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Operators with singular continuous 
spectrum: I. General operators 

Introduction 

The Baire category theorem implies that the family, F,of dense sets G6 in 
a fixed metric space, X ,  is a candidate for generic sets since it is closed under 
countable intersections; and if X is perfect (has no isolated point), then A E F 
has uncountable intersections with any open ball in X. 

There is a long tradition of soft arguments to prove that certain surprising 
sets are generic. For example in C[O, 11, a generic function is nowhere differen- 
tiable. Closer to our concern here, Zamfirescu [20] has proved that a generic 
monotone function has purely singular continuous derivative, and Halmos [7] 
and Rohlin [14] have proved that a generic ergodic process is weak-mixing but 
not mixing. We will say a set S c X is Baire typical if it is a dense Gg and a 
set S c X is Baire null if its complement is Baire typical. 

Our goal is to look at generic sets of self-adjoint operators and show that 
their spectrum is quite often purely singular continuous. Here are three of our 
results that give the flavor of what we will prove in Sections 3 and 4. 

Consider the sequence space, [-a, a]", of sequences v, with lvnl 5 a. Given 
any such v, we can define a Jacobi matrix J (v)  as the tridiagonal matrix with 
Jn,n*l= 1 and Jn,,= v,. View J as a self-adjoint operator on 12(2).It is 
known (e.g. [4], [17], [16]) that if one puts a product of normalized Lebesgue 
measures on [-a, a]" (i.e., the v, are independent random variables each uni- 
formly distributed in [-a,a]), then J (v)  is a.e. an operator with spectrum 
[a - 2, a + 21 and the spectrum there is pure point. Thus our first result is 
somewhat surprising. 

1. I 
spectrum [-a - 2, a + 21 and the spectrum is purely singular continuous) is 
Baire typical. 

THEOREM View [-a, a]" in the product topology. Then {v J (v)  has 

'This material is based upon work supported by the National Science Foundation under Grant 
No. DMS-9101715. The Government has certain rights in this material. 
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We also have some results if Z is replaced by ZV and the Jacobi matrix 
by the multi-dimensional discrete Schrodinger operator. One might think that 
the weakness of the topology and the one dimension are critical. They are not, 
as our second result shows. 

For V E C(RV), let S(V) be the Schrodinger operator -A +V on L2 (EXV). 

THEOREM2. Let C,(RV) be the continuous functions vanishing at infin-
i ty  in 1 1  . 11,. T h e n  

{V I S(V) has purely singular continuous spectrum o n  (0, oo)} 

i s  Baire typical. 

Note that for V E C,(R), the essential spectrum, spec,,,(S(V)) = 

[0, oo), so Theorem 2 says that generically, the singular continuous spectrum, 
spec,,(S(V)) = [O, oo), the absolutely continuous spectrum, spec,, = 0, and 
the pure point spectrum, specpp(S(V)) c (-oo, 01. For the discrete one- 
dimensional (Jacobi matrix) case, we will be able to say something about 
decay. For example when Y = 1, a generic v E !p (2 < p < oo) has a J (v )  
with purely singular continuous spectrum in [-2,2]. For p = 1, we know 
spec,,(J(v)) = [-2,2] so the singular spectrum result does not extend to all 
p; 1< p < 2 is open. 

Our third example is related to  the celebrated theorem of Weyl-von Neu- 
mann [18], [19], [8] that given any self-adjoint A and any E, there exists a 
Hilbert-Schmidt operator B with IIB1I2 < E (where llCl12 = t r ( c*c ) l I2 )  so 
that A + B has only point spectrum. That is not the generic situation. 

Definition. A self-adjoint operator, C, is called usual if and only if {$ I 
C$ = A$ and X E specdi,(C), the discrete spectrum of C} U {$ I dP$(X) 
is purely singular continuous} span the space H. Here dp$ is the spectral 
measure for (C,$); that is, 

Z2 denotes the Hilbert-Schmidt operators in 1 1  . 1 1 2  norm. 

THEOREM3. Let A be a fixed self-adjoint operator. T h e n  {B E Z2 I 
A + B i s  usual} i s  Baire typical. 

For example, if spec(A) = [- 1,1],generically A + B has purely singular 
continuous spectrum in (- 1,l). 

In Section 1 we prove two results asserting that certain families of op- 
erators are always sets G6. We will use this to prove criteria for a generic 
singular spectrum in Section 2. We then study general operators in Section 3 
and Schrodinger/Jacobi operators in Section 4. 
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I would like to thank R. del Rio and N. Makarov for discussions which 
stimulated this work, and S. Molchanov and A. Teplyaev for telling me of [lo]. 

1. Soft stuff 

A metric space, X ,  of (perhaps unbounded) self-adjoint operators on a 
separable Hilbert space, 'H, will be called regular if and only if: 

(1)X is complete. 
(2) If A, + A in the metric topology, then A, -+A in the strong resolvent 

sense. 
Our three main technical results are: 

THEOREM1.1. Fix C c R closed and X a regular metric space of oper- 
ators. Then  

{A I A has no  eigenvalues in C )  

THEOREM Fix U C R open and X a regular metric space of opera- 1.2. 
tors. Then  

{A 1 For any spectral measure for A, (p$),[li] = 0) 

Remarks. 1. Note the word "dense" does not appear before Gs. That will 
hold sometimes, as we will analyze. 

2. p$ is defined in (0.1). Note that (v), means the absolutely continuous 
component of v. 

THEOREM Fix K c R closed and X a regular metric space of oper- 
ators. Then  

1.3. 

{A I K c spec(A)) 

LEMMA1.4. Let A, be a sequence of self-adjoint operators o n  'H so that 
A, -+ A i n  a strong resolvent sense for some self-adjoint A. Let K be a 
compact subset of R;cp, a fixed vector i n  'H, and E > 0. Suppose there exist 
eigenvectors q, of A,: 

Anqn = Xnqn 

with llqn1 1  = 1, An E K and I (qn,cp) I 2 E. Then  A has an  eigenvector q with 

with X E K ,  llqll = 1 and I(q,cp)) > E 
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Proof. K is compact and {$ E 'FI I I I $ I I  5 1) is compact in the weak 
topology. So we can pass to a subsequence and suppose qn + q, weakly and 
An + oa.We will show that q, E D ( A )  and Aq, = Xq,. Since I(q,, cp)1 2 E ,  

we have q, # 0 and so q = q,/llq,ll is the required vector. 
Let $ E 'FI be arbitrary. Then 

(1.1) ( A+ ) = (q,, ( A- i ) - l$ )  

= limn (qn,(An - i )-'$) 

= limn ( ( ~ n+ i)-lVn,$1 

It follows that q, = ( A  + i ) ,  ( A+ i)-'q, E D(A,) and Aq, = Xq,. Equa-
tion (1.1) holds because ( A ,  - i)-'$ converges to ( A  - i)-'$ in norm and 
qn + q, weakly with llqn1 1  5 1. 

Proof of Theorem 1.1. Fix K C R compact, E > 0 and cp E 'FI. Then 
Lemma 1.4 implies that 

Aq = Xq for some X E K )  

is a closed subset of X. 
Fix {cpl)Fl an orthonormal basis of 'FI. For n ,  1 ,  m E Z+, let 

Qn,l,rn = Q ( Cn [-n,nl,91,m-'). 

Then 
U Qn,l,rn= { A  I A has an eigenvalue in C }  

is an F,, so its complement is a Gs as claimed. 

LEMMA1.5. Let (a ,b) be a fixed open interval in Rn and let dp be a 
measure on R. Then p is purely singular on (a ,b) if and only if for each 
n > 2, there exist E ,  > 0 and fn obeying 

(2)  fn is supported in (a - E,, b + E,), 
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Proof. Suppose such E, and fn exist. Let 

Then (with I . I = Lebesgue measure): 

and 
Cn C [a - ~ , , b + ~ n ] .  

It follows that 
03 

m n=m 

obeys ICI = 0 and p([a, b]\C) = 0. 
Conversely, suppose that p is purely singular continuous on (a, b). Find 

C in (a, b) so ICI = 0 and p((a, b)\C) = 0. By adding a and/or b to C, we 
can suppose C c [a,b] and p([a, b]\C) = 0. Since limELo p([a - E, a)) = 0 and 
limEjo p((b, b + E]) = 0, we can choose E, < 2-n so that 

p([a - E,, a)) + p((b,b + E,]) < 2-n-1. 

By regularity of measures, we can find Kn c C c Un C (a - E,, b + E,) so 
that I UnI < 2-,, p([a,b]\Kn) < 2-n-1. By Urysohn's lemma, find f continuous 

with 0 2 f 5 1, f 1on Kn and supp f c Un. Then 
03J__  fn(s)ds 5 IUn < 2-n 

while 

P (x[a-En,b+Enl - fn )  5 ~ ( [ a- En,  a)) + p([a, b]\Kn) + ~ ( ( b ,b + ~ n ] )< 2-" 

as required. 

Proof of Theorem 1.2. Let cp E 'FI, a, b E R and 

Q(cp, a,  b) = {A I dp; is purely singular on (a, b)}. 

By Lemma 1.5 
03 

Q(v,a, b) = n IJ d n ( f ,  E; 9) 
n=2 (~ ,E)EB,  

where B, is the set of pairs (f,E) obeying (1-3; 5) of Lemma 1.5 and 

We claim each A is open, and equivalently that 
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is closed. Let Al E A: converge to A in a strong resolvent sense. Then 
lim(cp,f (Al)c p )  = (cp, f (A)cp) (see, e.g., [12]). Let hm be continuous functions 
with hm 1 x [ ~ - ~ , ~ + ~ Imonotonically. Then hm(A)+ hm(A) strongly, so 

( 9[ a - A ) = i % f ( ~ !h m ( A ) ~ )  

= infm [lim(cp,n hm (Al)cp)] 

and the claim is proved. 
Any open set U is a countable union of open intervals I, = (a,, b,). Let 

M be an orthonormal basis for 'FI. Then the set that the theorem asserts is a 
Gs is just 

which is indeed therefore a G6. 0 

The following is an expression of the well-known fact of lower semiconti-
nuity of the spectrum under strong limits. 

LEMMA1.6. If A, + A in a strong resolvent sense and (a,b) nspec(A,) 
= 0,then (a, b) n spec(A) = 0. 

Proof. Let f be the function f (x) = dist (x,R\(a, b)). Then (a,b) n 
spec(B) = 0 if and only if f (B) = 0. By the continuity of the functional 
calculus of A, +A in a strong resolvent sense, then f (A) = s - lim f (A,) = 0 
if (a,b) n spec(A,) = 0. 

Proof of Theorem 1.3. Let A, be a countable dense set in K. Then 

{A 1 K c spec(A)} = n{A I A, E spec(A)} 
n 

so we need only consider the cases where K = {A}. But 

is an F, by Lemma 1.6. Thus, its complement is a G6. 

2. Welcome to wonderland 

The main point in the way to generate a generic singular spectrum is: 

THEOREM2.1. Let X be a regular metric space of self-adjoint operators. 
Suppose that for some interval (a, b), 

(i) { A  I A has purely continuous spectrum on (a,b)} is dense in X. 
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(ii) {A I A has purely singular spectrum on (a,b)) is dense in X 

(iii) {A I A has (a,b) in its spectrum) is dense in X 

Then {A I (a,b) c spec,,(A), (a,b) nspecp, (A) = 0, (a,b) nspec,, (A) = 0) 
is a dense Gs. 

Proof. Because (a, b) is an F6,each of the sets in (i)-(iii) is a G6 by 
Theorems 1.1-1.3. (For example, the set in (i) is the intersection of the same 
sets for [a+ A ,  b - A].) Thus, by hypothesis they are dense Gs's. By the Baire 
category theorem, their intersection is a dense G6. 

Remarks. 1. We pick an interval for definiteness. In many cases, one can 
say things about other sets. 

2. We pick the same set (a,b) for convenience. In some examples later, 
we will take (a,b) = R in (ii), but replace (a,b) by a closed set in (i). 

Here is a spectacular corollary, which we call the Wonderland Theorem: 

THEWONDERLANDTHEOREM.Let X be a regular metric space of op-
erators. Suppose 

(a) {A I A has purely absolutely continuous spectrum) is dense in X; 

(b) {A I A has purely point spectrum) is dense in X. 

Then Baire typically, A has only singular continuous spectrum. 

Proof. Strictly speaking, this is not a corollary of the theorem but of its 
proof, since we do not specify the spectrum. By Theorem 1.1 and (a) 

{A I A has purely continuous spectrum) 

is Baire typical. Similarly, by Theorem 1.2 and (b) 

{A I A has purely singular spectrum) 

is Baire typical, so their intersection is Baire typical. 

3. General operators 

We first apply the theory to  general self-adjoint operators. Throughout, 
7-l is a fixed separable Hilbert space. 
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THEOREM3.1. Fix a > 0. Let X = {A ( A is self-adjoint, IlAll 5 a} 
which is a complete metrizable space in the strong topology. Then 

{A I spec(A) = [-a, a];A has purely singular continuous spectrum) 

is Baire typical. 

Remark. For example, if pn is an orthonormal basis, 

p(A,A') = min(2-", I(A - Ar)pnl1) 

is a metric. 

Proof. We will use the Wonderland Theorem. By the Weyl-von Neumann 
theorem, the operators with point spectrum are norm dense, but there is a 
simpler argument since we only need strong density. Since the same argument 
is needed for dense, absolutely continuous spectrum, we give it. 

Pick an orthonormal basis {pn}~=-, (this way of counting will be conven-
ient) and let PNbe the projection onto {pn}lnllNSO that PN+ 1 strongly. 
Let an be a counting of the rationals in [-a, a] and let B be the diagonal 
operator Bp, = anpn .  Then 

The operator on the left has spectrum [-a, a] and it is pure point. Thus we 
have two of the three hypotheses of the Wonderland Theorem. 

To prove that absolutely continuous spectrum operators are dense, we 
need only prove that an operator A with point spectrum and IlAll 5 a - E can 
be approximated since we have just proved such operators are dense. Let {p,) 
be the eigenvectors of A (say, Apn = anpn)and let AN = PNAPN. Fix a 
sequence SN with 0 < SN < &/2and SN +0. Let BN be defined by 

where pn = aj for the unique j with n E j mod(2N - 1). Then IIBN((5 a 
since SN 5 el2 and BN + A strongly as N +m. Each BN is a direct sum of 
N + 1operators of the form 

anlI+ SNJ 

where J is the tridiagonal operator with zeros on the diagonal and 1 on the 
two principal off-diagonals. Also J has absolutely continuous spectrum and 
thus so does anlI+ SNJ and BN. 
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Surprisingly, the strong topology is only relevant to assure that the spec-
trum is [-a,a ] :  

THEOREM3.2. Fix a < b. Let X = { A  ( A is  self-adjoint and spec(A) = 

[a ,b ] )  in the operator norm  topology. ( X  is closed in L(X),and so complete.) 
Then  

{A ( A has purely singular continuous spectrum) 

i s  Baire typical. 

Proof. We will use the Wonderland Theorem. By the Weyl-von Neumann 
theorem, given A E X and E ,  we can find B1 so that IIBIII < ~ / 2and C1 E 
A+ B1 has pure point spectrum. Now Cl may have eigenvalues in (a- ~ / 2 ,a )U 

(b, b +~ / 2 )and so not be in X ,  but we can change those eigenvalues to a or b 
with an operator B2 of norm at most ,512. Then, C2= A + B1 + B2 E X has 
pure point spectrum and llC2-All < E. 

By the above, we need only show that operators in X with pure point 
spectrum can be approximated by operators with purely absolutely continuous 
spectrum. Now, suppose A E X has pure point spectrum. 

Let c = b - a.Given n, let 

Let oj be the midpoint of Ij .  Suppose 

is the orthonormal family of eigenvalues for A. Define B, by 

so that I(B, - All 5 + and B, is a direct sum of olI[$ . . .  @ o2nI with 
each I an infinite dimensional identity. Let D be a self-adjoint operator with 
purely absolutely continuous spectrum on [-I, 11 (e.g., the matrix with 0 on 
the diagonal and on the two principal off-diagonals). Let 

Then, C (E X) ,  C has purely absolutely continuous spectrum and IIA -Cn((< 
4 2 , .  

THEOREM3.3. Let A be a fixed self-adjoint operator. Let Z2 denote the 
Hilbert-Schmidt operators. Then  for a dense Gg of B i n  Z2: 

(1) spec,,(A + B )  is empty. 

(2) A + B has n o  eigenvalues o n  spec,,, ( A+ B )  = spec,, (A) .  
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Remarks. 1. This is equivalent to Theorem 3 of the introduction. 
2. Given Kuroda's extension of the Weyl-von Neumann theorem [ll],this 

theorem extends to Z, with p > 1. If A has no absolutely continuous spectrum, 
one can take p = 1. 

Proof. By the Baire category theorem, it suffices to prove the set with (i), 
(ii) separately is given by dense G6's  By Theorem 1.2, the set of operators B 
with spec,,(A +B) empty is a G6, and by the Weyl-von Neumann theorem, it 
is dense, so (i) yields a dense G6. 

By Weyl-von Neumann and a simple additional argument, given E, we can 
find Bo with IIBol12 < ~ / 2SO A. - A + Bo has simple pure point spectrum. 
Let cp be a cyclic vector for A. and let Pobe the projection onto {acp I a E C) .  
By a theorem of [3],A. +XPohas no eigenvalues in spec(Ao)for Baire typical 
X so we can find lXo 1 < ~ / 2so that A. +Xo Pohas no eigenvalues on spec,,,(A). 
Take B = Bo+ Xo Poso 1 1  B 1 1  2 < E. This proves the density of the set in (ii). It 
is a G6 by Theorem 1.1. 

4. Jacobi matrices and Schrodinger operators 

We will begin with the Jacobi matrix case and prove Theorem 1 of the 
introduction. 

THEOREM4.1. Fix a > 0. Let X be the set of Jacobi matrices on 12(2): 

where x, is an arbitrary sequence with lxnl 5 a.  Put the topology of pointwise 
convergence on {x,) (so X is a compact metrizable space). Then 

{A E X I spec(A) = [-a - 2, a + 21, spec(A) is purely singular continuous) 

is Baire typical. 

Proof. We use the Wonderland Theorem. Let dp be the product of 
Lebesgue measures (2a)-ldx, so that supp(dp) = [-a,a]". Let D = {A E 

X I spec(A) = [-a - 2, a + 21, spec(A) is pure point). Then p(X\  D) = 0 by 
Anderson localization (see, e.g., [14]).Also, D is dense by the support result. 

Given any x,, let 

x", =, (1721 I j) 

where x i  is chosen to be periodic of period 2 j  + 1 if n > I j I. 
Thus, x(j) -+x and the Jacobi matrix associated to x(j) has purely abso-

lutely continuous spectrum. 
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Remark. We do not need the full proof of Anderson localization; it suffices 
that the Jacobi matrices associated to Lebesgue typical sequences have no a.c. 
spectrum, and this is easier to prove. 

For random Jacobi matrices in higher dimension, it is believed that there 
is sometimes an a.c. spectrum, but that is not so for the generic matrix. Let 
ZVhave the norms In1 = Cjyzllnjl and llnll = supj Injl. 

THEOREM4.2. Fix a > 0. Let X be the set of Jacobi matrices o n  e2(Zu) 

where x i s  an  arbitrary multisequence with lx,l 5 n. Put the topology of 
pointwise convergence o n  {x,) . Then 

{A E X I spec(A) = [-a - 2v, a + 2v];spec(A) i s  purely singular continuous) 

is Baire typical. 

We need a lemma which shows how "loose" generic really is: 

LEMMA4.3. I n  the setup of Theorem 4.2, suppose that there i s  a single 
operator Ao E X ,  specac(Ao)= 0. Then,  spec,,(A) = 0 for a dense set of A 
i n  X .  

Proof. Let xi0) be the multisequence defining Ao. Given B E X with 
multisequence x,, define A, by the multisequence x i )  where 

Since x i )  -+ x, pointwise, Aj + B. But Aj -+ A. is of finite rank, so 

spec,, (Aj) = spec,, (Ao) = 0. 

Proof of Theorem 4.2. We use the Wonderland Theorem. For any rational 
q E [-a, a], the set of potentials x,, equal to q if In1 2 j for some j, is dense. 
Such a potential yields an operator A with [q- 2v, q + 2v] E spec(A), and so 
generically uq[q- 2v, q + 2v] is in spec(A). 

As in the proof of Theorem 4.1, the periodic multisequences are dense and 
each yields an operator A with no point spectrum, so the operators with no 
point spectrum are dense. 

By the lemma, we need only find the operator A in our space with no a.c. 
spectrum. Let {yiI iEz be a specific sequence in [?, z]" whose one-dimensional 
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Jacobi matrix Johas only dense point spectrum in [-2 - E ,  2 + El. Let 

so the corresponding A has the form 

in l2(ZV)= l2(Z) @ l2(Z) 8 . @ l2(2).Then spec(A) is also pure point. 

THEOREM4.4. Let CQ be the sequences { x , ) , ~ ~with lxnl + 0. For 
x E l p  or in CQ,let J (x )  be the corresponding Jacobi matrix on  12(Z). Then 
specess(J(x))= [-2,2] and 

{x I J (x)  has purely singular continuous spectrum on  [-2,2]) 

is Baire typical in CQ and i n  each l p  ( p  > 2) when these spaces are given the 
norm topology. 

Proof. Since x, + 0 at fm ,  the diagonal matrix is compact and 
specess(J(x))= speces,(J(x = 0)) = [-2,2]. Thus, it suffices to find dense 
sets with no point spectrum in [-2,2] and with no a.c. spectrum in [-2,2]. If 
x has finite support, then any solution of J (x)u  = Xu with X E (-2,2) must be 
a plane wave outside a finite set and so is not in 12. Since the sequences, x, of 
compact support are dense, we have the required density of operators without 
point spectrum. 

As in the proof of the last theorem, we need only find one x in our space 
with no a.c. spectrum. In [15],Simon showed that if a ,  is a typical random 
sequence, independent and uniformly distributed in [-I, 11, then x, = (In1 + 
1)-Pa, yields a J(x) with pure point spectrum so long as P < $. This yields 
the required examples in e p  or Q. 0 

Remarks. 1. One could instead look at sequences x, with sup I (1+lnl)Pxn 1 
< GO in the obvious norm and get the result so long as P < $. 

2. For p = 1, or p > 1 (in the language of Remark I ) ,  J (x )  has lots of 
a.c. spectra, so the result requires some slow fall-off hypothesis. It is likely the 
result remains true for 1 < p 5 $ and 1 < p L: 2, but it is open. 

3. We are unable to extend this result to the higher dimensional (ZV)case 
because neither the method used in Theorem 4.2 (with x, = y,, + . . . + y,,) 
or Theorem 4.5 (spherical symmetry) works. 

We turn next to Schrodinger operators. We will begin with the case where 
V + 0 at infinity. 

THEOREM4.5. Let C,(RV) be the continuous function of RV which van-
ishes at infinity i n  the uniform norm. Then  for a Baire typical set of V, -A+V 
has purely singular continuous spectrum on  all of (0,m) .  
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Proof. By general principles (see, e.g., [13]),spec,,,(-A +V) = [0,co) so 
we need only show that for a dense set specac(-A + V) = 0 and for another 
dense set, specpp(-A + V) c (-co,O]. 

If V has compact support, it is well-known [13]that specpp(-A + V) c 
(-co, 01, so we have that required dense set. 

Suppose we find one V E C,(RV) with specac(-A + V) = 0. Suppose 
W is another potential with W(x) = V(x) for 1x1 > R for some R. Then 
specac(-A + W) = 0 by Dirichlet decoupling as in Deift-Simon [2]. Any 
Wo E C,(RV) is a limit of functions equal to V outside of some ball, so we get 
the required density. Thus we need only find one V. 

To find the required V, we choose V spherically symmetric and given by 
a typical potential in the analysis of Kotani-Ushiroya [lo]. These go to zero 
at  infinity and are known to have spec(-& + V(r)) pure point. Each partial 

wave Hamiltonian -& + $ + V(r) also has no a . c  spectrum by trace class 
theory, so -A + V has no a.c. spectrum. 

Remark. By looking carefully at  [lo],we see that the result extends to 
LP(RV),p > 2n. 

Here is a typical example for random Schrodinger operators. 

THEOREM4.6. For v E [-a, a]"", define V on RV by 

where i(x) is defined by 

Then for a Baire typical v, -A+V has spectrum [-a, co) and is purely singular 
continuous there. 

Proof. By using periodic v,we see that for Baire typical V has no point 
spectrum. As in the last theorem, we need only find a single v with no a.c. 
spectrum. Take v(i) = 8i, + . . . + Gin for a one-dimensional 8. If --&+ P 
has point spectrum, so does -A +V. Thus localization in the one-dimensional 
case [5], [9]completes the proof. 

Finally, we want to say something about the almost periodic case with a 
series of remarks. 

1. Consider the almost Mathieu equation, the Jacobi matrix with v, 
Acos(7ran + 8) for A, 8 fixed. For a rational, the potential is periodic and 
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there is no point spectrum. It follows that for Baire typical a, there is no 
point spectrum either. This is a soft version of Gordon's theorem (Gordon [6], 
Avron-Simon [I]). 

2. Fix A, a in the almost Mathieu equation with a irrational. Suppose 
that there is a single go leading to purely s.c. spectrum. Then its translates 
are dense and so Baire typically, there will be only s.c. spectrum. It may 
well happen that for a with good Diophantine properties and X > 2, we have 
pure point spectrum for Lebesgue typical 6' and purely s.c. spectrum for Baire 
typical 6'. 

3. The argument in Remark 1 applies to generic potentials, v ,  in spaces 
of limit periodic potentials. 
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