regularity.

The following well-known lemma follows directly form the spectral theorem and the Lebesgue monotone convergence theorem.

Lemma. Let A be a selfadjoint operator and let f(x, t) be a measurable function on $\sigma(A) \times [0, \infty]$ so that $f(x, \cdot)$ is monotone for each fixed x and $f(x, \infty)$ = $\inf_t f(x, t) = \lim_t f(x, t)$. Then, $s - \lim_{t \to \infty} f(A, t) = f(A, \infty)$.

For $t < \infty$, let $f(x, t) = e^{-t(x-\lambda)}$ and let $f(x, \infty) = \delta_{\lambda}(x)$, the characteristic function of $\{\lambda\}$. Then $f(-\Delta, \infty)$ is the projection P onto the space S of

©1993 American Mathematical Society 0002-9939/93 \$1.00 + \$.25 per page

Received by the editors October 5, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35K05, 53C99.

Research partially supported by USNSF under grant number DMS-9101715.

all L^2 eigenfunctions with eigenvalue λ . Since p(x, y, t) is strictly positive, the Perron-Frobenius theorem (see [2, §XIII.12]) implies that either $S = \{0\}$ or is one-dimensional with a unique element φ so that $\varphi(x) > 0$ and $\|\varphi\|_2 = 1$. Thus, either $f(-\Delta, \infty) = 0$ or $f(-\Delta, \infty) = (\varphi, \cdot)\varphi$ as operators.

Equation (1) therefore holds from the lemma if convergence is intended in the L^2 sense. To turn this into pointwise convergence (even local C^{∞}), we need only appeal to elliptic regularity.

By elliptic regularity, $C^{\infty}(H) \equiv \bigcap_n D(\Delta^n) \supset \operatorname{Ran}(e^{t\Delta})$ consists of C^{∞} functions. Thus, $f \mapsto (e^{+\Delta}f)(x)$ is a bounded functional on L^2 . By duality $g_x(y) \equiv (e^{(\Delta+\lambda)})(x, y)$ is in L^2 . Thus, by the strong L^2 convergence and the semigroup property,

$$e^{\lambda(t+2)}p(x, y, t+2) = \int g_x(z)e^{\lambda t}p(z, w, t)g_y(w) \,dt \,dw$$

converges to $(g_x, Pg_y) = P(x, y)$. This proves the theorem.

We close with several remarks:

1. Since elliptic regularity implies that $C^{\infty}(H)$ consists of C^{∞} functions, it is not hard to see that the convergence is in the C^{∞} topology.

2. We did not provide a proof of the last statement in the main theorem of [1] that $\lim_{x\to\infty} \varphi(x) = 0$ if M is noncompact Riemannian with bounded geometry. This should follow by a general subsolution estimate that bounded geometry implies that

$$|\varphi(x)| \leq c \int_{\rho(x,y) \leq 1} |\varphi(y)| \, dy.$$

3. By the proof, the operators $A_t = e^{\lambda t} e^{\Delta t}$ are monotone decreasing in t. This implies that $(\delta_x, A\delta_x) = A(x, x)$ is monotone as noted by Chavel-Karp but also that $A(x, x) + A(y, y) \pm 2A(x, y) = (\delta_x \pm \delta_y, A(\delta_x \pm \delta_y))$ is monotone, providing a direct proof of pointwise convergence.

References

- 1. I. Chavel and L. Karp, Large time behavior of the heat kernel: the parabolic λ -potential alternative, Comment. Math. Helv. 66 (1991), 541-556.
- 2. M. Reed and B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Academic Press, London, 1978.

Division of Physics, Mathematics and Astronomy, 253-37, California Institute of Technology, Pasadena, California 91125

E-mail address: bsimon@caltech.edu

514