CYCLIC VECTORS IN THE ANDERSON MODEL
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We prove that for Anderson models in the localized regime, the vectors §, are cyclic
with probability one and, in particular, the spectrum is simple.

1. Introduction

In this paper, we’ll discuss the Anderson model, by which we mean a family of
operators h,, on £2(Z") given by

(how)(G) = Y u(i+n)+ Va(i)u(i) ,
Inj=1

v

where |n| = Y |ni| and V,,(j) are independent, identically distributed random

i=1
variables with distribution on dA\(E) = F(E)dE.
Let 6, be the vector in £2(Z") with 6,(j) =0if j #n and 1if j = n.
Our goal is to prove:

Theorem 1. Suppose that [a,b] is an interval in spec(h,) for a.e. w and that
the spectrum is pure point there (with probability one). Then for a.e. w, each b, is
a cyclic vector for h, on this interval. :

Such a result is often technically useful, which is our interest in it. It implies
that h, has simple spectrum. The most interesting question is whether this result
holds without assuming that states are localized.

If v = 1, we know that the localization hypothesis holds for all F and all a,b
[2, 3, 6, 5]. For v > 1, we know that for suitable F there are localized states for all
[a,b] and for other F at some [a,d] [4, 1].

This paper is a birthday present for Elliott Lieb. We’ve written over a dozen
papers together, many among my significant ones. Working with Elliott is always
a stimulating and rewarding experience and I thank him for the pleasure of those
collaborations.

1This material is based upon work supported by the National Science Foundation under Grant
No. DMS-9101715. The Government has certain rights in this material.
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2. Proof of the Main Theorem

Lemma 2.1. For any Jacobi matriz, h, the vectors {h¥8,}32 .., ayeq 07¢ linearly
independent.

J ;
Proof. Suppose not. Let ) a;h’é, = 0 with J minimal. Let e be a root
j =0

of Y a; X’ so Y ajhf = (h - €)Q(h). Since J is minimal, ¥ = Q(h)é, # 0.
But (h — e)¥ = 0 so h has an eigenfunction of compact support. Let C = {m |
¥(m) # 0}. Let M = max{m; | m € C}. Let n be a point with ; = M. Then
(h¥)(m+61) # 0 but ¥(m+6;) = 0s0 (h—e)y # 0; that is, h has no eigenfunction
of compact support. Thus, we have the required contradiction. a

Given h and n, define #,,,(h, n) to be the orthonormal set given by Gram-Schmidt
from hi ,, that is

m=1

() = (780 = 3= (b, ), K783 |/
j=0
m-1
where N = |h™6, — ¥ ---||. To prove the theorem, we need only show that for
j=0

each m,k and a.e. w:

o0
D (Peay(hu)om, mi(hu, B)I? = 1
j=0
(this is clearly a measurable set).
Fix & so that hg has point spectrum on (a,b) and so that the same is true for
w? = Jg + A6n for a.e. A with F(@y, + A) # 0. Let duy be the spectral measure of

the vector §,, and operator h,».
Let Gij(e) = (8i,(hs — €)716;). As e — —o0,

Gij(e) = (=&)L +0(le|™)) ,

so G is not identically zero. G is the Stieltjes transform of a signed measure so it
has boundary values for a.e. e € R, G;;(e+ i0). Moreover, since G is not identically
Z€ero, ‘

Aij = {e| Gij(e +1i0) = 0 or lim G;j(e + i€) = co or the limit does not exist}

has Lebesgue measure zero.
By the argument of Simon-Wolff [6], [(1+A2)~1du,(E) d\ = dn(E) is absolutely
continuous w.r.t. dE. Thus, for a.e. A:

dp,\(Am’k UB) =0 (1)

where
B = {eigenvalues of h;} .
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If we also restrict to those A with du, pure point on (a,b), du)(B) = 0 implies
each eigenvalue e of h,» with (6, Pc6,n) # 0 has dim(P,) = 1; so if we also prove
that (8, P.6x) # 0, then Ran P, is in the cyclic subspace generated by h,x on &
and thus P, ;)6 is in that cyclic subspace also, as was to be proven.

Now,

(6, (hor — 2)"16m) = (8k, (hw — 2) " 6m) — A(bk, (hw — 2)"16,)(6m (hur — 2)"16k) .

2)
Let e be any pure point of duy on (a,b). By (1), (6k, (hw — 2)"6m) with z = e+ ie
has a non-zero finite limit as € | 0. Multiplying (2) by i¢ and taking ¢ | 0,

(8ky Pebm) = —AGim(e + i0)(6m, Pebpm) -
It follows that (8x, P.8m) # 0 so P.6; # 0, as was to be proven. m]
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