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We discuss rank one perturbations 4,=4 +a(e, )¢, xeR, 420 self-adjoint.
Let dyu,(x) be the spectral measure defined by (¢, (4,—2) "' @) = du,(x)/(x — ).
We prove there is a measure dp, which is the weak limit of (1 +o?) du,(x) as
a— oo, If ¢ is cyclic for A, then A4, the strong resolvent limit of 4,, is unitarily
equivalent to multiplication by x on LR, dp ). This generalizes results known for
boundary condition dependence of Sturm—Liouville operators on half-lines to the
abstract rank one case. € 1995 Academic Press, Inc.

1. INTRODUCTION

This paper is a contribution to the theory of rank one perturbations
which in its natural format involves a self-adjoint operator 4 >0 in a
complex separable Hilbert space # and a vector, g € #_,(A), with #,(A)
the scale of spaces associated to 4. Then g, (¥, n) = (¥, ¢)(@, n) defines a
quadratic form on ', (A4) with ¢, a form-bounded perturbation of 4
with relative bound zero. Accordingly, 4,=A4 +a(o, )@, xR defines a
self-adjoint operator with #(A4,) = #,(A4) for |s| < 1.

We will suppose that ¢ is cyclic for 4, in which case it is easy to see that
@ is also cyclic for each A,. If du, is the spectral measure for ¢ associated
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to A,, then A4_ is unitarily equivalent to multiplication by x on L*(R, du,).
Define

du. (>
Fo(z)= | %=

R X—2Z2

where ¢ € #_,(A,) implies that

dpt, (x)
fR x+1 7

so that the integral defining F converges. One has the basic formula (with
F(z)=F,_o(2))

F(z)

& =1rey

(1)

We are interested here in the case o = oc. By the monotone convergence
theorem for forms [3, 6], we have that s —1lim, _ _(4,—z) " exists (the
existence also follows from the explicit formula for (4,—z) !, Eq.(6)
below) and can be described as follows. Let

f+1(Ax): {!//Eyfﬂ (e, ll’):O}

and # (A, )=, (A,) Thisis all of # if ¢ ¢ »# and a codimension one
subspace if ¢ € #. Let 4, be the self-adjoint operator on #(A4 ) defined
by the closed quadratic form ¥, n+> (, An) on H#, (A, ). If H# (A, )# H,
extend (A, —z) ' to all of s by setting it zero on #(A4,)". Then
s—lim{d,—z) '=(4,—z)"".

By (1), du,(x)})— 0 weakly as a — o0, so we do not have any obvious
spectral measure of 4. Our main goal here is to prove that (1 +a?) du,
does have a weak limit as « — oo, which is the spectral measure for a vector
ne#_,(A,) Explicitly, define

dp, (x)=(1+a?) dy,(x). (2)

Then we will prove that

THEOREM 1. There exists a vector, ne #_,(A,), cyclic for A, so that
if dp ., (x) is the spectral measure for n with respect to A, then

L 7G dp.(x) = | fix) dp. (x) (3)

Sfor all continuous functions, f, of compact support.
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Note that since ne # ,(A4..),

dp . (x)
fR _—“(Ix|+1)2<00' (4)

It may be that (4) fails if (Jx] +1)~ % is replaced by (|x]+1)"'. We
will see explicit examples in Section 5 where the integral diverges for
(Ix| +1)72*¢ The proof will show that (3) holds if f(x) = (|x| + 1)~ * with
a> 2. There will be examples when it fails if @ =2.

Another major result we will prove is that

dpx(x)=lilng o Im((— F(x+ig)) " ") dx].

The abstract theory appears in Section 2. We discuss boundary condition
dependence of Schrodinger operators on the half-line in Section 3. In that
case, dp, is the Weyl spectral measure and dp,, is the Dirichlet spectral
measure. In Section 4, we consider the case when A is bounded. In
Section 5, we discuss a further example.

2. THE MAIN RESULTS

We begin by recalling some of the standard formulae for rank one
perturbations [7]:

F,(z)=F(z)/[1 +aF(2)],

(A=) o =(1+aF(z) '(4—2) "o, (5)
O B L
(Ai=2) == =775

x((A=2)"" o, NA-2)""o,  (6)
Tel(A=2) '~ (4,=2) 1= [ G- L,
E,=min(0, inf spec(4,)),
where ¢, is the Krein spectral shift [4] given by

C,C(x)ziArg(l+aF(x+i0)). (7)

For o >0 we have Arg(-)e [0, n] and hence 0 < ¢, <1 in this case.
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If ol =0c, let P=0, and if ||¢] <0, let P be the projection onto
{fe | ceCl. Thus, #(A4.)=Ran(l — P).

PROPOSITION 2. There exists ne # _,(A..) so that for all ze C:

(A, —z) 'n=lim a(l —P)(A,—z} '@ (8)

%= o

If ¢ is cyclic for A, then n is cyclic for A, .
Proof. By (5), the limit on the right side of (8) exists, call it ¥(z), and
is given by
Y(z)=Fz)"' (1-P)A—-z2)"" o (%)
We have that

(A,=2) " o= (A=) To=(—w)(d,—2)" (4.=w) g (10)

Multiply by a, take « — o0, and note that if ||¢| < oo, then P(4,, —w) ' ¢
=0. We conclude that

Y(@) = glw)=(z—wlA,. —2)" " Y(w)

or
YD) =[1+(E—w)d,—2)" " Tdw). (11)

Note that y(z)e #(A4,) (because of the 1| —P) so we can define
n(z)=(A, —z)¥(z) in #_,(A,) Equation (11) precisely says that
n(z)=n(w), that is, it is independent of z; call it 5. Cyclicity follows from
(9) since if {(4—z) "¢} is total in H#, then clearly {(1 —P)(4—z) '@}
is total (1 —P)# =#(4,.). |

Remark. 1In Section 4, we will prove that when A4 is bounded, then
n=—(1-P)Aep.

THEOREM 3.  Let dp, be the spectral measure for n. Then

dp (x) . ,dF 1
e T

B (12)

Proof. For simplicity, suppose z is real and negative. By definition of #
dp . (x) _
—2 o= (A, -z 2

L (x_2) (n, ( )" n)

(¢, (A—2)"' (1 =P)(A—2z)"" @)/F(z)?

1
=[((P, (A—Z)‘er)—”—(ﬂ'—z (o, (A—2z)"" (P)z]/F(Z)2
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since P=|ol (¢, -)e. But this is precisely the right side of (12).
Equation (12) for general z follows by analyticity. ||

Recall that dp, is defined by (2). Then

THEOREM 4.

. dp,(x) 1 dp . (x)
(1) )ggf(x_,)z ol Tleta—2)

lim J dp,(x) =J dp . (x)

r(x—z)"

(ii)

asxdp (x—z)

(iii) For any continuous f of compact support

Jim [ fx)dp.(x)= | J(x)dp.c(x).

Proof. (i1) implies (ili) by a Stone-Weierstrass-type argument. (i)
implies (ii) by using the fact that both sides are analytic in z on C\R so
their derivatives in z converge. To prove (i), use Theorem 3 and the
calculation

dp,(x _
(40 (4= 2) 7 )

14«

(glﬁ;))g (@, (A—2)"2 @)
1+a? dF

T(1+aF)dz (13)
Equation (13) follows from (5). |
THEOREM 5.
1
—1
dp. (x)= lsllrg Im [ ———————F(x " ie)] dx.

Proof. We start with (12) and integrate, noting that F'/F’=
(d/dz)(—1/F), to get

1 1 1 1 1
Ladpx(x)<x_2—x+1)= _F(z)+F(—l)_(Z+l)W'

The theorem then follows by the standard relations between a measure and
the boundary values of its Borel transform. ||
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3. VARIATION OF BOUNDARY CONDITION

As an example of the general theory, we consider the case of boundary
conditions variation for Schrodinger operators on L*(0, «0). The formulae
that result are well-known (see, e.g., [1, 2, 5, 8]). The point is that they fit
into a more general framework. Let V' be continuous and bounded below
on [0, oc). Let H, be the operator on L*([0, oc), dx) formally given by
—d?*/dx* + V(x) with u(0) cos 8 + u'(0) sin § = 0 boundary conditions. One
defines the Weyl m-function, m,(z), and Weyl spectral measure, dp,(x), so
that for 8#£0

d,
my(z) =cot(0) + [ L) (14)
and dp, = dpy_, as 8| 0. Moreover,
my_o(z) = —1/my_ (). (15)

For 8 #0, the Green’s function, G,(0, 0; z) is related to mg(z) by
G,(0,0; ) =sin(8)[ —cot 8 + m,(z)]. (16)

This fits into the general framework by taking 4=H,_,, and ¢ =J,,
the delta function at 0. Then for 6 # 0,

Hy=A—cot(0)(e, )

and F_ 0,(2)=Gy(0,0;z). By (14) and (16), dp, is just (1+a)du,
where « = —cot 0 and lim,,  , dp,=dp, is just what we found in the last
section. Equation (15) is just Theorem 5.

We want to identify the vectorn. Let iy, (x,z) be the solution of
(—d?/dx* 4+ V(x) — z)y =0 which is L? at infinity normalized any way that
is convenient. Then, from the Wronskian formula for G,_ .., we get

. v, (xz2)
A—z X)=———"
(( ) (p)(x) ll/r+ (0, )

(3]

and
F(z)=—¢ (0, 2)/¥". (O
It follows that

F(z)"' (A=2) o=y, (x,2)/y . (0, 2)
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which, by the Wronskian formula for G,_,, is just
(A, —2)""8'(x);

that is, » is &' (note that P =0 in this case) and dp , is the spectral function
for the vector &'.

We note that it is well-known that [dp, (x)~Cu®? as u— oo so
that {5 (dp. (A)/(1+14))*)<oc if and only if k>3/2. In particular,
HeH (A,)

4. BOUNDED OPERATORS

One gets insight into the general theory by considering the case where A4
is bounded. Since |¢| is then finite, we will suppose {¢| = 1. We will also
get a better understanding of the 1/||@}|* term in Theorem 4(i). We first
note:

THEOREM 6. If A is bounded and |@|| =1, then n= —(1 — P) Aop.

Proof. If A is bounded, then 4 is just (1 — P) A(1 — P). Thus
n=Fiz) '"(1=P)A—z)(1-P)A—z) "o
=Fz)"'(1-P)A—z)(4—2)""¢
—F(z)"' [(1 - P)A—-z2)@] F(z).

The first term is zero since (1 — P)p =0. The second is —(1 — P) A¢ since
(1—-P)zp=0. 1

Since |@ll =1, (¢, - ) is just a projection P. Instead of A + aP, look at
P+a~'A=B,.

P has an isolated simple eigenvalue at 1 with eigenvector ¢. Thus by
regular perturbation theory [3], B, has the eigenvalue at 1 + (¢, Ap)a~ ' +
O(2 ) with eigenvector

Y.=@+a '(1-P)Ap+O0(a )=¢+a 'n+O0(a"?).

The first order term is standard perturbation theory where the reduced
resolvent (Hy— E) ™' (1 — P) is just — (1 — P) since H, is P and hence 0 on
Ran(1 — P).

Thus with respect to 4+ aP =B, the measure (1 + «?) du, has a pole
of weight (1 +2%) at E,=a+ (¢, Ap)+ O(2"") plus the spectral measure
of n for the operator 4., plus an error of order «~'. If v> 2, the pole at
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E, makes no asymptotic contribution to | (dp,(x)/|x —z|*) as & — oc but
for v=2, it makes a contribution of (1+a?)/E2—1=1/[e|%

5. A FURTHER EXAMPLE

Let O0<y< 1. Let duy(x)=n""'|x] *sin(ny)dx on [0, oc). Let 4 be
multiplication by x on L*([0, 20), dug(x)) and @ =1. Then [J (duo(x)/
(x| +1))<o0 sope# ((A.,).

= dpg(x) _

-
s

A= (—2)

o X—

(the casiest way to see this is to compute the imaginary part of (—z) 7 for
z=x+ ie with ¢ = 0). Then, by Theorem 5,

dp., (x)=n""|x|" sin(my) dx.

It follows that {§ dp.. (x)/(|x|+1)* <o only if k>1+7y. Thus, we
cannot conclude in general that [ dp.. (x)/(|x] + 1) <oc for any k < 2.
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