Rank One Perturbations at Infinite Coupling*

F. Gesztesy[†]

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

AND

B. SIMON

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125

Communicated by L. Gross

Received February 7, 1994

We discuss rank one perturbations $A_x = A + \alpha(\varphi, \cdot)\varphi$, $\alpha \in \mathbb{R}$, $A \ge 0$ self-adjoint. Let $d\mu_x(x)$ be the spectral measure defined by $(\varphi, (A_x - z)^{-1} \varphi) = \int d\mu_x(x)/(x - z)$. We prove there is a measure $d\rho_\infty$ which is the weak limit of $(1 + \alpha^2) d\mu_x(x)$ as $\alpha \to \infty$. If φ is cyclic for A, then A_∞ , the strong resolvent limit of A_x , is unitarily equivalent to multiplication by x on $L^2(\mathbb{R}, d\rho_\infty)$. This generalizes results known for boundary condition dependence of Sturm-Liouville operators on half-lines to the abstract rank one case. © 1995 Academic Press, Inc.

1. Introduction

This paper is a contribution to the theory of rank one perturbations which in its natural format involves a self-adjoint operator $A \ge 0$ in a complex separable Hilbert space $\mathscr H$ and a vector, $\varphi \in \mathscr H_{-1}(A)$, with $\mathscr H_s(A)$ the scale of spaces associated to A. Then $q_{\varphi}(\psi,\eta) = (\psi,\varphi)(\varphi,\eta)$ defines a quadratic form on $\mathscr H_{+1}(A)$ with q_{φ} a form-bounded perturbation of A with relative bound zero. Accordingly, $A_x \equiv A + \alpha(\varphi,\cdot)\varphi$, $\alpha \in \mathbb R$ defines a self-adjoint operator with $\mathscr H_s(A_\alpha) = \mathscr H_s(A)$ for $|s| \le 1$.

We will suppose that φ is cyclic for A, in which case it is easy to see that φ is also cyclic for each A_{α} . If $d\mu_{\alpha}$ is the spectral measure for φ associated

^{*} This material is based on work supported by the National Science Foundation under Grant DMS-9101715. The government has certain rights in this material.

[†] E-mail: mathfg@mizzou1.missouri.edu.

to A_{α} , then A_{α} is unitarily equivalent to multiplication by x on $L^{2}(\mathbb{R}, d\mu_{\alpha})$. Define

$$F_{\alpha}(z) = \int_{\mathbb{R}} \frac{d\mu_{\alpha}(x)}{x - z},$$

where $\varphi \in \mathcal{H}_{-1}(A_{\alpha})$ implies that

$$\int_{\mathbb{R}} \frac{d\mu_{\alpha}(x)}{|x|+1} < \infty$$

so that the integral defining F converges. One has the basic formula (with $F(z) \equiv F_{\alpha=0}(z)$)

$$F_{\alpha}(z) = \frac{F(z)}{1 + \alpha F(z)}. (1)$$

We are interested here in the case $\alpha = \infty$. By the monotone convergence theorem for forms [3, 6], we have that $s - \lim_{\alpha \to \infty} (A_{\alpha} - z)^{-1}$ exists (the existence also follows from the explicit formula for $(A_{\alpha} - z)^{-1}$, Eq. (6) below) and can be described as follows. Let

$$\mathcal{H}_{+1}(A_{\infty}) = \left\{ \psi \in \mathcal{H}_{+1} \mid (\varphi, \psi) = 0 \right\}$$

and $\mathscr{H}(A_{\infty}) = \overline{\mathscr{H}_{+1}(A_{\infty})}$. This is all of \mathscr{H} if $\varphi \notin \mathscr{H}$ and a codimension one subspace if $\varphi \in \mathscr{H}$. Let A_{∞} be the self-adjoint operator on $\mathscr{H}(A_{\infty})$ defined by the closed quadratic form ψ , $\eta \mapsto (\psi, A\eta)$ on $\mathscr{H}_{+1}(A_{\infty})$. If $\mathscr{H}(A_{\infty}) \neq \mathscr{H}$, extend $(A_{\infty} - z)^{-1}$ to all of \mathscr{H} by setting it zero on $\mathscr{H}(A_{\infty})^{\perp}$. Then $s - \lim(A_{\infty} - z)^{-1} = (A_{\infty} - z)^{-1}$.

By (1), $d\mu_{\alpha}(x) \to 0$ weakly as $\alpha \to \infty$, so we do not have any obvious spectral measure of A_{∞} . Our main goal here is to prove that $(1 + \alpha^2) d\mu_{\alpha}$ does have a weak limit as $\alpha \to \infty$, which is the spectral measure for a vector $\eta \in \mathscr{H}_{-2}(A_{\infty})$. Explicitly, define

$$d\rho_{\alpha}(x) = (1 + \alpha^2) d\mu_{\alpha}(x). \tag{2}$$

Then we will prove that

Theorem 1. There exists a vector, $\eta \in \mathcal{H}_{-2}(A_{\infty})$, cyclic for A_{∞} so that if $d\rho_{\infty}(x)$ is the spectral measure for η with respect to A_{∞} , then

$$\int_{\mathbb{R}} f(x) \, d\rho_{\alpha}(x) \to \int_{\mathbb{R}} f(x) \, d\rho_{\infty}(x) \tag{3}$$

for all continuous functions, f, of compact support.

Note that since $\eta \in \mathcal{H}_{-2}(A_{\infty})$,

$$\int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(|x|+1)^2} < \infty. \tag{4}$$

It may be that (4) fails if $(|x|+1)^{-2}$ is replaced by $(|x|+1)^{-1}$. We will see explicit examples in Section 5 where the integral diverges for $(|x|+1)^{-2+\epsilon}$. The proof will show that (3) holds if $f(x) = (|x|+1)^{-\alpha}$ with $\alpha > 2$. There will be examples when it fails if $\alpha = 2$.

Another major result we will prove is that

$$d\rho_{\infty}(x) = \lim_{\varepsilon \downarrow 0} \pi^{-1} [\operatorname{Im}((-F(x+i\varepsilon))^{-1}) dx].$$

The abstract theory appears in Section 2. We discuss boundary condition dependence of Schrödinger operators on the half-line in Section 3. In that case, $d\rho_{\infty}$ is the Weyl spectral measure and $d\rho_{\infty}$ is the Dirichlet spectral measure. In Section 4, we consider the case when A is bounded. In Section 5, we discuss a further example.

2. THE MAIN RESULTS

We begin by recalling some of the standard formulae for rank one perturbations [7]:

$$F_{x}(z) = F(z)/[1 + \alpha F(z)],$$

$$(A_{x} - z)^{-1} \varphi = (1 + \alpha F(z))^{-1} (A - z)^{-1} \varphi,$$

$$(A_{x} - z)^{-1} = (A - z)^{-1} - \frac{\alpha}{1 + \alpha F(z)}$$

$$\times ((A - \bar{z})^{-1} \varphi, \cdot)(A - z)^{-1} \varphi,$$

$$(6)$$

$$Tr[(A - z)^{-1} - (A_{x} - z)^{-1}] = \int_{E_{x}}^{\infty} (\lambda - z)^{-2} \xi_{x}(\lambda) d\lambda,$$

$$E_{x} = \min(0, \inf \operatorname{spec}(A_{x})),$$

where ξ_x is the Krein spectral shift [4] given by

$$\xi_{\alpha}(x) = \frac{1}{\pi} \operatorname{Arg}(1 + \alpha F(x + i0)). \tag{7}$$

For $\alpha > 0$ we have $Arg(\cdot) \in [0, \pi]$ and hence $0 \le \xi_{\alpha} \le 1$ in this case.

If $\|\varphi\| = \infty$, let P = 0, and if $\|\varphi\| < \infty$, let P be the projection onto $\{c\varphi \mid c \in \mathbb{C}\}$. Thus, $\mathscr{H}(A_{\infty}) = \operatorname{Ran}(1 - P)$.

PROPOSITION 2. There exists $\eta \in \mathcal{H}_{-2}(A_{\infty})$ so that for all $z \in \mathbb{C}$:

$$(A_{\infty} - z)^{-1} \eta = \lim_{z \to \infty} \alpha (1 - P)(A_z - z)^{-1} \varphi.$$
 (8)

If φ is cyclic for A, then η is cyclic for A_{∞} .

Proof. By (5), the limit on the right side of (8) exists, call it $\psi(z)$, and is given by

$$\psi(z) = F(z)^{-1} (1 - P)(A - z)^{-1} \varphi. \tag{9}$$

We have that

$$(A_{\alpha}-z)^{-1}\varphi - (A_{\alpha}-w)^{-1}\varphi = (z-w)(A_{\alpha}-z)^{-1}(A_{\alpha}-w)^{-1}\varphi.$$
 (10)

Multiply by α , take $\alpha \to \infty$, and note that if $\|\varphi\| < \infty$, then $P(A_{\infty} - w)^{-1} \varphi = 0$. We conclude that

$$\psi(z) - \psi(w) = (z - w)(A_{\infty} - z)^{-1} \psi(w)$$

or

$$\psi(z) = \left[1 + (z - w)(A_{\infty} - z)^{-1}\right] \psi(w). \tag{11}$$

Note that $\psi(z) \in \mathcal{H}(A_{\infty})$ (because of the 1-P) so we can define $\eta(z) \equiv (A_{\infty} - z) \psi(z)$ in $\mathcal{H}_{-2}(A_{\infty})$. Equation (11) precisely says that $\eta(z) = \eta(w)$, that is, it is independent of z; call it η . Cyclicity follows from (9) since if $\{(A-z)^{-1} \varphi\}$ is total in \mathcal{H} , then clearly $\{(1-P)(A-z)^{-1} \varphi\}$ is total $(1-P)\mathcal{H} = \mathcal{H}(A_{\infty})$.

Remark. In Section 4, we will prove that when A is bounded, then $\eta = -(1 - P) A \varphi$.

Theorem 3. Let $d\rho_{\infty}$ be the spectral measure for η . Then

$$\int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^2} = F(z)^{-2} \frac{dF}{dz} - \frac{1}{\|\varphi\|^2}.$$
 (12)

Proof. For simplicity, suppose z is real and negative. By definition of η

$$\int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^{2}} \equiv (\eta, (A_{\infty}-z)^{-2} \eta)$$

$$= (\varphi, (A-z)^{-1} (1-P)(A-z)^{-1} \varphi)/F(z)^{2}$$

$$= \left[(\varphi, (A-z)^{-2} \varphi) - \frac{1}{\|\varphi\|^{2}} \langle \varphi, (A-z)^{-1} \varphi \rangle^{2} \right] / F(z)^{2}$$

since $P = \|\varphi\|^{-2} (\varphi, \cdot) \varphi$. But this is precisely the right side of (12). Equation (12) for general z follows by analyticity.

Recall that $d\rho_{\alpha}$ is defined by (2). Then

THEOREM 4.

(i)
$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^2} = \frac{1}{\|\varphi\|^2} + \int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^2}.$$

(ii)
$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^3} = \int_{\mathbb{R}} \frac{d\rho_{\infty}(x)}{(x-z)^3}.$$

(iii) For any continuous f of compact support

$$\lim_{\alpha \to \infty} \int_{\mathbb{R}} f(x) \, d\rho_{\alpha}(x) = \int_{\mathbb{R}} f(x) \, d\rho_{\infty}(x).$$

Proof. (ii) implies (iii) by a Stone-Weierstrass-type argument. (i) implies (ii) by using the fact that both sides are analytic in z on $\mathbb{C}\setminus\mathbb{R}$ so their derivatives in z converge. To prove (i), use Theorem 3 and the calculation

$$\int_{\mathbb{R}} \frac{d\rho_{\alpha}(x)}{(x-z)^{2}} = (1+\alpha^{2})(\varphi, (A_{\alpha}-z)^{-2}\varphi)$$

$$= \frac{(1+\alpha^{2})}{(1+\alpha F)^{2}}(\varphi, (A-z)^{-2}\varphi)$$

$$= \frac{1+\alpha^{2}}{(1+\alpha F)^{2}} \frac{dF}{dz}.$$
(13)

Equation (13) follows from (5).

THEOREM 5.

$$d\rho_{\infty}(x) = \pi^{-1} \lim_{\epsilon \downarrow 0} \operatorname{Im} \left[-\frac{1}{F(x+i\epsilon)} \right] dx.$$

Proof. We start with (12) and integrate, noting that $F'/F^2 = (d/dz)(-1/F)$, to get

$$\int_{\mathbb{R}} d\rho_{\infty}(x) \left(\frac{1}{x-z} - \frac{1}{x+1} \right) = -\frac{1}{F(z)} + \frac{1}{F(-1)} - (z+1) \frac{1}{\|\varphi\|^2}.$$

The theorem then follows by the standard relations between a measure and the boundary values of its Borel transform.

3. Variation of Boundary Condition

As an example of the general theory, we consider the case of boundary conditions variation for Schrödinger operators on $L^2(0, \infty)$. The formulae that result are well-known (see, e.g., [1, 2, 5, 8]). The point is that they fit into a more general framework. Let V be continuous and bounded below on $[0, \infty)$. Let H_{θ} be the operator on $L^2([0, \infty), dx)$ formally given by $-d^2/dx^2 + V(x)$ with $u(0)\cos\theta + u'(\theta)\sin\theta = 0$ boundary conditions. One defines the Weyl m-function, $m_{\theta}(z)$, and Weyl spectral measure, $d\rho_{\theta}(x)$, so that for $\theta \neq 0$

$$m_{\theta}(z) = \cot(\theta) + \int_{\mathbb{R}} \frac{d\rho_{\theta}(x)}{x - z}$$
 (14)

and $d\rho_{\theta} \rightarrow d\rho_{\theta=0}$ as $\theta \downarrow 0$. Moreover,

$$m_{\theta=0}(z) = -1/m_{\theta=\pi/2}(z).$$
 (15)

For $\theta \neq 0$, the Green's function, $G_{\theta}(0,0;z)$ is related to $m_{\theta}(z)$ by

$$G_{\theta}(0,0;z) = \sin^2(\theta) \left[-\cot \theta + m_{\theta}(z) \right]. \tag{16}$$

This fits into the general framework by taking $A = H_{\theta = \pi/2}$ and $\varphi = \delta_0$, the delta function at 0. Then for $\theta \neq 0$,

$$H_{\theta} = A - \cot(\theta)(\varphi, \cdot)\varphi$$

and $F_{-\cot(\theta)}(z) = G_{\theta}(0, 0; z)$. By (14) and (16), $d\rho_{\theta}$ is just $(1 + \alpha^2) d\mu_{\alpha}$ where $\alpha = -\cot \theta$ and $\lim_{\theta \to 0} d\rho_{\theta} = d\rho_{0}$ is just what we found in the last section. Equation (15) is just Theorem 5.

We want to identify the vector η . Let $\psi_+(x, z)$ be the solution of $(-d^2/dx^2 + V(x) - z)\psi = 0$ which is L^2 at infinity normalized any way that is convenient. Then, from the Wronskian formula for $G_{\theta = \pi/2}$, we get

$$((A-z)^{-1}\varphi)(x) = \frac{\psi_{+}(x,z)}{\psi'_{+}(0,z)}$$

and

$$F(z) = -\psi_{+}(0, z)/\psi'_{+}(0, z).$$

It follows that

$$F(z)^{-1} (A-z)^{-1} \varphi = \psi_{\perp}(x,z)/\psi_{\perp}(0,z)$$

which, by the Wronskian formula for $G_{\theta=0}$, is just

$$(A_{\infty}-z)^{-1}\delta'(x);$$

that is, η is δ' (note that P=0 in this case) and $d\rho_{\infty}$ is the spectral function for the vector δ' .

We note that it is well-known that $\int_0^\mu d\rho_\infty(x) \sim C\mu^{3/2}$ as $\mu \to \infty$ so that $\int_0^\infty (d\rho_\infty(\lambda)/(1+|\lambda|)^k) < \infty$ if and only if k > 3/2. In particular, $\eta \notin \mathcal{H}_{-1}(A_\infty)$.

4. BOUNDED OPERATORS

One gets insight into the general theory by considering the case where A is bounded. Since $\|\varphi\|$ is then finite, we will suppose $\|\varphi\| = 1$. We will also get a better understanding of the $1/\|\varphi\|^2$ term in Theorem 4(i). We first note:

THEOREM 6. If A is bounded and $\|\varphi\| = 1$, then $\eta = -(1 - P) A\varphi$.

Proof. If A is bounded, then A_{∞} is just (1-P) A(1-P). Thus

$$\eta = F(z)^{-1} (1 - P)(A - z)(1 - P)(A - z)^{-1} \varphi$$

$$= F(z)^{-1} (1 - P)(A - z)(A - z)^{-1} \varphi$$

$$- F(z)^{-1} [(1 - P)(A - z)\varphi] F(z).$$

The first term is zero since $(1-P)\varphi = 0$. The second is $-(1-P)A\varphi$ since $(1-P)z\varphi = 0$.

Since $\|\varphi\| = 1$, $(\varphi, \cdot)\varphi$ is just a projection P. Instead of $A + \alpha P$, look at

$$P + \alpha^{-1}A = B_{\alpha}.$$

P has an isolated simple eigenvalue at 1 with eigenvector φ . Thus by regular perturbation theory [3], B_{α} has the eigenvalue at $1 + (\varphi, A\varphi) \alpha^{-1} + O(\alpha^{-2})$ with eigenvector

$$\psi_{\alpha} = \varphi + \alpha^{-1}(1-P)A\varphi + O(\alpha^{-2}) = \varphi + \alpha^{-1}\eta + O(\alpha^{-2}).$$

The first order term is standard perturbation theory where the reduced resolvent $(H_0 - E)^{-1} (1 - P)$ is just -(1 - P) since H_0 is P and hence 0 on Ran(1 - P).

Thus with respect to $A + \alpha P = \alpha B_{\alpha}$, the measure $(1 + \alpha^2) d\mu_{\alpha}$ has a pole of weight $(1 + \alpha^2)$ at $E_{\alpha} = \alpha + (\varphi, A\varphi) + O(\alpha^{-1})$ plus the spectral measure of η for the operator A_{∞} plus an error of order α^{-1} . If $\nu > 2$, the pole at

 E_{α} makes no asymptotic contribution to $\int_{\mathbb{R}} (d\rho_{\alpha}(x)/|x-z|^{\gamma})$ as $\alpha \to \infty$ but for $\nu = 2$, it makes a contribution of $(1 + \alpha^2)/E_{\alpha}^2 \to 1 = 1/\|\varphi\|^2$.

5. A FURTHER EXAMPLE

Let $0 < \gamma < 1$. Let $d\mu_0(x) = \pi^{-1} |x|^{-\gamma} \sin(\pi \gamma) dx$ on $[0, \infty)$. Let A be multiplication by x on $L^2([0, \infty), d\mu_0(x))$ and $\varphi \equiv 1$. Then $\int_0^\infty (d\mu_0(x)/(|x|+1)) < \infty$ so $\varphi \in \mathscr{H}_{-1}(A_\infty)$.

$$F(z) = \int_0^\infty \frac{d\mu_0(x)}{x - z} = (-z)^{-\gamma}$$

(the easiest way to see this is to compute the imaginary part of $(-z)^{-\gamma}$ for $z = x + i\varepsilon$ with $\varepsilon \to 0$). Then, by Theorem 5,

$$d\rho_{\infty}(x) = \pi^{-1} |x|^{\gamma} \sin(\pi \gamma) dx.$$

It follows that $\int_0^\infty d\rho_\infty(x)/(|x|+1)^k < \infty$ only if $k > 1 + \gamma$. Thus, we cannot conclude in general that $\int_0^\infty d\rho_\infty(x)/(|x|+1)^k < \infty$ for any k < 2.

ACKNOWLEDGMENT

F. G. is indebted to the Department of Mathematics at Caltech for its hospitality and support during the summer of 1993 where some of this work was done.

REFERENCES

- E. A. CODDINGTON AND N. LEVINSON, "Theory of Ordinary Differential Equations," Krieger, Malabar, 1985.
- 2. E. HILLE, "Lectures on Ordinary Differential Equations," Addison-Wesley, New York, 1969.
- 3. T. KATO, "Perturbation Theory for Linear Operators," 2nd ed., Springer, Berlin, 1980.
- M. G. Krein, Perturbation determinants and a formula for the traces of unitary and self-adjoint operators, Soviet. Math. Dokl. 3 (1962), 707-710.
- B. M. LEVITAN AND I. S. SARGSJAN, "Introduction to Spectral Theory," Amer. Math. Soc. Transl., Vol. 39, Amer. Math. Soc., Providence, RI, 1975.
- B. Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal. 28 (1978), 377-385.
- 7. B. Simon, Spectral analysis of rank one perturbations and applications, lecture given at the 1993 Vancouver Summer School, in "Proceedings on Mathematical Quantum Theory II: Schrödinger Operators (CRM Proceedings and Lecture Notes)" (J. Feldman, R. Froese, and L. M. Rosen, Eds.), to appear.
- 8. E. C. TITCHMARSH, "Eigenfunction Expansions," 2nd ed., Oxford Univ. Press, Oxford, 1962.

Printed in Belgium Uitgever: Academic Press, Inc. Verantwoordelijke uitgever voor België: Hubert Van Maele Altenastraat 20, B-8310 Sint-Kruis