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ABSTRACT.Given a solution of the Toda lattice we explicitly construct a so- 
lution of the Kac-van Moerbeke system related to each other by a Miura-type 
transformation. As an illustration of our method we derive the N-soliton solu- 
tions of the Kac-van Moerbeke lattice. 

We extend our previous work [1 1, 121 on conncections between the Korteweg- 
deVries and modified Korteweg-deVries equation based on Miura's transforma- 
tion [23] to the Toda lattice and its modified version, the Kac-van Moerbeke 
system. The Toda and Kac-van Moerbeke equations, in appropriate variables 
[7], are defined by [19, 22, 26, 291 

and 

(1.2) b( t ,  n) = a ( t ,  n)[a(t, n + - a ( t ,  n - I ) ~ ] ,  ( t ,  n) E R x Z,  

respectively. Here "'" denotes d l d t  , a ,  b , a are real-valued sequences, and 
(a +b)(n) :=a(n)+b(n) , (ab)(n):=a(n)b(n), n E Z . The analog of Miura's 
transformation between the two nonlinear lattices now reads as follows. Let a 
be a solution of the Kac-van Moerbeke system (1.2) and define 

Then ( a l ,  bl) and (a2, b2) solve the Toda lattice equations (1.1). Our main 
objective in this paper is to reverse this process, i.e., starting with a solution, say 
(al ,bl) of ( I .  1) we shall construct a solution a of (1.2) and another solution 
(a2, b2) of (1.1) that are linked to each other by the Miura-type transformations 
(1.3). 
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The transformations (1.3), according to a footnote in [24], seem to go back 
to M. Henon. They have been used in [24] in connection with the scattering 
problem for the finite Kac-van Moerbeke system [19]. The corresponding semi- 
infinite system has been studied in [19] (see also [31]). The Kac-van Moerbeke 
system (1.2) on Z is treated, e.g., in [22, 26, 291 and, due to its applications in 
modeling Langmuir oscillations in plasmas, is also called the Langmuir lattice. 
For studies of the 2N-periodic system (1.2) (i.e., a ( t  ,n + 2N) = a( t  ,n) ) we 
refer, e.g., to [l ,  20, 21, 321. 

In $2 we present our main arguments concerning the construction of solutions 
a of (1.2) given a solution (al ,bl) of (1.1) related to each other via (1.3). As 
a technical tool we employ certain results on positive, weak solutions of second 
order finite difference operators which are summarized in Appendix A. In $3 we 
transfer the class of N-soliton solutions of the Toda lattice (1.1) to the Kac-van 
Moerbeke system (1.2). 

Finally we mention that our methods are not confined to (1 +1)-dimensional 
systems such as the (modified) Korteweg-deVries equation, Gelfand-Dikii and 
Drinfeld-Sokolov hierarchies, and Toda systems, but also apply to the (modi- 
fied) Kadomtsev-Petviashvili equation [9]. 

In this section we extend our previous treatment of the Korteweg-deVries 
and modified Korteweg-deVries equations [ l l ] ,  [12], to the Toda lattice and its 
modified version, the Kac-van Moerbeke system. 

In Im(Z) we introduce shift operators Sf by 

and also use the notation 

Assuming hypothesis 

(H.2.1) 	 a(t)  = {a(t ,  n ) ) n € ~  E IF(Z),  b(t) = {b(t, n))nEz E IF(z), 
t E R ,  a ( . , n ) , b ( . , n ) ~ C ~ ( R ) ,  ~ E Z ,  

the Toda lattice (TL), in Flaschka's variables [7], reads 

where "'"denotes d ld t  and I,"(Z) denotes the algebra of real-valued sequences 
in I" (Z) . 

Assuming hypothesis 

the corresponding modified Toda lattice, the Kac-van Moerbeke (KM) lattice is 
then defined by 

The connection between (2.3) and (2.4) is the following: Suppose a satisfies 
(H.2.2) and (2.4) and define 
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and 

(2.6) a l ( t ) := $(t) y( t )  , bl(t) := -$(t)2 - ~ - ( t ) ~ ,  t E R , 

(2.7) az(t):= $+(t) y( t )  , b2(t):= -$(t)2 - ~ ( t ) ~ ,  t E R. 

Then (a,, b,) , j = 1,2 ,  satisfy (H.2.1) and (2.3). In particular, 

[19, 241 (see also [I, 26, 291). Thus (2.6), (2.7) play a role analogous to Miura's 
transformation [23] in the (modified) Korteweg-deVries context. We also note 
that the transform from (al ,bl) to (a2,  b2) is simply given by the replacement 

in (1.3). Our main objective in this paper is to reverse the implication in 
(2.8), i.e., given a solution ( a l ,  bl) of (2.3), construct solutions a of (2.4) 
and (a2 ,b2) of (2.3) related to each other by (2.6)-(2.8). 

We start by recalling the Lax pairs associated with the TL and KM equations 
and refer to [5] for relevant Hilbert space methods. Assume (H.2.1) and define 
on 12(2) 

(2.12) A(t) := y(t)Sf + $(t) , A(t)*= y/-(t)S- + $(t), t E R,  

and on 12(2)8C2 

where $ and y are defined as in (2.5). Then 

(2.15) H - [ B H , H ] = ~  iff T L ( a , b ) = O  

and 

(2.16) Q - [Be, Q] = 0 iff KM(a) = 0 

implying 

Theorem 2.3 [7, 191 (see also [24, 26, 291). (i) Suppose ( a ,  b) satisjes (H.2.1) 
and TL(a ,b) = 0 .  Then there exists a family of unitary operators U(t) , t E 
R , U (0) = 1 in l2 (2) such that 

(ii) Suppose a satisjes (H.2.2) and KM(a) = 0 .  Then there exists a family 
of unitary operators W(t) , t E R , W(0) = 1 in 12(2) 8C2 such that 
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Clearly this theorem extends to unbounded sequences a ,  b ,  a as long as 
appropriate domain considerations for H ( t )  and Q(t )  are taken into account. 

Next we recall the definition of the Wronskian determinant associated with 
(2.1O ) ,  

(2.19) w ( f ,g ) ( n ):= a ( n )[ f ( n ) g ( n+ 1 )  - f ( n  + l ) g ( n ) l, 
and define weak solutions f of H f = zf , z E C ,by 

(2.20) ( ( H- -4g , f )  := C ( ( H- 7 ) g )( n ) f ( n )= 0 ,  g E lo(Z) ,  
nEsupp(g)  

where lo(%)denotes the set of complex-valued sequences g = {g(n)),,, with 
only finitely many g ( n )# 0 . 
Lemma 2.4. Suppose ( a ,  b )  satisjies (H.2.1) and T L ( a ,b )  = 0 and let f o ( A )  
be a real-valued weak solution of H(O)fo(A)= A f o ( A ) ,  A E IR . Then 

(2.21) H ( t ) f ( t , A ) = A f ( t , A ) ,  ~ E R ,A E R ,  

has a unique real-valued weak solution f ( t, A) with f ( ,A ,  n )  E Cm(IR), A E 
IR ,n E Z , satisfving the time evolution 

in the weak sense with 

(Clearly f is smooth w.r.t. A i f  f o  is.) Moreover, if f ( t  ,A ) ,  g( t  ,A )  are two 
weak solutions of (2.21)and (2.22) with initial values f o ( A )  , go(,?)respectively, 
then 

(2.24) w ( f( t,A )  ,g(t  A))(n)= w(fo(A),go(A))(n),  A E IR 

is independent of ( t,n )  E IR x Z . 
Proof. A direct calculation shows that 

(2.25) F ( t  , A )  := f ( t, A )  - 2a(t)f + ( t ,  A )  + [A  + b( t ) ]f ( t,A ) ,  ( t,A )  E IR2, 

satisfies 

(2.26) H ( t ) F ( t ,A )  = AF(t ,  A ) ,  ( t ,A )  E I R 2 ,  

in the weak sense whenever f ( t , A )  satisfies H ( t )f ( t, A )  = Af ( t , A )  in the weak 
sense. The requirement (2.22),i.e., 

using the equation 
(2.28) 

f ( t , A ,  n )  = A(t ,A)sO(t,A ,  n )  +B(t  ,A)cO(t,A ,  n )  
n 

- a ( t ,  0)- ' [cO(t ,A ,  n ) so( t ,A ,  m )  - c O ( t ,A ,  m ) s O ( t ,A ,  n ) ]  
m=O 

b ( t ,  m ) f ( t ,A ,  m ) ,  ( t ,A ,  n )  E I R ~x Z ,  
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where so ,  c0 satisfy (2.21)with b( t )- 0 and 
(2.29) 
s O ( t , ~ , O ) = c O ( t , ~ , l ) = O ,s O ( t , A , l ) = c O ( t , ~ , O ) = l ,  ( t , A ) E R 2 ,  

is then equivalent to the linear first order system 

-2bo +bl +A a;'[2Abo - 2a?,] 
(2.30) bo - A  

ao( . ):=a ( .  ,0 ) ,  bo( . ):= b ( .  ,0) .  

Since 

(2.31 )  
f ( t ,  A ,  0 )  = B ( t ,  A ) ,  

f ( t ,  A ,  1 )  = A ( t ,  A )  +ao( t ) - ' bo ( t )~ ( t ,A ) ,  ( t ,2) E R2 ,  

an appropriate choice of A(0,  A )  ,B(0 ,A)  will indeed guarantee (2.22) and 
(2.23). The equation (2.24) follows by a straightforward computation of 
a t w ( f ( t ,A ) ,  g ( t ,  A ) )  = 0 ,  ( t ,A)  E I t 2 .  

Since the existence of positive weak solutions of H ( t )f ( t )  = 0 will play a 
crucial role in Theorem 2.9 we introduce hypothesis 

( 4 0 ,b ( t ) )E l;(Z) x I;@), t E R ,  
(H.2.5) o > a ( . , n ) ~ C ~ ( R ) ,0 > b ( . , n ) ~ C ~ ( R ) ,~ E Z ,  

[b(O,n)/a(O,n ) ]= o(ln1) as n km 

and state 

Lemma 2.6. Assume (H.2.5) and TL(a,b)  = 0 ,  and let f o  > 0 be a weak, 
positive solution of H(0)fo= 0 .  Then, if f ( t )  is the unique weak solution of 

given by Lemma 2.4, we get 

(2.33) f ( t )> 0 for all t E R. 

Proof. Equation (2.22a) with A = 0 and the transformation 

yields 
(2.35) 

g ( t ,  n )  = -2a(t ,  n - 1 )  exp ds [b(s ,n - 1 )  - b ( s ,n ) ]{I'
:=A ( t ,  n - l ) g ( t ,n - I ) ,  ( t ,  n )  E R x Z ,  

or 

Next suppose t 2 0 .  Then, since A(t ,n )  > 0 ,  fo(n) > 0 ,  iterating (2.36) 
yields a positive function g(t , n )  > 0 (implying f ( t ,  n )  > 0 )  whenever the 
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iteration procedure converges absolutely. (In that case it is easily verified that 
the iterations indeed provide a solution of (2.35).) The mth iteration yields 
(2.37) 

l d t l A ( f l , n - 1 )  d 1 2 A ( t 2 , n - 2 ) . . .c-'dt,,, A(t,, n - m)&(n- m )  

5 c ( t ) " tm(m!) - ' f o (n- m ) ,  t 2 0 ,  n E Z ,  m E N o ,  

where we used 

It remains to bound (2.37).First we note that for some y > 0 

This follows from (A.9)- (A. l l ) since f o  = a:u- + Pu+ for some a: ,  P 2 0 and 
the fact that (2.39) holds for u+ . Indeed, for k > 0 ,  

u + ( k )= [ -a (0 ,  0 ) ] . . . [ - a ( 0 ,  k -  l ) ] c l , + . . . c k , +  

5 b ( 0 ,  O). . .b(O, k -  l ) [ a ( O ,  O) . . .a(O,  k -  I ) ] - '  ,
(2.40) 

u- ( k )  = [ -a (0 ,  O ) ] . . . [ -a (0 ,  k - 1 ) ]co,- . . .ck- ' , -

5 b ( 0 , O ) . . .  b ( 0 ,  k - 1 )  [a(O, 0 )  . . . a ( 0 , k - I ) ] - '  

by (A .  12) and (A .  13). Similarly one treats the case k < 0 . Thus we get 

C ( t ) m t m ( m ! ) - ' f o ( n-m ) < y f o ( O ) ~ ( t ) ~ t ~ ( m ! ) - '  

(2.41) b ( 0 ,  n - m ) . . . b ( O ,  n -  l ) [ a ( O ,  n - m ) . . . a ( O ,  n -  I ) ] - '  

: = P m ( t , n ) ,  t > O ,  m € N o ,  ~ E Z .  

Since by hypothesis (H.2.5), 

the iterations converge absolutely for t 2 0 .  For t 5 0 one uses (2.22b)with 
A = 0 and proceeds analogously. R 

Remark 2.7. The simple example 

1-1

a ( 0 ,  n )  

shows that our condition o(ln1) in (H.2.5)cannot be weakened for the iterations 
(2.37) to converge for all t 2 0 .  

{ ;i7h(.)= 
n >  1 ,  

H(O1.h = 0 ,
n < O ,  

= , 
n-m 
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Remark 2.8. The connection between Flaschka's and Toda's origjnal variables 
reads 

a( t , n )  := ( E , / ~ ) ~ - [ Q ( ~ , ~ + ' ) - Q ( ' , ~ ) ] / ~ ,  ~ ( tb(t , n )  = , n ) / 2 ,  
(2.44) 	 ~ , = f l ,  ( t , n ) ~ R x Z ,  

Q = ,-ce-e-, - ,-(Q'-Q, 

and similarly for the Kac-van Moerbeke system 

We also note that T ( a, b )  = 0 is invariant under 

(2.46) a ( t ,  n )  ~ , a ( t ,  n ) ,  6 ,  = f1 ,  b ( t ,  n )  -+ b ( t ,  n )  + c ,  c E IR-+ 

(independent of 	 ( t , n ) ), and K M ( a )= 0 is invariant w.r.t. 

These facts motivate our hypothesis a < 0 in Lemma 2.6. The assumption 
b < 0 is then necessary for the existence of fo > 0 in Lemma 2.6. 

Now we are in position to reverse the implication in (2.8). 

Theorem 2.9. Assume ( a l ,  b l )  satisfies (H.2.5) and TL(a1,  b l )  = 0 .  Suppose 
Hl ( 0 )  > 0 and let 0 < u l ,+( . , n )  E C m ( R ), n E Z , be positive weak solutions 
of 

(2.48) H 1 ( t ) u l , + ( t ) = 0 ,  ~ l , + ( t ) = B ~ , ( t ) u i , + ( t ) ,  

Define 

(2.53) b2 , , ( t ,  n )  := -$,(t, n )2- yr,(t, n ) ' ,  ( t ,  n )  E R x Z ,  

where a : IR -+ ( t ) )ab2,,( t )  ,,,(a2,( Z ) 	1 , 11 , a E C m  ( R )  . Then a ,  ( t )  E IF[-
E l,"(Z) x l,"(Z), t E R ,  and 

(2.54) KM(a,) = 0 ,  TL(a2 , ,  , b2,,) = 0 i f  ir = 0 or W ( u l ,  - , u l , + )= 0. 
Proof. Since 

t E IR , the boundedness assertions for a ,  , a2, 
hold. Moreover, one explicitly computes 
and -bl ( t )  E l,"(Z), ,,b2,, ,, 
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and similarly 

The definitions (2.50)-(2.52) are suggested by Hlfi = A'Afi = 0, i.e., by 
Afi = 0 (yielding yJ;++$fi = 0 ,cf. (2.12)) and by the requirements a1 =6ry 
(cf. (2.7)) and (2.5). 

In order to interpret Theorem 2.19 we recall some notions from Appendix 
A: HI (0) 2 0 is called critical iff Hl(0)f = 0 has a unique positive weak 
solution ul  , o  > 0 with U ~ , ~ ( O )= 1 ,  and Hl(0) 2 0 is called subcritical iff 
Hl(0)f = 0 has two linearly independent positive weak solutions ul ,* > 0 .  
Since by Theorem A.5, Hl(0) 2 0 has at least one positive weak solution 
ul > 0 of Hl(0)f = 0 ,  this case distinction is exhaustive, i.e., either HI(0) 2 0 
is critical or subcritical. 

Combining Lemmas 2.4 and 2.6 we get 

Lemma 2.10. Let (al ,bl) satisfi (H.2.5) and TL(al, bl) = 0 and assume that 
Hl(0) 2 0 .  Then Hl(t) is (sub)critical for some t E R if Hl (t) is (sub)critical 
for all t E R . 

Remark 2.1 1. Given a solution (al  , bl) of TL(al ,bl) = 0 ,  Theorem 2.9 yields 
a unique solution, say a 0  of KM(ao) = 0 and of (2.7) iff Hl(0) is critical. In 
this case we can dispense with the condition that ul , o  satisfies til , o  = BH,u1 , O  

since by Lemma 2.4 a certain t-dependent multiple of ul , o  certainly will satisfy 
it. (This t-dependent factor, however, drops out in the definitions (2.50)-(2.52) 
and hence is irrelevant.) Otherwise, i.e., iff HI (0) is subcritical, we get a one- 
parameter family of solutions a, of KM(a,) = 0 and (2.7) indexed by a E 

[-I ,  11. 

Remark 2.12. The "if part" of Theorem 2.9 essentially has been established by 
[I] (see also [29]). It is our novel "only if part" in Theorem 2.9 that yields 
a uniqueness or nonuniqueness result for a depending on whether H1(0) is 
critical or subcritical. 

Remark 2.13. Given a, in (2.52), HI (t) is recovered from a, via 

Moreover, Hlfi = Afl in the weak sense reads 
(2.60) 

a l ( t ,  n)fi(t ,  n +  l ) + a l ( t ,  n - l ) f i ( t ,  n - 1) -b l ( t ,  n)fi(t ,  n) =Afi(t, n ) ,  

al(t) = 4 a ( t ) ~ a ( t ) ,  bi(t) = -4o(tl2 - v;(tl2, ( t ,  n) E R2, Q E [-I ,  11. 
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Similarly, H2 ,o ( t )  := AO(t )  AO(t)* implies for weak solutions f2 of H2, = 
A f 2  that 
(2.61) 
a2,0(t,fl)f2(t,n+1)+a2,0(t,n-l)f2(t,n-1)-b2,a(t)f2(t,n)=1f2(t,n ) ,  

3. SOLITONSOLUTIONS FOR THE KAC-VAN SYSTEMMOERBEKE 

In this section we illustrate the methods of $2by deriving the soliton solutions 
of the Kac-van Moerbeke system given the soliton solutions of the Toda lattice. 

First we inductively construct the solitions of the Toda lattice using commu- 
tation methods [4, 6, 301. Consider 

(3.1) H : ( Z ~ ):= - ( 1 / 2 ) ( s f  + S- )  + nl, n1= ( z l + 2 3 2 ,  o < z 1 < 1 ,  

with spectrum 

(3.2) U ( H $ ( Z ~ ) )= [ - 1  + Ql , 1 + a,]. 
Writing 

(3.3) HoO(z1)= A ( z l ) * A ( z l ) ,  

with 

we get 

(3.5) 

We have 

- 1 / 2 = v l ( z l , n ) $ l ( z l , n ) ,  ~ E Z .  

(3.6) 

where 

~oO(zl )uo,*(z l )= 0 ,  

and HoO ( z l  ) is subcritical [ 141. Define 

Then ~ ~ ( z ~ ) u ~ , ~ ~ ( z ~ )= 0 implies 

(3.9) A(z l )u0 , /4~(z l )0= 

and (3.5), (3.8), and (3.9) yield 

(The signs of y/l  and $ 1  are not determined except for the fact that they must 
be chosen opposite of each other.) Next define 
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Then 

(3.13) 
a l ( z 1 , ~ )= $ 1 ( ~ 1 ,  n + 1 ) ~ / 1 ( ~ 1 ,n ) ,  

bl ( z l  ,n ) = - $ l ( z l ,  nI2 - ryl ( z l , nI2 ,  n  E Z, 

yields 

Moreover, the operator HI ( z l  ) is critical with spectrum 

(3.15) a ( H l ( z 1 ) )= { O } U [ - 1  +a , ,1 +all 

since the equation 

(3.16) H l ( z l ) f i ( z l )= 0 ,  f i ( z1 ,  0 )  = 1 ,  

has a unique solution satisfying 

implying f i  ( z1 ) E l2(2). Next one defines the subcritical operator 

H P ( Z ~ , z 2 ):=H ~ ( z ~ )n1+a2,-
(3.18) 

R 2 > R l > 1 ,  R ~ = ( z ~ + z ~ ~ ) / ~ ,O < z j < l ,  j = 1 , 2 ,  

with spectrum 

~ 2 ) )  {a2(3.19) a ( ~ P ( z l ,  = -a }U [ - I  +n2, 1 +a21 

and repeats the above procedure. We summarize the result in 

Theorem 3.1. The above construction yields operators 

where 

(3.21) A ( z l , .. . , Z N )  = ~ N ( Z I ,.. . , Z N ) S ++ $ N ( z ~ ,  Z N )  

and 

aN(z1 , . . ., Z N  , n )  
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Here W ( p l  , ..., pN)(n)  is the discrete Wronskian, i.e., 

and 

Moreover, H N ( z l  , ..., z N )  is critical with spectrum 

Next we briefly consider an alternative representation for a~ , b~ due to [7]. 

Lemma 3.2. Define 

where 

(3.29) 	
cj ( t )  = cj (0)eBj' , cj (0 )  E C\{O} , 

Pi = ( z j  - z i 1 ) / 2 ,  I l j I N ,  ~ E R .  

Let 

rl,(t,  n )  := z:eZj'+"j + (-l)j-1zTnez,7't-mj
(3.30) 	 J 

I I j l N ,  ( t , n ) ~ R x Z ,  

with 

Then the Wronskian 

W(q1, . . . , q ~ ) ( t ,  = det[d/-' q l ( t ,  n ) ]  n )  det[(St)j-I q l ( t ,  n ) ]  = 
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satisfies 

and hence 

N 

8,lndet B N ( ~ ,n )  = 8,ln W(v1, ..., v n ) ( t ,n )  - z;' ,(3.33) j= 1 

( t ,  ~ ) E I W X Z ,N E N .  

Proof. Following [8, 101 one defines the N x N matrices 
(3.34) 

PI := [dj,lpj], P2(t) := [d j , lq j ( t ) ]  A = [ ( I  - z j ~ l ) - l ] ,  

Dl ( t ):= [dj,l d j ( t ) ]  D2 := [a j ,  z:"], 

where 

A tedious calculation then shows that 

and 

proving (3.32). 

Inserting the t-dependence (3.29) into (3.22)applyingLemma 3.2 then yields 
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the N-soliton solutions a~ ,bN o f  the Toda lattice in the form 

[det BN( t  , n + 2)l1I2 [det B N ( ~ ,  
a ~ ( z 1 ,..., Z N ,  t ,  n )  = -

2detBN( t ,I t +  1 )  
r ~ ) ] " ~  

b N ( z l ,. . ., Z N ,  t ,  n )  = --
1 [ ~~detB~-~(t,n+2)detB~(t,~1) 
2 det BN-,  ( t  , n + 1 )  det B N ( ~ ,  n + 1 )  

det BN-1 ( t  , ~ 1 )det B N ( ~ ,  
+ ~ , d e t B ~ - ~ ( t ,  

n + 1 )  1n + l ) d e t B N ( t ,  n )  

Uniqueness o f  the inverse scattering method for the Toda lattice implies that 
one may alternatively write bN as 

1 de tBN( t ,  n + 1 )
bN(z1, ..., Z N ,  t ,  n )  = - - (zN

2 
+ z i l )+ dt ln 

det B N ( ~ ,  n )  1 
( t ,  n )  E R X Z  

(the constant - ( zN + z i 1 ) / 2  being determined by the asymptotic behavior as 
In( + m .) Theorem 2.9 now yields (identifying Hl ( t )  = HN(z1, . . . , Z N  , t ), 

a ,a1 ( t )  = ahr(z1, . .., Z N ,  t ), bl ( t )  = b N ( ~ 1, . Z N  , t ), etc.) 
Theorem 3.3. Since HN(z1  , .. . , Z N  , t )  is critical, the (2N - 1)-soliton solutions 
of the Kac-van Moerbeke lattice are given by 

~ 2 ~ - 1 ( ~ 1 ,  t ,  n )  . . . , Z N  

(3.41) $ N ( z ~ ,..., Z N ,  t ,  m ) ,  n = 2 m ,  
( t ,  m )  E R x Z ,  

v / N ( z ~ ,..., Z N ,  t ,  m ) ,  n = 2 m + 1 ,  

(3.42) K M ( a 2 ~ - l )= 0 ,  N E N ,  

where 
$ N ( Z I  , ..a ,  Z N ,  t , m )  

( t ,  m ) € R x Z ,  
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and v,(t, n) are given by (3.30). The corresponding Dirac operator Q 2 ~ - l ( t )  
(see (2.13)) then has spectrum 

Example 3.4. In the critical case the 1-soliton solution is given by 
(3.46) 

cl (t) = cl ( O ) ~ ( ~ I - Z ; ' ) ' / ~  (t , m) E IR x z,, 

Remark 3.5. In the subcritical case one can obtain the Kac-van Moerbeke (2N- 
2)-soliton solutions by "turning off' the eigenvalue at zero of HN(zl , ..., ZN , t) 
(rendering it subcritical). This is most conveniently accomplished by using the 
formulas expressed in detBN(t, n) letting ~ ~ ( 0 )  -+ 0 .  One then obtains 

(3.48) 	 $N(ZI ,. . ., ZN,  t ,  m) ,  n = 2m, 
( t , m ) € I R x Z ,

P N ( z ~ ,...,z,, t ,  m) ,  n = 2m+ 1 ,  

where 
(3.50) 

detBN-1(t, m ) d e t ~ ~ - l ( t ,  m + 1)
$ N ( z ~ ,.-.,ZN, t ,  m) = -

2zN d e t B ~ - l ( t ,  m + 1) det BN-l(t, m) I 

z ~ W ( v 1 ,. . ., v ~ - l ) ( t ,  m)W(rj1, .. ., i l ~ - l ) ( t ,  m) -	 ] lI2 ,- [2w(vl ,  ..., v ~ - l ) ( t ,m + l ) w ( q l ,  ..., VN-I)(~,m + 1) 
( t ,  ~ ) E R x Z .  
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Here BN-1(t ,n) is the matrix 
(3.52) 

Bo( t ,n ) :=  1 ,  ( t ,  n ) ~ R x i Z ,  

4(f)Cl(t) (Z , Zl)nt l ]N-l  , N 2 2,  ( t ,  n) E R x Z ,  1 - ZjZ l  j ,  l=l 

with 

Remark 3.6. The approach presented in this section relies on "single-commuta- 
tion" [4] and therefore introduces all eigenvalues below the essential spectrum. 
This limitation can easily be removed by using "double-commutation" instead 
1301. 

Remark 3.7. The first one to give the N-soliton solution of the Toda lattice 
appears to be Hirota [18]. The Toda N-soliton solutions expressed in terms of 
det B(t ,n) are due to Flaschka [7] (see also [29]). Marchenko [22] gives the 2N- 
soliton solutions for both the TL and the KM-systems in terms of Wronskians in 
the subcritical case using an entirely different approach from the one advocated 
here. Although he does not list the soliton formulas corresponding to the critical 
case, they can be obtained from his expressions via an appropriate limiting 
procedure similar to the one employed in Remark 3.5. 
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APPENDIXA. SECOND ORDER,ON NONNEGATIVE, 
FINITE DIFFERENCE OPERATORS 

We summarize the necessary facts on positive weak solutions of nonnegative, 
second order, finite difference operators on Z needed in this manuscript. For 
a novel approach and detailed proofs of the topics presented below we refer to 
[14]. Basic results on finite difference operators can be found, e.g., in [2, 3, 15, 
171. 

For simplicity we shall assume hypothesis 

(H.A.1) a = {a(n))n~zE lm(Z), b = {b(n)),,z E lm(Z), 
a(n) < 0 ,  b(n) < 0 ,  n E Z. 
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throughout this appendix (the assumption a ,  b E Im(Z) is removed in [14]) 
and define the operator 

on 12(Z) . Associated with H we introduce the matrices Mm, ,defined by 
('4.2) 

/ - b ( m )  a ( m )  0 ... 0 1 

and the determinants 

Lemma A.2. Assume (H.A. 1). 
(i) Let m < n . Then Mm ,,> 0 implies dm, ,-1 > 0 
(ii) H>O i fdm, ,>O forany m < n .  
(iii) Let H > 0 .  Then for all m < k < n , 

(iv) For any k E Z, the map 

is increasing for n > k and the map 

is decreasing for m < k 

Because of Lemma A.2(iv) we define in the case H 2 0 

1
(A.8) c(k)+:= lim dk+l ,n(dk ,n) -  , c(k)- := lim dm,*-, (dm,*)-' 

n+m m--t-m 

and the following positive functions on Z x Z: 

I = k ,  
(A.9) u(1, k) := ..[-a(k - l)]c(l+ I )+ .. .c(k)+,  I < k ,  

[-a(k)]. . . [-a(l - l)]c(k)- . . . c(1- 1)- , I > k ,  
k = O ,  

(A.10) u+ (k) := k > 0 ,  


u(k, 0)-I , k < 0 ,  

k = 0 ,  


( A . 1 1 ) ~ - ( k ) : =  
u(O,k),  k < 0 .  

We have 





866 F. GESZTESY, H. HOLDEN, B. SIMON, AND Z. ZHAO 

are principal solutions of Hf = 0 near f m  . In any case, nonprincipal solu- 
tions =. 0 near f m are characterized by [27] 

*a 


(A.21) [-a(n)ir*(j)fi*(j + I)]-' < m ,  n E Z. 
j=n 


We also recall 

Theorem A.5. Assume (H.A.l). Then H 2 0 if there exists a weak positive 
solution u > 0 of Hf = 0 .  

Moreover, we have 

Theorem A.6 [12]. Let H 2 0 .  Then conditions (i)-(vi) are equivalent. 
(i) There exists a unique weak positive solution u > 0 of Hf = 0 with 

u(0) = 1.  
(ii) u+ = u- . 
(iii) Forsome k , l ~ Z ,  k # l ,  


u(k, l)u(l, k) = 1. 


(iv) For any k ,  1 E Z, 

u(k, l)u(l ,  k)  = 1. 


(v) For some k E Z , 

(vi) For any k E Z, 

~ ( k ) ~ c ( k ) - c ( k  = 1.
+ I)+ 

Because of Theorems A.5 and A.6 we introduce in analogy to Sturm-Liouville 
and general Schrodinger-type operators [13, 25, 281 the definition 

Definition A.7. Let H 2 0 .  Then H is called critical iff H satisfies one of the 
conditions (i)-(vi) in Theorem A.6. Otherwise H is called subcritical. 

In particular, H 2 0 is critical (or subcritical) iff Hf = 0 has a unique (or 
two linearly independent) positive solution(s) up to multiples of constants. 

In the following we write H ( a ,  b) instead of H in order to exhibit the 
( a ,  b)-dependence of H . 
Theorem A.8 [14]. Let H(a ,  b) 2 0 .  Then the following conditions (i)-(v) are 
equivalent. 

(i) H(a , b) is critical. 
(ii) Forsome k E Z  andany E >O,  H ( a - d k ,  b ) 2 0 .  
(iii) For any k E Z and any E > 0 ,  H(a - ~ 6 k ,b) 2 0 .  
(iv) Forsome ~ E Z  2 0 .andany E >O,  H ( a ,  b + ~ 6 k )  

(v)Forany ~ E Z  
andany E > O ,  H ( a ,  b + ~ 6 ~ ) 2 0 ,  


where 


Let lo(%) denote the set of complex-valued sequences g = {g(n)),,, with 
only finitely many g(n) # 0 .  Then we get 

Corollary A.9. Let H(a , b) 2 0 .  Then H(a , b) is subcritical if for any real 
valued f ,  g E lo@) there exists an E > 0 such that H(a + E  f ,  b + ~ g )  2 0 .  
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