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We discuss pairs of self-adjoint projections with P— Qe %, ., the trace ideal,
and prove that for m=n,

t(P— Q) '=tr(P— Q)" *' =dim(Ker Q nRan P)— dim(Ker P Ran Q)

is an integer. We also prove that there exists a unitary V interchanging P and Q

if and only if this integer is 0. 1 1994 Academic Press, Inc.

1. INTRODUCTION

Pairs of projections P, Q in a Hilbert space have a fascinating algebra.
If A=F—Q, then it was realized in the late 1940’s by Dixmier, Kadison,
and Mackey [7] that 47 commutes with both P and Q.

Kato [8,9], in analyzing pairs with |P— Q| <, introduced a second
operator B=1— P— @ and noted that

A>+ B*=1. (1.1)
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In trying to understand some relations between pairs of projections which
enter in the analysis of the quantum Hall effect [1], we discovered a
further significant relation, viz.

AB+ BA=0. (12)

The new relation is a signature of supersymmetry and implies that off the
space where A>=1, 4 and — A are unitarily equivalent. For example, we
will see it implies that if P — Q is trace class, then

tr(P— Q) =dim(u | (P~ Q)u=u)—dim(u | (Q — P)u=u)

is an integer, a result only proven recently by Effros [4]. The result also
shows that in that case

tr(P—Q)=tr((P— Q)*)=tr((P— Q)°)= ---.

As mentioned, Kato found (1.1) in his study of P, Q with ||P —Q} < 1.
He proved then that there exists a unitary U with

P=UQU .
We go beyond this and prove if | P— Q|| < 1, then there is a unitary V' with
VPV 1=, VoV-'=P. {1.3)

The structure of this paper is as follows: In Section 2 we discuss the
algebra of (1.1), (1.2) and show if ||P— Q] <1, there is a V' with (1.3). In
Section 3 we introduce the notion of index of a pair of projections relative
to the index of a suitable Fredholm operator and in Section 4 relate this
index to tr(P — 0)>"* ' when that trace exists. This section has relations to
work of Connes [2].

In many applictions, Q and P are related by Q = UPU ' and we discuss
this situation and relate it to formulas of Hérmander [6] and Fedosov [5]
in Section 5. Finally, Section 6 discusses a single result in the non-self-
adjoint case. An appendix is included, containing all the results on
Fredholm operators and index theory that we need.

We will not discuss examples in detail but the following is typical and
closely related to the quantum Hall case: Let # =/,(— o0, oc) and let
P={ulu,=0; n< -1}, @={u|u,=0;n<0}. Then, tr(P-—-Q)=1 and
Q =UPU ', where U is the left shift.
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2. THE KATO DUAL AND THE EQUIVALENCE OF PAIRS

Let P, Q be a pair of orthonormal projections. Let
A=P-0.
We call
B=1-P-Q

the Kato dual to 4. We give the name in honor of T. Kato [8, 9], who
introduced B in connection with relation (1) in the next theorem. Relation
(2) is new:

THEOREM 2.1. (1) A*+ B*=1
(2) {4, B)=AB+BA=0.

Proof. Straightforward algebra; to make it simple we use P'=1— P so
PP=PP =0and P+ P =1. Then, B=P - Q and

A+ B =P+ P*+20°—(P+P)Q—-Q(P+P)=P+P =1
and
AB+BA=0Q°—-PQO— QP +Q*—P'Q—QP
=202~ (P+P)Q-Q(P+P)=0. |

COROLLARY 2.2. (P — Q)? commutes with P and Q.

Proof. (P —Q)? obviously commutes with P —Q and since it equals
1—(1—P—0Q)* it commutes with 1 - P—Q and so with P+ Q. |

Remark. This also follows from the useful formulas
P(P—Q)Y=P—PQP=(P—-Q)P (2.1)
O(P—Q)Y=0—-0PQ=(P-Q)Q. (2.2)

Kato used his dual B to study pairs P, Q with |4]| < 1. He found a
unitary U with UQU ' = P. Explicitly, let P’=1~P; 0'=1—Q and

W=PO+PQ.
W obeys
PW=WQ. (2.3)
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Note that
PB=P(1-P—-Q)= —PQ=BQ.
Thus
W=1—-P—-Q+2PQ
=(l-2P)B=B(1-2Q). (2.4)
Thus, since (1 —2P)*=1 and 1 — 2P is self-adjoint
W*W=B"= WW* (2.5)

Sinced || 4] <1, || Bull®=llull>— || Aul®> = (1 — | A]]) Ju), so B is invertible
and
W=U|B| (2.6)

the polar decomposition has U unitary. Moreover, since |B|=./1— 4?
commutes with P and Q, (2.3) implies that

PU=UQ

constructing the required U.

The key properties (2.3), (2.5), and definition (2.6) are Kato’s but the
algebra using (2.4) is somewhat simplified.

We will construct a unitary that actually interchanges P and Q.

THEOREM 2.3. Let P and Q be orthogonal projections on # with
|P—Qll < 1. Then there exists a unitary V with

vey '=0, yov-'=Pp. (2.7)

Proof. Let sgn(x) be the function on (—oc, o) which is 1 (resp. —1,
resp. 0) for x>0 (resp. x<0, x=0). Since |4 <1 and A%+ B*=1,
Ker(B)={0} and so V=sgn(B), defined by the functional calculus, is
unitary. Moreover, since B commutes with sgn(B), we have

VBV '=R
that is,

VIP+Q)V '=P+0. (2.8)
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Now BA= —AB so B*> commutes with 4. Since |B| ' commutes with 4
and V=|B| 'B, we see VA= —AV, that is,

MP—-Q0)=(Q-P)V. (2.9)

Equations (2.8) and (2.9) imply (2.7). |}

Remarks. (1) Kato’s U has an advantage over our V for perturbation
theory; namely, it is given in a way that if P is fixed and @, — P in norm,
then U,— 1 while V, — (1 — 2P).

(2) If you look at the -construction, you will note that
U=V(1-20)=(1-2P)V.

(3) Some insight into the difference between U and V can be seen by
looking at the case dim(#)=2, dim(P)=dim(Q)=1. If 8<=r/2 is
the angle between Ran Q and Ran P, U is a rotation by angle 6. V is the
reflection in the line at angle 6/2 to Ran P and Ran Q (angle bisector).

(4) The proof can easily be modified to work in the case
Ker(B) = {0} with no restriction on the norm, that is, ¥ exists so long as
Ran PnKer @ =Ran @ nKer P={0}; we will extend this in the next
section.

(5) 1In the second edition of his book, Kato mentions our V in a
supplementary note but does not remark that }V interchanges P and Q.

3. THE INDEX OF A FREDHOLM PAIR OF PROJECTIONS

DEerINITION. Let P, Q be orthogonal projections on a separable Hilbert
space, . We say the pair (P, Q) is Fredholm if the map, C= QP viewed
as a map from Ran P to Ran Q is Fredholm. The index of C is called the
index of the pair, written index (P, Q).

Remark. For background material and, in particular, the definition of
Fredholm, see the appendix.
ProrositioN 3.1. (P, Q) is a Fredholm pair if and only if

(1) 1 and —1 are isolated points of spec(P — Q);
(2) Ker(P—QF 1) are both finite dimensional.

Moreover,

index(P, Q) =dim Ker(P —Q — 1)—dim Ker(P— Q+1).  (3.1)
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Proof. Let A=P—Q and C=QP, the latter viewed as a map from
Ran P to Ran Q. Then

Ker(C[Ran P}={peRan P| Qo =0}=Ker(4—1) (3.2a)
and similarly
Ran(C [Ran P)' ={geRan Q| Pp=0} =Ker(4+1) (3.2b)

so (3.1) holds once we prove the equivalence.

To see the right side of (3.2a) note that 1| — 4 =(1—P)+ Q is a sum of
nonnegative operators so (1 — A4)¢ if and only if (1 — P)p =0 and Q¢ =0.
The right side of (3.2b) is similar.

Suppose that (P, @) is a Fredholm pair and that ¢, is an orthonormal
Weyl sequence so that ||(4—1) ¢, »0. Then {¢,,(P—-0)¢,>—1 so
1P, —1, ||Qop,|| — 0. It follows that y, = Po,/|| Pp,|| has norm 1, ¢, =0
weakly and (PQP) Y, — 0so O e o (C*C). Thus, since (P, @) is Fredholm,
such a sequence ¢, does not exist which implies 1¢a..(A4). Similarly,
looking at C*, —1¢o.(A4) But +1¢0.,(A4)is equivalent to (1)+ (2).

Conversely, let (1), (2) hold. We can then write 4 = A, + F, where F is
finite rank and A, < (1 —¢)! for some ¢ > 0. Since

POQP=P(1-A)P
= —PFP+ P(1 — A,)P
> —PFP+¢P
we see that 0¢ g.,(C*C). By (Theorem A.4} this implies that (P, Q) is a
Fredholm pair. |

Remark. 1In the above, to prove (P, Q) Fredholm we only used that 1
1s an isolated point of spec(4), not that —1 is isolated, which may seem
surprising. But the supersymmetry (use of B) shows that spec(4 )\ {1, —1}
is invariant under A to — 4 so the two parts of (1) are not independent.

PrROPOSITION 3.2. A necessary and sufficient condition that (P, Q) be a
Fredholm pair is that P— Q= F+ D, where F, D are self-adjoint, | D] <1
and F is finite rank.

Proof. If P—-Q=F+ D, then clearly (1), (2) of Proposition 3.1 hold.
Conversely, if (1), (2) hold, let P, be the projections onto the eigenspace
for P— Q with eigenvalues +1 and Py=1— P, — P_. Then

P—Q=F+D

F=P,—P_, D=Py(P— Q) P, as required. |
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THEOREM 3.3. Let (P, Q) be a Fredholm pair. Then there exists a unitary
operator V with

VPV-'=Q, VOV '=P

if and only if index(P, Q)=0.

Proof. If such a V exists, then V(P— Q) V '=Q — P and thus by (3.1),
index(P, Q)=0.

Conversely, let P, Q be a Fredholm pair; let P, be the projection on
Ker(P-QF1) and Po,=1—P, —P_. If index(P, Q@)=0, Ran(P,_) and
Ran(P_ ) have the same dimensions, so we can find U, a unitary map of
Ran P, to Ran P . Define V,:Ran(P, +P_)})—Ran P, ®Ran P_ by
Vllo@®@y)=UZF y ® Uyp. As in the last section, let V, be sgn(B) viewed
as a map from Ran(P,)=Ker(B)* to Ran(P,). Let V,®V, on
Ran(P, + P_)Y@®Ran(Py). Then VPV '=Q; VOV '= P as required.

Remark. Since ||P— Q| <1 implies that index(P, @)=0, Theorem 3.3
extends Theorem 2.3.

THEOREM 3.4. (a) Let (P, Q) be a Fredholm pair of projections. Then
so is (Q, P) and

index(Q, P)= —index(P, Q).

(b) Let (P, Q) be a Fredholm puir of projections and let U be unitary.
Then (UPU ', UQU ' is Fredholm and

index(UPU ', UQU~')=index(P, Q).

(c) Let (P, Q) and (Q, R) be Fredholm pairs and suppose either Q — R
or P—Q is compact. Then (P, R) is a Fredholm pair and

index(P, R)=index(P, @) + index(Q, R).

Proof. Parts (a) and (b) are easy. To prove (c), consider the case where
P — Q is compact. Then

PR=P(P— Q)R+ PQOR.

POQOR is the product of Fredholm operators and so Fredholm (by
Theorem A.7) and the first term is compact so PR is Fredholm by
Corollary A.5 and (by Theorem A.7),

index(PR) = index( PQ)(QR) = index(PQ) + index(QR)

as was to be proven.
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ExaMpPLE. LET 4 be a separable Hilbert space and let # = #, ® ;.
Let P=1®0, R=0D1 and
o=(; )

Then (P, Q) and (Q, R) are Fredholm pairs but (P, R) is not, showing
that the compactness requirement in (¢) of the last theorem is not super-
fluous.

[T ST
N b=

4. THE KAT1O DUAL, THE TRACE, AND THE INDEX OF PAIRS OF PROJECTIONS
Our goal in this section is to prove the following fact:

THEOREM 4.1.  Suppose P and Q are self-adjoint projections and P — Q is
in the trace ideal %, for some n. Then

tr((P— Q)" "")

is an integer and equals index(P, Q). In particular, if P— Q€ %, ., then

tr((P— Q)" )=t((P- Q)" (4.1)
for m=n.

Remarks. (1) We will give two proofs.

(2) That tr(P — Q) is an integer if P— Q € .# is a result of Effros [4].
His proof makes use of the invariance of (P — 0)* and does not show that
the contributions of + 4 cancel but only that they sum up to an integer!

The first proof uses the Kato dual B=(1—P—Q) to 4A=P—Q and
“standard supersymmetry arguments”:

THEOREM 4.2. Let m; =dim Ker(P — Q — ). Then for i +# +1,
m;=m_,.
Proof. Fix 0<i<1. Let
Hi={¢| Adp=tip}.
Since {4, B} =0, B maps #, , to #_,. Moreover on #,, B’=1— 4=

(1—2)*1. Thus B is an invertible map of #, ; to #_, and the dimensions
are equal. |

580°120/1-16
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First Proof of Theorem 4.1. By Lidskii’s theorem [10],
tr((P— Q)"+ =3 A**'m,
=Y " (my—m_))

2>0

=m;,—m _, by Theorem 4.2

=index(P, @) by Proposition 3.1.

Second Proof of Theorem 4.1. We can write
(P—Q)Y=(P-Q)P—(P-Q)Q
=P-Q+QPQ—PQOP
=P—Q+[QP PQ]
=P—-Q+[QP [P, Q]]
=P-0+[0P [P-0Q, 0]}

Since (P — Q)* commutes with P and Q,

(P—Q)" " =(P—Q)"" '+ [QP, [(P-0)""", 0])

Thus, if (P—Q)**" is trace class,

tr((P— Q)" ") —tr((P— Q)" ) =tr([X, Y])=0

with Y trace class and so (4.1) holds. Since |[P— Q| <1,

lim tr((P—Q)**'")=index(P, Q)

"= 0

by Lidskir’s theorem and Proposition 3.1. ||

5. UNITARY DEFORMATIONS

(4.2)

In many applications, the pair P, Q is special in that Q=UPU ',

that is

DEerFINITION. We say a pair (P, U) consisting of an orthogonal
projection P and a unitary U is Fredholm if the pair of projections (P, Q)

with @ =UPU ' is Fredholm. We set

index(P; U) = index(P, Q).
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Remark. This may seem like a special situation, but because of infinite
dimensions, it is not. Given P, Q in #, an infinite-dimensional space,
let #=HOHFQH, P=PRI®0 and 0=0@I®0, so P—0 is
(P—Q)YDO@O. It is easy to see there is a unitary with UPU "= .

PrRoPOSITION 5.1. (a) If(P,U,)and (U, PU[", U,) are Fredholm, then
so is (P, U,U,) and

index(P; U, U,) =index(P; U,) +index(U, PU, '; U,).

(b)y If (P,U) is Fredholm and V is any unitary, then (VPV !,
VUV 'Y is Fredholm and

index(P; U)=index(VPV ', VUV ')
(c) If (P, U)is Fredholm, then for any ne Z, (P, U") is Fredholm and
index(P; U")=n index(P; U).

Proof. Parts (a) and (b) are a direct consequence of (¢} and (b) of
Theorem 3.4. Part (c) follows from (a), (b).

Remark. This result suggests a way that a pair (P, U) might have a
fractional index, m/n: If (P, U") is Fredholm with index (P; U")=m. It
remains to be seen if this has anything to do with the fractional Hall effect,
but the possibility is attractive.

THEOREM 5.2. (P, U) is a Fredholm pair if and only if PUP as a map
from PH to PH is Fredholm and

index(P; U)= —index(PUP | P# — P#)=index(PU 'P| PH# — PX).

Proof. By definition of index(P, @), we have that {P, U) is Fredholm if
and only if UPU™'P is Fredholm as a map from P# to UP# and

index(P; U)=index(UPU ‘P | PH — UPKH)
= index(PU"'P | PH# — PH)

since U is a unitary map from Ps# into UP#. But since index(P, Q)=
—index(Q, P)

index(P; U)= —index(PUPU "' | UP# — PXK)
= —index(PUP | P# — P#). |
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Finally, we want to consider the relations to trace ideals. We will let
P, =UPU~" and consider three expressions,

2, (P, Uy=tr((P—P,)"*")
B.(P, U)=tr(([P, U U*)>*1)
7.(P, Uy=te((P — PUPU~'P)")— te((P — PU~'PUP)").

THEOREM 5.3. (a) For each n=0,1,..,P—Pyebh, . if and only if
[P, U]le%,  and then

index(P; U) = a,(P, U) = B,(P, U).

(b) If forany n=1,2, .., both P~ PUPU 'P and P— PU 'PUP lie
in £, then (P— P,)e %, ., and

p.(P, U)=a,(P, U)=index(P; U).

(c) For any n=1,2,.., if (P~ P,)e S, then both P— PUPU'P
and P— PU™'PUP lie in .9, and

Vu(P, U)=a,(P, U)=index(P; U).

Remark. Note that %4, , , appears in {(b) but that %, appears in (c).

Proof. (a) P—P.=[P,UJU* so P—Pyed if and only if
[P, U] e 4, The equality follows from Theorem 4.1.

(b)(c) By (2.1) and (2.2)
P~ PP P=P(P—P,)*=(P—Py)* P

2

so since P commutes with (P — P,)°,

(P— PUPU 'P)"=P(P— P,)™. (5.1)
Similarly
(P~ PU'PUP)"=U "(P,— P, PP,)" U
=U"'"PU(P—P)"U (5.2)

and in particular

(P— PUPU~'P)"— U(PU 'PUP)" U~ '=(P—P,)>*'.  (53)
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The trace ideal implications in (b) follow from (5.3) and in (c) from (5.2).
Theorems 4.1 and (5.3) imply the index equalities. ]

Remark. The expression y,(P, U)=index(P; U) is in Hormander [6]
and Fedosov [5]. Connes proved a special case of §, =index(P; U).

6. THE NON-SELF-ADJOINT CASE

The above analysis depended on the assumption that P and Q are self-
adjoint in many ways. For example, we used (e.g., in Proposition 3.1)

Ker(QP |Ran P)=Ker(P—Q~1)={u | (P—Q—1)"u=0 some n}

and it can happen that none of these equalities occur if P, Q are non-self-
adjoint. Neither of the proofs of Theorem 4.1 extend to non-self-adjoint P,
Q: but, as we shall see, the theorem does hold.

We extend the definition at the start of Section 3 to include the non-self-
adjoint case by dropping the term “orthogonal.” Note that while

Ker(QP | P# — Q#)=Ran Pn Ker Q,
we have that
Ran(QP | P# — Q#)* =Ran Q nKer P* not Ran @ nKer P.

We have

THEOREM 6.1. Let P, Q be arbitrary projections on a separable Hilbert
space ¥ . Suppose P— Qe %, |, the trace ideal. Then

tr((P—- Q)" =tr((P- Q)" (6.1)

for m=n, (P, Q) is Fredholm and this integer is index(P, Q).

Proof. The formula (4.2) holds and it implies (6.1), so we need only
prove that (P, Q) is Fredholm and the value is index(P, Q). Let X =Ran P
and Y=RanQ and T: X — Y be QP. Let §: Y — X be PQ. Then on X

Ki=1-ST=P—PQP=P(P—Q)P
and on Y

K,=1-T5=Q(Q—-P)Q
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are both compact. Hence, by Theorem A.6, (P, Q) is a Fredholm pair.
Indeed, K'*'=P(P—Q)"*'P and K{"'=Q(Q—P)"*'Q are trace
class; so by Theorem A.6
index(P, Q)= index(T)=tr(K{*")—tr(K5"")
=tr(P(P— Q)" ) —tr(Q(P — Q) *?)
=t((P—Q)"*?)

as was required. ||

APPENDIX. A CHILD’S GARDEN OF INDEX

For the reader’s convenience, we summarize the basic properties of
Fredholm and index theory for operators from one separable Hilbert space,
#,, to another, ;.

LEMMA A.l. Let T be a closed operator. Then the following are
equivalent:
(1) Ran T is closed.
(2) O is not in or is an isolated point of o(T*T), the spectrum of T*T.
(3) There exists ¢ >0 so that

[Tl =cleo]|
Sor all peKer(T)*.
Proof. (2)<>(3). Part (2)is equivalent to T*T>c? on Ker(T*7T)* =
Ker(7T)* and this is equivalent to (3).
(3)=(1). Let u,eRan(7) converge to u. We can find ¢, e Ker(T)*
SO T(p" = un' By (3)
”(pn - (pm” S ¢ ! “un - um”

so ¢, is Cauchy. Let ¢, — @. Then T =u since T is closed.

(H)=>(3). T:(KerT)* >RanT is a closed bijection. If RanT
is closed, both spaces are complete, so that (3) follows from the inverse
mapping theorem. ||

LEMMma A2, If Ran T is not closed or Ker(T) is infinite dimensional,
then there exists an orthonormal sequence {@,}>_, so that |Te,| —0 as
n— .
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Proof. 1f Ran T is not closed, 0 is not an isolated point of a(T*T) so
infinitely many spectral projections P, ,,, 11(T*T) are non-zero. Choose
@, in the ranges of the non-zero projections. ||

DEFINITION. A closed operator T from ¢ to 3 is called Fredholm if
and only if

(1) Ran(7) is closed.
(2) Ker(T) is finite dimensional.
(3) Ran(T)" is finite dimensional.

One then defines index(7T) = dim Ker(7T) —dim[Ran(7)" ].
The following is well-known (see, e.g., Deift [3]):

LemMMa A3. Let T be a closed operator from #, to #;. Then
(i) o(T*TI{0} =a(TT*)\{0}
(i1) dim(Ker(T*T — 7)) =dim(Ker(TT* — 1)) for 1 #0.

Similarly if T is bounded from #| to #5 and S is bounded from #; to #,
then

(iii) o(ST\{0} =a(TS)\{0}
(iv) dim(Ker(TS — 4)") = dim(Ker(ST — 4)") for 4 #0.

for any n.
THEOREM A4, A closed operator T is Fredholm if and only if

0¢ 0. (T*T), the essential spectrum of T*T and 0¢ a.(TT*) and then
index(7T)=dim(Ker(T*T)) — dim(Ker(TT¥*)).

Proof. By Lemma A.1,0¢ 0. (7T*7T) if and only if Ran(T) is closed and
dim Ker(T)=dim Ker(7*T) is finite. By Lemma A.3, 0 is isolated in
o(T*T) if and only if it is isolated in ¢(TT*). Since Ran(7)* = Ker(T*),
the result follows. ||

COROLLARY A.5. Let T be a bounded Fredholm operator. Then, there is
a constant d>0 so that if

A=X+Y
with | X|| <d and Y compact, then T+ A is Fredholm and

index(7T+ A)=index(T).
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Proof. Let d>0 solve d>+2d||T||=c*=inf[a(T*T)\{0}]. We claim
T(A)= T+ A4 is Fredholm for all A€ [0, 1]. For by the definition of 4 and
simple perturbation theory, 0¢ 0. ((7+ AX)* (T + AX)), 0¢ 0. ,((T+ iX)
(T + AX)*). Since 0. (H) is invariant under compact perturbations, 7(4) is
Fredholm for 1€ [0, 1].

Since 0 is a discrete point of o(7(4)) or a resolvent point, we can apply
the Kato—Rellich eigenvalue perturbation theory. dim(Ker(7T*(4) 7(1)))
can only change by eigenvalues e,(A1) of T*(4) T(A) approaching 0. By
Lemma A.3, the same eigenvalues and multiplicities occur for T(2) T*(4)
and for self-adjoint operators, the sum of the dimensions of the eigenvalues
is invariant under perturbation, so index(7(4)) is unchanged. ||

Our next result involves algebraic multiplicities defined by
kag(A, A)=dim{u | (4 —1)" u=0 for some n}.

Recall that for 4 compact and 21#0, k,,,(A4, 1) < oo and there exists some
ny < oo so that for n 2 n,

{u| (A= 2y u=0}=Ker((4 —2)™).

We are heading towards

THEOREM A.6. Let T be a bounded operator from 3, to #,. Then T is
Fredholm if and only if there exists an approximate inverse S from #; to H#,
so that K, =1—58T is a compact operator on #, and K, =1-—-TS is a
compact operator on #; and then

indeX(T’)=kalg(I(la 1)—kalg(K2’ l) (Al)
Moreover, if K, K’ e 4, the trace class, then

index(7) = tr(K) —tr(K}%). (A.2)

EXaMPLE. Let ] = 5#; =/,([ 1, 0)) with natural basis {e,} " ,. Let

n»—;l'

Te,=¢€,,1, n=1,2,..
Se,=¢e,_,, n=3,4, .
S€2=0

Se, =e,.



THE INDEX OF A PAIR OF PROJECTIONS 235

Then index(T)= —1. dim Ker(ST)=k,,,(ST, 1) = 1. dim Ker(7S)=1 but
ko (TS, 1)=2. Thus (A.1) holds, but

index(7T) # dim Ker(ST) — dim Ker(7S)

s0 it is necessary to discuss algebraic multiplicities.

Proof of Theorem A.6. T is a closed bijection from (Ker T)* to Ran T,
so there is an inverse S, from Ran 7 to (Ker T)*. Extend S, to % by
setting S,=0 on (Ran T)*. Then, if P= Projection onto Ker T and
O = Projection on (Ran T)*, then S;T=1—P and TS;=1—-Q so S, is
the required S and k,, (5,7, 1) =dim(P) while k,,(TS,, 1)=dim(Q) so
(A.1) holds.

Now, given any S with 1—S7 and 1— TS compact, let S(f)=0S+
(1—6)S,. By Lemma A.3, for A#0, k,,(S(6) 7, 2) =k, ,(T5(8), A} and by
eigenvalue perturbation theory, the sum of the algebraic dimensions is
invariant under perturbation, so (A.1) holds.

By Lidskii’s theorem [10],

tr(K7) —tr(K3) = > A"[kag(Kys A) —kag(Ky, 4)]
4 e spec(Ky) wspec(Ka)
A#0
= Z Ak ag(ST, 1 — 2} =k, (TS, 1 - 4)].
lespec(lgli%spcc(Kz]

By Lemma A.3(iv), all terms with 45 1 vanish, so (A.1) implies (A.2). |

We are heading towards a proof of

THEOREM A.7. Let X, Y, Z be separable Hilbert spaces and A: Y - Z
and B: X — Y Fredholm. Then AB is Fredholm and

index(AB) = index{A) + index( B). (A.3)

LeMMA A8. Let C:X—Y be Fredholm. Then, C=U+F with U
invertible and F finite rank if and only if index(C)=0.

Proof. If C=U+F, then index(C)=index(U)=0 since Ker(U)=

Ran(U)* = {0}.
Conversely, if C is Fredholm we can write

X=(KerO)*®Ker C, Y=Ran C@®(Ran C)}*
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and C is invertible from (Ker C)* to Ran C. If index(C)=0, then
dim(Ker C)=dim((Ran C)*)< o, so we can find F, invertible from one
space to the other. Let P be the orthogonal projection on Ker C and
F= —F,P and let U=C~F. Then U is invertible, F is finite rank and
c=U+F 1|

LeMMA A9. Let X=X, @®X,, Y=Y @Y, and let A;:X,> Y, and
Ay Xy — Y, be Fredholm. Then A=A, ®A,: X — Y is Fredholm and

index{A4)=1index(4,) + index(A,).

Proof. Elementary. |1

Proof of Theorem A.7. Let W be an infinite-dimensional Hilbert space.
Find 4,: W— W with index(4,)= —index{A4) and B,: W—- W with
index(B,) = —index(B); for example, take W =/¢,([0, o)) and let 4,, B,
be suitable left or right coordinate shifts. Let ¥=X@® W@ W,
T=YOWOW,and Z=Z® W@ W. Define 4: X— Y and B: ¥ - Z by

A(x, wi, wo) = (Ax, A, w,, w,)

B(x, w,, w,)=(Bx, w,, B,w,).

By Lemma A9, 4, B are both Fredholm and both have index 0. Thus,
A=U,+F, B=U,+F, where U, are invertible and F; are finite rank.
Thus

AB=U U, + U K+ FU,+ FF,=U+F

with F finite rank and U= U, U, invertible and so Fredholm. It follows
that AB is Fredholm and

index(4B)=0.
But

AB(x, w,, w,)=(ABx, A, w,, B,w,)
so AB is Fredholm and by Lemma A.9,
index(AB) + index(A4,) + index(B,)=0

that is, (A.3) holds. §
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