Asymptotic Series for the Ground State Energy of Schrödinger Operators*

GIAN MICHELE GRAF AND BARRY SIMON

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125

Communicated by L. Gross

Received April 29, 1992

We find sufficient conditions for the ground state energy $e(\lambda)$ of $-\Delta + \lambda V$ to have an asymptotic series $\sum a_n \lambda^n$ as $\lambda \downarrow 0$. Included are a class of almost periodic functions. (C. 1993 Academic Press, Inc.

1. Introduction

We study here the ground state energy $e(\lambda)$ of a Schrödinger operator $-\Delta + \lambda V$ about $\lambda = 0$, a subject we've also looked at in [1]. Here we will look at conditions that yield an asymptotic series. The problem is subtle because $-\Delta$ has zero at the bottom of its essential spectrum and the usual projection methods [3] for obtaining asymptotic series fail. In essence our main result assumes one can solve for formal Rayleigh-Schrödinger ground states.

THEOREM 1. Suppose there exist $C^2(\mathbb{R}^r)$ functions uniformly bounded, $Z_1, ..., Z_N$ and constant $c_1, ..., c_N$, so that $(Z_0 \equiv 1)$, for n = 1, ..., N

$$\Delta Z_n = V Z_{n-1} - \sum_{i=1}^{n} c_i Z_{n-i}.$$
 (1)

Then $e(\lambda) = \sum_{j=1}^{N} c_j \lambda^j + O(\lambda^{N+1}).$

This theorem is applicable to certain almost periodic functions so we'll prove some results for that case. As a preliminary to stating our result, we need to define a notion of good Diophantine matrices. Let $A: \mathbb{R}^{\nu} \to \mathbb{R}^{\mu}$ be a linear transformation. Let $\mathcal{L} \subset \mathbb{R}^{\mu}$ be a full lattice, i.e., a discrete subgroup, so $\mathbb{R}^{\mu}/\mathcal{L}$ is compact (\mathcal{L} is μ -dimensional). We say that A has

442

0022-1236/93 \$5.00

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} Research supported under NSF Grant DMS-9101716.

good Diophantine properties mod \mathcal{L} if and only if there exist C, $\alpha > 0$ so that

$$||A'l|| \geqslant C|l|^{-\alpha} \tag{2}$$

for all $l \in \mathcal{L} \setminus \{0\}$. Given a lattice \mathcal{L} in \mathbb{R}^{μ} , we define as usual the dual \mathcal{L}^* by $\beta \in \mathcal{L}^*$ if and only if $\langle \beta, \alpha \rangle \in \mathbb{Z}$ for all $\alpha \in \mathcal{L}$.

THEOREM 2. Suppose that either V is a finite trigonometric polynomial $V(\mathbf{x}) = \sum_{n=-N}^{N} a_n e^{i\mathbf{a}_n \cdot \mathbf{x}}$; \mathbf{a}_n arbitrary with $\mathbf{a}_{-n} = -\mathbf{a}_n$; $a_{-n} = \bar{a}_n$, or

$$V(x) = f(Ax)$$

with $f \in C^{\infty}$ and \mathcal{L} -periodic on \mathbb{R}^{μ} and that A has good Diophantine properties mod \mathcal{L}^* . Then $e(\lambda)$, the ground state of $-\Delta + \lambda V$, has an asymptotic series about 0 to all orders.

In Section 2, we present a simple theorem to show that a suitable approximate ground state implies an error estimate on the energy. In Section 3, we use this to prove Theorem 1; and in Section 4 we prove Theorem 2. For results related to Theorem 2, see Kozlov $\lceil 2 \rceil$.

2 APPROXIMATE GROUND STATES AND APPROXIMATE ENERGIES

We will prove Theorem 1 by constructing an approximate ground state. We'll need the following result to go from the appproximate eigenvector to an approximate energy.

THEOREM 3. Let V be a bounded potential on \mathbb{R}^v . Suppose there exists a positive polynomially bounded function u on \mathbb{R}^v , a real number E, and function $g \in L^{\infty}$, so that

$$(-\Delta + V - E) u = gu.$$

Then

$$|e(V)-E| \leq ||g||_{\infty}$$
.

Proof. Let W = V - g. Then u is an eigenfunction of $-\Delta + W$ with eigenvalue E. Since u is polynomially bounded, Schnol's theorem (see, e.g., [4]) implies $E \in \sigma(-\Delta + W)$. Since u > 0, the Allegretto-Piepenbrink theorem (see, e.g., [4]) implies $-\Delta + W \geqslant E$. It follows that $E = \inf \sigma(-\Delta + W)$. Since $\|(-\Delta + V) - (-\Delta + W)\| \le \|g\|_{\infty}$, the proof is complete.

3. Proof of Theorem 1

Let $u = \sum_{n=0}^{N} \lambda^n Z_n$. Then, by (1) $\Delta u = \sum_{n=1}^{N} \lambda^n V Z_{n-1} - \sum_{n=1}^{N} \sum_{i=1}^{n} c_i \lambda^i \lambda^{n-i} Z_{n-i}$ $= (\lambda V) u - \lambda^{N+1} V Z_N - \left(\sum_{i=1}^{N} c_i \lambda^i\right) \left(\sum_{j=0}^{N} \lambda^j Z_j\right)$

$$+ \sum_{\substack{1 \leq i \leq N \\ 0 \leq j \leq N \\ i+j>N}} c_i Z_j \lambda^{i+j}.$$

Thus

$$\left[-\Delta + \lambda V - \left(\sum_{i=1}^{N} c_{i} \lambda_{i}\right)\right] u = G,$$

where $G = O(\lambda^{N+1})$. Since $u = 1 + O(\lambda)$ for λ small, u^{-1} is uniformly bounded so $g = Gu^{-1}$ is $O(\lambda^{N+1})$. Now use Theorem 3.

4. Proof of Theorem 2

Consider first the case where V is a finite trigonometric polynomial. We want to solve Eq. (1) inductively, that is, given $Z_1, ..., Z_{n-1}$ and $c_1, ..., c_{n-1}$ find Z_n and c_n . As part of the induction, we suppose also that $Z_1, ..., Z_{n-1}$ are finite trigonometric polynomials. By this induction hypothesis,

$$VZ_{n-1} - \sum_{i=1}^{n-1} c_i Z_{n-i} \equiv W_n$$

is a finite trigonometric polynomial, say

$$W_n(x) = \sum_{j=-N_n}^{N_n} a_j e^{i\alpha_j + x}$$

with $\alpha_0 = 0$. Just take

$$c_n = a_0;$$
 $Z_n = -\sum_{i \neq 0} a_i |\alpha_i|^{-2} e^{i\alpha_i \cdot x}.$

This completes the induction and so the proof of Theorem 1 in this case. So we turn to the case of smooth quasiperiodic functions with good Diophantine properties. Given a function g on $\mathbb{R}^{\mu}/\mathcal{L}$, we can make a Fourier expansion

$$g(y) = \sum_{k \in 2\pi \mathscr{L}^*} a_k e^{ik \cdot y}.$$

We define $M: L^{\infty}(\mathbb{R}^{\mu}/\mathcal{L}) \to L^{\infty}(\mathbb{R}^{\nu})$ by (Mg)(x) = g(Ax). We define \mathcal{Q} on smooth functions on $\mathbb{R}^{\mu}/\mathcal{L}$ by

$$(\mathcal{D}g)(y) = -\sum_{k} a_{k} \|A'k\|^{2} e^{ik \cdot y}$$

so that

$$\Delta(Mg) = M(\mathcal{D}g).$$

Suppose we find C^{∞} functions $g_1, ..., g_n$ on \mathbb{R}^n/\mathscr{L} and $c_1, ..., c_n$ so that (with $g_0 \equiv 1$)

$$\mathcal{D}g_n = fg_{n-1} - \sum_{i=1}^n c_i g_{n-i}.$$

Then $Z_n = Mg_n$ obeys (1) and the theorem is proven. By induction we suppose $g_1, ..., g_{n-1}$ are C^{∞} . Then

$$W_n = f g_{n-1} - \sum_{i=1}^{n-1} c_i g_{n-i}$$

is C^{\times} . Let

$$W_n = \sum_{k \in 2\pi \mathcal{L}^*} a_k^{(n)} e^{iky}.$$

Then we take

$$c_n = a_0^{(n)}$$

$$g_n = \sum_{k \neq 0} ||A^t k||^{-2} a_k^{(n)} e^{iky}.$$

By the Diophantine hypothesis (2)

$$||A'k||^{-2} \le C||k||^{2\alpha}$$
.

Since W_n is C^{∞} ,

$$|a_k^{(n)}| \leqslant D_{n,l} |k|^{-l}$$

for all l > 0. So

$$||A'k||^{-2} |a_k^{(n)}| \le D_{n,l} |k|^{-l+2\alpha}$$

and thus g_n is C^{∞} .

REFERENCES

- 1. F. GESZTESY, G. M. GRAF, AND B. SIMON, The ground state energy of Schrödinger operators, Comm. Math. Phys., in press.
- 2. S. M. Kozlov, Ground states of quasiperiodic operators, Soviet Math. Dokl. 28 (1983), 114-119.
- 3. M. REED AND B. SIMON, "Methods of Modern Mathematical Physics. IV. Analysis of Operators," Academic Press, London, 1978.
- 4. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.