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We find sufficient conditions for the ground state energy e(4) of —4 + A} to have
an asymptotic series 3 a,4" as A]0. Included are a class of almost periodic
functions. " 1993 Academic Press, Inc,

1. INTRODUCTION

We study here the ground state energy e(4i) of a Schrodinger operator
—A4+ AV about 4=0, a subject we've also looked at in [1]. Here we will
look at conditions that yield an asymptotic series. The problem is subtle
because — 4 has zero at the bottom of its essential spectrum and the usual
projection methods [3] for obtaining asymptotic series fail. In essence our
main result assumes one can solve for formal Rayleigh-Schrédinger ground
states.

THEOREM 1. Suppose there exist C*(R') functions uniformly bounded,
Z,, .., Zyand constant ¢, .., cy, so that (Zo=1),for n=1, ., N

”n

AZH= VZII' [ Z CiZn/—i' (1)

i=1
Then e(i) =X, ¢;4/ + O(A" ).

This theorem is applicable to certain almost periodic functions so we’ll
prove some results for that case. As a preliminary to stating our result, we
need to define a notion of good Diophantine matrices. Let 4: R — R* be
a linear transformation. Let ¥ c R* be a full lattice, ie., a discrete
subgroup, so R*/¥ is compact (& is u-dimensional). We say that 4 has
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good Diophantine properties mod % if and only if there exist C, >0 so
that

|41 =C 1 (2)

for all /e #\{0}. Given a lattice ¥ in R*, we define as usual the dual £
by fe #* if and only if {(f,a>€eZ for all xe ¥.

THEOREM 2. Suppose that either V is a finite trigonometric polynomial
Vix)=%%__,a,e * a, arbitrary withea_,= —a,; a_,=a,, or

Vix)=f(4x)

with fe C* and L-periodic on R* and that A has good Diophantine proper-
ties mod &*. Then e(A), the ground state of —A+ AV, has an asymptotic
series about O to all orders.

In Section 2, we present a simple theorem to show that a suitable
approximate ground state implies an error estimate on the energy. In
Section 3, we use this to prove Theorem 1; and in Section 4 we prove
Theorem 2. For results related to Theorem 2, see Kozlov [2].

2. APPROXIMATE GROUND STATES AND APPROXIMATE ENERGIES

We will prove Theorem | by constructing an approximate ground state.
We'll need the following result to go from the appproximate eigenvector to
an approximate energy.

THEOREM 3. Let V be a bounded potential on R'. Suppose there exists
a positive polynomially bounded function u on R', a real number E, and
function ge L™, so that

(—4+V—-FE)u=gu.
Then
le(V)—El<lgll-

Proof. Let W=V —g. Then u is an eigenfunction of —4+ W with
eigenvalue E. Since u is polynomially bounded, Schnol’s theorem (see, e.g.,
[4]) implies Eeo(—4+ W). Since u>0, the Allegretto-Piepenbrink
theorem (see, e.g., [4]) implies —A4+ W>=E. It follows that E=
infa(—A4+ W). Since |(—4+V)—(—4+W)|<l|gl,, the proof is
complete. |
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3. PROOF OF THEOREM 1

Let u=3%"_,4i"Z,. Then, by (1)

N N n
Au=Y iVZ, =S Y i Z,

n=1 n=1i=1

Thus

N
l:—A +/'»V——<Z C,i,>:| u=G,
i=1

where G=0("*"). Since u=1+0(4) for 2 small, « ' is uniformly
bounded so g=Gu "' is O(A"*"'). Now use Theorem 3. |

4. PROOF OF THEOREM 2

Consider first the case where V is a finite trigonometric polynomial. We
want to solve Eq. (1) inductively, that is, given Z,, ..., Z, ,and ¢, .., ¢, .,
find Z, and c,. As part of the induction, we suppose also that Z,, .., Z, |
are finite trigonometric polynomials. By this induction hypothesis,

no 1
VZn 1 Z (,iZn i

[

i

W,

1s a finite trigonometric polynomial, say

Ny

Wix)= Y aen”

J= N
with x,=0. Just take
. — -2 i x
c,=ay;  Z,=— Y a;lo] te™ .
IEX)

This completes the induction and so the proof of Theorem 1 in this case.
So we turn to the case of smooth quasiperiodic functions with good
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Diophantine properties. Given a function g on R*/¥, we can make a
Fourier expansion

gn= ¥ aet

kelns'*

We define M: L*(R*/¥)— L”*(R") by (Mg)(x)= g(Ax). We define # on
smooth functions on R*/¥ by

(Zg)y)=— Y a, |Ak|?e*”
k

so that
A(Mg)=M(Z2g).

Suppose we find C* functions g, ..., g, on R*/¥ and ¢,, .., ¢, so that
(with go=1)

"

‘@gnzAfgn 1 Z ('ign i

i=1
Then Z,= Mg, obeys (1) and the theorem is proven. By induction we
suppose g, -, £, . are C*. Then

n-- 1

Wn:.fgnr—l- Z Ci&un i

i=1
is C”. Let
w,= Z ale®y
¥ .
keny*
Then we take
(n)

C,=d,

go= ¥ 4% Zafe"

k#0

By the Diophantine hypothesis (2)
Ak 2<C k|
Since W, is C~,

la;\'")l < Dn.l lkl !
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for all />0. So
JAKI 2 (@ < D, k|2

and thus g, is C*. |}
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