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We extend the trace formula recently proven for general one-dimensional Schrédinger
operators which obtains the potential V(x) from a function £(z, A) by deriving trace relations
computing moments of £(A,z) d) in terms of polynomiais in the derivatives of V at x. We
describe the relation of those polynomials to KdV invariants. We also discuss trace formulae
for analogs of § associated with boundary conditions other than the Dirichlet boundary
condition underlying .

1. Introduction

This paper is one in a series [14-20] concerning a basic fulzlction, &(\, z), asso-
ciated to any one-dimensional Schrédinger operator, H = —ﬁ, +V in L*(R) and
its application to inverse spectral problems. A basic formula proven in [18] is that

V(z)=Ep + Lii% / dre M1 -2\ ), (1.1)
Eq
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where Ey = inf spec(-f; + V). (1.1) was proven in [18] assuming V is bounded
below, continuous, and |V (z)| < Clecﬂz.
Our definition of £ is

£\, 7) = %Arg((G()\ +i0,2,2)) (1.2)

(where G(z,z,z') denotes the Green's function of H, that is, the integral kernel of
(H —2)71). Originally, we derived that from a basic definition as the Krein spectral
shift in going from H to Hp,., the operator on L?(—o0, x) ® L*(x, 0o) with Dirichlet
boundary condition at z.

The key to (1.1) then was

Tr(e~tH — e~tHpie) = %(1 —tV(z)+o(t)) ast]O. (1.3)

(1.3) is related to (1.1) because the Krein spectral shift [30] is a function 0 <
£(A,z) < 1 obeying

Te[f(H) ~ f(Hpsa)] = - / dX F'E 7) (14)
Eo

for a rich set of f’s including exponentials (e.g., f € C%(R), (1 + A%)f0) e L2((o,
00)), s =1,2 and also f(A) = (A — 2)7!, z € C\[Ep, 00)) so that

Tr(e tH — ¢~ tHpis) = t/dA e (N z).
Ey

One of our goals in the present paper is to prove (1.1) in greater generality; we
only need V bounded from below with no growth restriction at infinity. V need not
be continuous; a local L! condition suffices. (1.1) then holds at points of Lebesgue
continuity of V.

Our main goal though is to prove higher order trace formulas. In great generality
(suppose V' has an asymptotic Taylor series at z4), we will extend (1.3) to

o0
—tH _ —tHp; ~ — A ]
Tr(e e o)uo Zos,(xo)t’ s
J=

where s;(z) = (—1)"*1(j!)~'7;(z) and the r; are KdV invariants defined recursively

in Theorem 5.1 below. With more information one can relate this to a similar
formula in terms of ¢ (for simplicity of notation we suppose that Ey = 0):

ri(an) = lim [ dreen (G - enan). (15)
(1]
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The key to handling potentials with no growth condition at infinity is a path
space representation for Tr(e~*# — e~*#p:=). Properties of the paths needed are
proven in Sec. 2. Then in Sec. 3, we prove (1.1) for general V. In Sec. 4, we show
that Tr(e~*# — e~tHpi=) has an asymptotic expansion to all ordersintat ¢ =0 if V
is C*. In Sec. 5, we relate the coefficients of this expansion to the KdV invariants,
and in Sec. 6 we discuss what happens if boundary conditions other than Dirichlet
are used.

Historically, trace formulas for Schrodinger operators on a finite interval origi-
nated with a 1953 paper by Gel'fand and Levitan [11] with later contributions by
Dikii [6], Gel'fand [9], Halberg-Kramer [22], and Gilbert-Kramer [21]. The case of
periodic potentials was first studied by Hochstadt [25] who obtained a trace for-
mula for V(z) — V(0) in terms of appropriate Dirichlet eigenvalues in the special
case of finite-gap potentials. The periodic trace formula (5.59) for finite-gap po-
tentials V(z) in terms of Dirichlet eigenvalues was first derived by Dubrovin [7.
The periodic trace formulas (5.59) for all higher order Korteweg—de Vries invariants
3;(z) were first proven in 1975 by McKean-van Moerbeke [35] and independently by
Flaschka (8], the trace formula for s;(z) = 3V (z) for general periodic C3 potentials
by Trubowitz [40] in 1977. More recently, the trace formula (5.59) for V(z) has
been extended to certain classes of almost periodic potentialsin Levitan [32,33],
Kotani-Krishna [29], and Craig [2]. Analogous trace formulas for Schrodinger op-
erators on the real line with potentials decaying sufficiently rapidly at infinity have
been studied in 1979 by Deift and Trubowitz [5], and more recently by Venakides
[41], Gesatesy-Holden [13], Gesztesy [12], and Gesztesy-Holden—Simon [14].

These trace formulas are a key element of the solution of the inverse spectral
problem for periodic potentials and the inverse scattering problem for potentials
decaying sufficiently fast at infinity (see, e.g., [5, 7, 8, 25, 26, 32-36, 40, 41] and the
references therein.)

2. The Xi Process

In [18}], we introduced a probability measure on the set of paths on [0,1] as
follows. Let a be the Brownian bridge, that is, the Gaussian process of {a(s)}o<s<1
of mean zero and covariance E,(a(s)a(t)) = s(1—t) if s < t. In terms of Brownian
motion, one can realize a as a(s) = b(s) — sb(1) (see [37] for discussion of Brownian
motion, Gaussian processes, and the Brownian bridge). There is a Baire measure
Da on C([0, 1]) induced by the process.

Let dx be the measure on R x C([0, 1]) given by dz ® (4w)~1/?Da where dz is
Lebesgue measure. Let w(s) = = + a(s) and let Qo C R x C([0,1}) be the set of
paths given by {w | w(s) = 0 for some s € [0,1]}. We claim that

n{ dr = % (21)

for the free Feynman—Kac formula says

eA/3(z, £) = (47)~1/?

{w(0)==}

Da = (47)~1/2, (2.2)
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eAro/?(z, 1) = (4n)~1/2 Da, (2.3)
{w(0)=z;w(s)70 all s€[0,1}}
where Ap = Ap,o has a Dirichlet boundary condition at z = 0. Thus

/nodn—f [ ( )(”) exp( AD)(z,x)]
- [en(}a)@ 2
fenlins
fam{io-t

We define the xi process by placing the measure Dw = 2xq, dx on C([0, 1]) with
w(s) =z + a(s).

The reason for the interest in Dw is that by writing (2.3) with a potential, one
finds (see [37]):

Proposntlon 2.1. Let V be bounded below and continuous on (—00,00), H =

—-—:r +V on L?(—00,00) and let Hp = "az £5 +V on L?(—00,0) ® L*(0, 00) with
a Dirichlet boundary condition at =0 (i.e., Hp = Hp,y). Then

Tr(e tH — e7tHp) = %E,., (exp (—t/lds V(\/ﬂw(s)))) . (24)
°

The Feynman—Kac formula (2.4) will be critical for the proof of our higher order
trace relations. We will need the following technical result (we use the notation
employed in [37), i.e., E(f) = ‘{ fap, E(A) = [dp = p(A), E(f; A) = [ fdp, etc.,

A A

where (2, F, 1) denotes a probability space, A € F, f : @ — R is F-measurable):

Theorem 2.2. E,({w | e |w(s)] > a}) < Cexp(—Cza?) for some Ci,
s
Cy >0. o

Proof. Look at sets on R x C([0,1]) with measure dx. Let T, = {w € Qo |

sup |w(s)| > a}. Then
0<s<1

T. C {w € Qo | jw(0)] > g} u {w| jw(0)] < g, sup w(s) > a}
0<a<1

a
] —. i -
{w | lw(0)| < 2,og§1w(s) < a}

=TMuTOUuT®.
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Notice that we have dropped the w € Qg condition from Tp,i =2,3. In each case,
we have a single condition on a value that we must take, for example:

T ={w | lw(0)| < %,w(s) = a for some s € [0, 1]} .

Thus, each [ dr can be written in terms of a Dirichlet boundary condition (at 0,

T(‘)
a, —a, respectively) and then by the method of images in terms of the free heat

kernel of e2/2. Explicitly,
dz = / dze®?(z, 1),

™ |z]|>ae/2

dz = / dz e®/*(z,2a - z),
T |lzi<a/2

dz = / dzed/*(z,—2a — 1)
T |lzi<a/2
and each of these is bounded by C; exp(—C3a?). (m|

Remark 2.3. The xi process, w, is not Gaussian. However, the process, L,
obtained by reflecting w in the first time it hits 0 is Gaussian. It will be discussed
in [16] where an alternate proof of Theorem 2.2 can be found.

3. Zeroth Order Asymptotics

Here we will prove the following generalization of a result we proved in [18].

Theorem 3.1. Let V be a measurable function of R obeying
n+l
(i) sup f |V-(z)} dz < o0.

(ii) f |V+(:1:)|dz < oo for all n € N, where Vi(x) max(y/(z),0). Let H =

£ 4V on L¥*(—00,00) and Hp,y = +V on L¥(—o0,y) ® L%(y, o)
wzth Dirichlet boundary conditions at y. Let £(\,y) be the Krein spectral
shift for H to Hp,. Let Eo = inf spec(H). If z is a point of Lebesgue
continuity for V, then

V(z) = Eo + Ei% / dre M1 - 2¢(A,2)).
Eo

Remark 3.2. This generalizes the result in [18] in three ways. There we
assumed V(z) < Clec”z, we supposed V bounded below and that V' is continuous.
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Proof of Theorem 3.1. For notational simplicity, suppose ¢ = 0, Ey = 0, and

write Hp,o = Hp. Let W(y) = V(y) if ly| < 1 and W(y) = 0 if |y] > 1. Then, by
(2.4)

Tr(e tH# — e~tHp)
- 3 o1 v

1
= %E.,, (X(oggl(\/Z_tlw(s)l < 1)) exp (—tb/ds V(\/Z_tw(s))))
+ O(C1e~ G2/t (3.1)

M

E, (x(oil:gl(\/ftlw(s)l <1) exp(—t/ld.sW(\/2_tw(s))))
=93 0

+ O(Cre™ 1Y)
= %Ew (exp(—t/ldsW(\/2—tw(s)))) + O(C %21y, (3:2)
0

where (3.1) follows from Theorem 2.2, the Schwartz inequality and the estimate
that Tr(e™t# — e~tH0) < 00 with H = —2";37 +2V.

The general proof when only (ii) holds is a little complicated so we consider first
the case where V is bounded. Then, since |¢* — 1 - z| < 12%¢l7l, we have by (3.2)
that

Tr(e *# — e~*Hp) = % (1 - tE, (/l ds W(\/ﬂw(s)))) + O(?) + O(Cye~C3/%)
()

- %(1 —ta) + o(t), (3.3)

where
a= ltllxg/sz(x)g,(x)
R

with g;(z) the probability distribution for v/2¢w(s) with s distributed uniformly in
[0,1]. Then g.(z) = 7]27 91(z/V/2t) so by general principles, a = V(0) since z =0
is a point of Lebesgue continuity for V.

Next note that

Tr(et# —e~tHp) = ¢ / dre ¢(2,0), 1=t / e~ dA.
o [1]
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Thus
T tH 1
lim [ dhe (1 - 26(A,0)) = —lim 2 [’I‘r(e“” —e tHp) §] / t
10 t10
0
=a=V(0)
by (3.3).

Turning to the general case, as above we can suppose that.V is supp;orted on
[-1,1] (i.e., is equal to W), and we need only px;(zve (3.3) assuming ‘: € L'(R). L(f
P(z,y;t, ) be the integral kernel of exp(—t(— 7z + uV), Pi(z,y) = P(z,y,t,p =
1), PN z,y) = P(z,y,t,p =0) = (4xt)~1/2 exp(—(z — y)?/4t). By the method of
images:

Tr(e tH —etHp) = /dx Py(z,-1). (3.4)
R

Moreover, (see, e.g., [38]) uniformly on 4,t € [0,1]:
P(z,y,t,p) < Cet™ " exp(—(z —9)*/(4+€)) - (35)

By (3.5) for any a > 0, we can integrate (3.4) over |z| < t1/2-= with an error
O(e~4/t").
By DuHamel’s formula:

t
";i—“P(xvy)tv V’) = —/dsdzp(z! z,s,u)V(z)P(z,y,t— sa“)*
0

-1/2
Thus, iterating and using (3.5) in the form |P(z,y;t,p)|] < Cct 12,

d-
T P(.’IJ, yt, I‘)

dp~
" N < -1/2
-1/2 _ .
< /dzIV(z)l Ce / Hdsj[l'[s,- ](‘ Es-)
j i=1 =1
[-1,1) 3,20
is;<t
=1

< 5" t(n—l)/2 .

Thus by Taylor’s theorem with remainder if we take the 0,1,2 terms in the Taylor
expansion about g = 0, the error in

det(z9 —I)

I=|<tl/1--
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is bounded by C ¢£!/2-* = o(t). Thus up to o(t) errors Tr(e~tH —e~*Hp) = qa+f+v
where ,

*= / dz P{(z,~a),
R

B=-— / dzds dz PO (z, 2)V (2) P (2, -3),

0<s<t

1
T=5 / dudsdz dz dw P'SO)(z, z)V(Z)P,(°)(Z,W)V(w)Pt(f)‘_u(z, —z).

0<u<t
0<s<t
uts<t

By a direct integration, & = 1. Using P{*)(z,~z) = P{*)(~z,z) and doing the
integral:

B=—t / dz P (2, -2)V(z) = -% tV(0) + o(2)
R

if 0 is a point of Lebesgue continuity for V.
Thus the result is reduced to proving

v=o(t). (3.6)
Doing the z integral as for 3:
1
=3 /dz dwds(t — s)P,(_),(z, ~w)V(2)V (w) Pz, w)
so it suffices to show that
o= / dzdw ds P2, (2, ~w)|V (2)||V ()| P (z,w) = o1).

Write 6 < 61 + 62 + 63 where 6, is the integral over the region |w — 2| > Je/4,
62 the region where |w + z| > 3t'/4, and 63 the region where |w| < t1/4, |2| < t1/4.

The 1,6, integrals are bounded by ([ |V (2)])2e~</t""* ftds (t—s)"Y/2(s71/2) =
1,1 0

O(e=/*"'*) = o(1) since
¢ 1
/ds (t—s)"12571/2 = /ds V(1 -8 12 ¢ 0. (3.7)
) )
To control &3, bound P{”) by Cu~1/? and find, by (3.7),
2 1 V
63 = C( / dz|V(z)|) /ds s7U2(1 - 5)71/2 = o(1)
0

|=|<1/4

since V € L'(R) (w.lo.g. supp(V) C [-1,1]). (m}
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4. Asymptotic Expansions

Our goal in this section is to prove a number of related theorems on
F(z,t) := Te(e7*HDs= — etH). (4.1)

Theorem 4.1. Suppose that V(z) is C* and bounded from below. Then F(z,t)
has an asymptotic ezpansion ast | O:

F(z,t) ~ is,-(x)tj ,

=0

where s;(z) is dependent only on the numbers V(z),..., V&) (z) (V#(z) =
(d*V/dz*)(z)) with k =25 — 2.

Theorem 4.2. Suppose that V(z) is bounded from below and locally bounded
from above. Fiz zo and n and suppose that near zo,

2n-2
V(z)= z bj(:c - xo)j + 0(|$ - zo|2n-2) .
=0
Then there ezists {sj(x0)}}=o such that
F(zo,t) = )_ 5(z0)t’ +o(t").
=0

The sj(zo) are the same functions of the b’s as in Theorem 4.1.
Theorem 4.3. Suppose that V(z) is C* and bounded from below and
V&) ()| < Cretr=’ (42)

for some Ci, Ax. Then forj > 1
lim [ 3¢ (3= ) 20) = (<17 (a0l
0
and if V>0;52>1
. T j—1,—At 1 i .
tim [ @971 (600z0) - 3 ) = (1m0l - 11
1]

where we assumed Eq = 0 for simplicity.
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Proof. Theorem 4.1 clearly follows from Theorem 4.2. The first assertion in
Theorem 4.3 follows directly from

Flz,t) = —t / dhe=ME(\, 7) (4.3)
0

if we prove that F(z,t) is C* in t with derivatives having limits at t = 0. The

second equality then follows if we note that

1 o0
F(z,t)yz = -5t / dre™>
0

SO
gsj(xo)tj_l ~— o/ dre (g(,\,xo) - %) .

Thus the. proofs are reduced to showing Theorem 4.2 and that under the hypothesis
(4.2), F is C* in t with continuous derivatives at t = 0. W.l.o.g. take zo = 0.
We turn first to Theorem 4.2. As in the last section, let W(z) = V(z)
X[-1,1}(z) and note that by Theorem 2.2
F(0,8)l, - F(0,0)y = O(e~C"")

80 we can suppose that V is supported in [—1,1] which we will henceforth do. By
local boundedness, we can suppose ||Vl < co. Use an asymptotic expansion of

F(0,t) = —%Ew (exp (—t /l ds V(Jiiu(s)))) = ibj(t) +Ra(t),
0 3=0

where
(-1)i+t ) 1 3
bi(t) = ~——~—E, | t/{ | dsV(V2tw(s))
o =((/ ))
andfor0<t<1

[Ba(t)] < exp(IV lleo)t™ VIS /(n + 1)1,

since Taylor’s theorem with remainder implies

< C™1eC f(n +1)!

e - 2 /i

3=

if jz|] < C.
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By hypothesis V has an asymptotic expansion

2n-2

V(z)= E bz’ + o(z*"?).
j=0

Plug that into b;(t), j > 1 and find

2n—-2

. 1
b(t) = %E (t" o/ @ 3 Ck,j(bl,...,bk)(\/z‘t)"(w(s))") T o{t™iY),

where Ci j(b1,...,bx) are certain polynomials in by, ...,be. Since E(w(s)) =0if
j is odd (by £ — —z symmetry), we have the required asymptotic series proving
Theorem 4.2.

As for Theorem 4.3, under hypothesis (4.2) define

K(t):= F(z = 0,8%).

Then there are formal formulae one can write down for d!K/dt¢ by differentiating
inside the E(---) expectation and integral. Because of (4.2), it is easy to see the
integrand in E(---) converges absolutely, and then by integrating the derivative
that the formal formula is valid. With this formula in hand, one sees that d K /dt
is continuous as t | 0 and d/K/dt* = 0 if £ is odd. It follows by Taylor’s theorem

with remainder that

K(t) =) a;t” + Eu(t) (4.4a)
=0
with InE
—dt—:f-ﬂ =o@*"*! ™), m=0,...,2. (4.4b)
But F(z = 0,t) = K(v/%). Using (4.4), F(t) has continuous derivatives at t =0,
that is, we have proven what is used to conclude Theorem 4.3. ]

5. Analysis of the Coefficients

In Sec. 4 we proved the existence of an asymptotic expansion of the form

—tHp,s _ —tH ~ . j )
Tr(e e )‘w;s,(x)z , z€R (5.1)
assuming
V € C*(R), V real-valued and bounded from below (5.2)

so that the differential expression

h= —% +V(z), z€R (5.3)
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is non-oscillatory at +oo (and hence in the limit point case at +o00). The main
purpose of this section is to identify the coefficients s;(z), j € N in (5.1) with the
KdV invariants (and hence with certain differential polynomials of V).

In order to identify s;(z), j € N with the KdV invariants, we adopt the following
strategy. By strengthening the assumptions (5.2) and (5.3) momentarily to

V € C(R), (5.4)

we shall derive the asymptotic expansion
Tr[(Hp;e —2) ™ = (H — 2)7}] o > ori(@)z ! (5.5)
z]—o0 =0

and relate 7;(x), j € N with the KdV invariants by means of the well-known Riccati-
type equation arguments. The Laplace transform connecting (5.1) and (5.5) is then
used to derive the relation

sj(z) = (=11 (i) ri(z), j€No=Nu{0} (5.6)

which then identifies s;(x) and the KdV invariants (up to inessential numerical fac-
tors). Since by Theorem 4.1, s;(z) only depends on the numbers V (z),...,V¥)(z)
with k = 2j ~ 2, the connection (5.6) between s;(z) and r;(z) is independent of
the short-range nature of V € C§°(R) and extends to all V € C*°(R) bounded
from below. In fact, it extends to V bounded from below and locally bounded from
above, satisfying the asymptotic expansion assumed in Theorem 4.2.

Theorem 5.1. Assume V € C§°(R). Then for each N € N,

T{(Hpie = ™ = (H = )7 = = - n[G(z,,2)]

N
e er(:t:)z_j_l +0(z"Y), zeR
=0 (5.7)

uniformly with respect to € R, where rj(z), j € N represent the KdV invariants.
More precisely, one has

@ =3 n@=3Ve),

ri(z) = (=112 "% jgy; i (z)
-1

+ Y (m1yHI2 g, 1 (@)re(a), G2 2, (5.8)
=1

where ¢;(z),7 € N are given by the recursion relation
¢1($) = V((L'), ¢2(1¢) = —V’(Z),

i-1

$i+1(2) = —¢(2) = D de(2)Bj-e(x), 7 >2. (5.9)
=1
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Proof. Since V € C5°(R), one can set up the Volterra integral equations

fi(z,2) = etie'’e 4 / dzy 272 sin[z!/?(z — )]V (21) f2(2,71)

(5.10)
+oo
Im(z2*/?) >0, 2€C,z€R,
such that
Hf:l:(zv Z) = Zfi(z,l'), z€C (511)

in the sense of distributions. Better suited for our purpose are actually g4+ (z,)
defined by

91(z,x) = €7 f1 (2,7) (5.12)

satisfying

gi(z,7) = 1% (2i2/%)7! / dz [1-e*2‘="’(=-=1>] V(z1)gs(z,@1).  (5.13)
+oo

Iterating (5.13) one infers by a standard procedure that
lg+(z,2)| <C, z€C,z€R (5.14)

and combined with integrations by parts, one obtains the asymptotic expansions

oo
~ Y@ @), meN, zeR (5.15)
Im(z'/%)>0 =0

oM(z,2)  ~

uniformly with respect to z € R. In order to illustrate (5.15), it suffices to discrlss
as a special case the asymptotic expansion of g+(z,z) up to order O(z~%). Using
(5.13), one infers from repeated integrations by parts that
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=F2u‘/2

1 T
g:l:(Z, z)=1=% m / dz, V(a:l) 1/2 / dz, e:i:2lz le( )
+oo

m / dl‘l 1 —ew“" (z—z:)] V(zy) / dz, [1 —e:’:z"l”("i”’)]V(zz).

z

z1

1 . .

* Gy / dz, [1-e*2""’(=-=->] V(z1) / day [1 - 722120 V().
+oo +oo

z2

. / dzs [l - 6*2“1/2("—“)] V(z3)g+(2,73)

too

Im(z'/2)>0

T £ 2
1 1 1
230 l:hziz_lﬂ/dzl V($1)+Z;V(I)—§L/ dzlv(l‘l)]
+oo oo

1, 1 ,. 1 P
:FWV (.’B) + m / d:L‘l V(Zl) + 8—1,23_/2 V(a:) / d.’l:l V(IL‘])
+oo +o0

T 3
1
:F48i23/2 L/ d$1 V(zl)] + 0(2_2), T € R, (5.16)

where we used (5.14) to arrive at the O(2~2)-term uniformly with respect to z € R.
By induction one extends this expansion to O(z~V) for each N € N uniformly in
z € R. Analogously, one arrives at the corresponding expansions for g(™(z,z),
m € N. In particular, introducing

¢i(z, ) = M — :tizl/2 + g:’!:(zvx)

= 5.17
fe(z,7) 9+(2,7) (5.17)
(' denotes d/dz) one obtains
¢ (23) | £ 4+ Y M (@)(2i2?)F, zeR (5.18)
Im(z'/?)>0 i=1

for certain coefficients ¢4 (x) (uniformly in z € R since V € C°(R)). Combining
(5.11), (5.12), and (5.17) yields the Riccati-type equation

#1(2,2) + ¢2(2,2)* = V(2) - 2. (5.19)
A comparison of (5.18) and (5.19) then yields
$+,1(z) = £V(2), ¢s2(z) = -V'(2),
i-l 5.20
b++1(x) = Fol ;(z) F Z¢¢,z($)¢i.j—t(x), j>2. (520)

=1
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This identifies ¢4 ; and ¢;

b1s(x) = 95(2), JEN (5.21)
as introduced in (5.9) and also yields
¢_;(x) = (1Y ¢4 (), jEN. (5.22)

In order to connect (5.7) and (5.18) we recall a few facts. First of all, the Green’s
function G(z,z,z') of H satisfies
G(Z x, x) = [¢ (Z, .'L') - ¢+(z’ I)]_l

since, due to definition (5.17), ¢+(z,z) equal the Weyl m-functions associated with
Hp +.z in L*((z,%00)), the restrictions of H to (, £00) with a Dirichlet boundary
condition at z € R. In particular,

Hp,,=Hp, = ® Hp,4- (5.24)

z € C\spec(H), z € R (5.23)

Thus we obtain

T{(He = )7 = (8 = 7] = = Bl 2,2 = g afp—(er2) — 152

/ 1/2y-2j
s [1 222@, 1(z)(2i2'/?) ]

~ (1/22)+—ln[1+2( 172 " Y g9y ()2~ ,]

j=1

Zr,(:c)z i1, (5.26)

zloo

where (), j € No are given by (5.8). Here we made use of (5.23), (5.18), (5.22),
and the fact that if F has the asymptotic expansion

F(z2) ~ Y ¢jz™? (5.27)
(2) """"’,Zz:l :
then
Infl + F(2)] Z iz, (5.28)
where
d=ca,
j-1
=) (tli)ci-ede, 22 (5.29)
=1
(m]
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Remark 5.2. (i) Using

G(z,z,1) = -‘{V%, z2€C\spec(H),z € R (5.30)
one derives the relation (see, e.g., [27])
= IG(2,2,2)] = 6_(2,2) + $4(2,2) (5.31)

which yields the simpler expression

% Tx[(Hp;e —2)™ = (H - 2)7Y) = % d% In[¢_(2,7) — ¢4 (2, 7))
= _£ [6+(2,7) + ¢—(2,2)] ,f.'eo§(‘1)j2"2j¢2j($)z"j_1 - (5.32)

Integrating (5.32) term by term (putting integration constants indentically zero
since r;(z) are homogeneous differential polynomials of degree deg(r;) = 24,5 € No
defining deg(V(™) = m + 2, m € Ny) yields (5.7) except for the leading term 1/2z
which can be inferred from the free case V(°)(z) = 0.
(ii) Relations (5.22) and (5.31) prove that @4 2,,(z) are total derivatives, that
is,
O+ 2m(z) = % Mm(z), MmEN (5.33)

for some differential polynomials 7, of V with 5, € C°(R) (resp. C>(R)) if
V € C§°(R) (resp. C=(R)). Moreover, the following asymptotic expansion holds
(see, e.g., [12, 13]).

G(z,z,z) = =Y wyi(x)(2i2'/2)7%Y, zeR (5.34)
zZ]l—00 J=0

uniformly with respect to z € R, where

wolz) =1,
wn3(2) = ~242y2(a) - 2:£:¢u-1<z)wzu-a(m), jen. O
One can prove that ([10, 13))
wria(z) = -2 + Do) + o 1s(a), JE€No,  (530)

where v; are differential polynomials in V with v; € CP(R) (resp. C®(R)) if
V € C5°(R) (resp. V € C=(R)).

(iii) Clearly (5.7), (5.32), and (5.33) extend to uniformly asymptotic expansions
as |z| — oo outside any cone with apex Ey = inf spec(H) and arbritrarily small
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opening angle € > 0 along the positive real axis. Explicitly, one infers from (5.8),
(5.9), and (5.35) that

ro(z) = % r(z) = ~12-V(z), ra(z) = %V(x)z - %V"(z), ete. (5.37)
$1(z) =V(z), ¢2(z)=-V'(z), ¢3(z)=V"(z)- V(z)?,

da(z) = 4V(2)V'(z) - V" (2), etc, (538)
and
wo(z) =1, wa(z)=—-2V(z), walz)=6V(z)*—2V"(z), etc. (5.39)
Next we relate (5.7) and (5.1).

Theorem 5.3. Suppose V € C®(R), V real-valued and bounded from below.
Then for each N € N,

N
—tHp.. _ ,—tH ) ] N+1 5.40
Tr(e~tHo= — ¢t )‘%jgos,(x)t’+0(t ), z€R, (5.40)

where s;(z) are the KdV invariants
s;(z) = (1)) 'ri(2), F€No (5.41)
with r;(z) given by (5.8).
Proof. Since the existence of the asymptotic expansion (5.40) has bq:':en proven
in Sec. 4 we only need to identify the coefficients s;(z) as in (5.41). Without loss

of generality we may assume in addition that V € Cg° (R). Let E, = inf spec(H),
then one obtains from (1.4) and Fubini’s theorem that

T drEQ,
T{(Hp - )71 - (1 - 271 = - [ HE%)
Eo

= / £ 2) / dt (~t)et=—
Ey 0

- / dte / A (=t)e (A, 2)
0 Eq

= /dt Cltrl‘r(e—t”mz - e—-tH)’ z< EO .
J (5.42)
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Define
F(z,t) = Tr(e tHo= — ¢~tH) = —t/dA e ¢\ z), t>0,z€R. (543)
Ep
Then
F(z,-) € C*([0,00)), for each z € R (5.44)
is proven at the end of Sec. 4 and Theorem 4.1 yields for each N € N,
N
F(z,t) o ;S;a s;(z)t? + O(tV+Y), (5.45)

In particular,

N
F(z,t) =) s;(2)

=0

<Cn(z)tN*, o0<t<1 (5.46)

by estimating the remainder in the Taylor expansion for F(z,-). Thus

1 oo
zTX[(Hpz —2)™' — (H — 2)™Y] =z/dte"F(1:,t) + z/dte"F(:t, t)
0 1

=G (z, 2) + Go(z, 2) . (5.47)
Clearly,
|Ga(z, 2)| = z/dte“F(z,t) < (—z)/dte"]F(z,t)| < Coe*, z < min(0, Ep)
1 1

. 5.48
since |F(z,t)| < e™*Fo (because of 0 < £(A,z) < 1). Moreover, 549

1 N N
Gi(z,2) = z/dte" [F(a:, t) - Zsj(x)tj + 2 s,-(z)tj]
0

j=0 j=0

=0

oo ,é 8;(x) [z Z dte’'t’ + O(e“)] +z j dte [F(z, t)— i sj(x)tj]

N 1
o SOG40 42 [ e[ ) - 3 ],
= 0 i=0

z < min(0, Ep) (5.49)
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for some 0 < ¢ < 1. Thus

N
SM{(Hpe - 27— (H=2)7]_~_ 3 s;(@)(-17" (1027 + 0" (5:50)
3j=0

using the estimate (5.46). A comparison of (5.7) and (5.50) then yields (5.41). O
Relations (5.37) and (5.41) then yield explicitly
1 1 1., 1.,
so(z) = -3 s1(z) = EV(z), so(z) = §V (z) - ZV(x) , etc. (5.51)

Finally we express the KdV invariants s;(z) in terms of £(A, z) according to
Theorem 4.3.

Theorem 5.4. Suppose V € C(R), V real-valued and bounded from below.
Assume that (4.2) holds and denote Eo = inf spec(H). Then

1
so(z) = -3
(e VB 7 —tayi-1]1 ;
sj(z) = 7 3 +]lt111{)l die X 3 &Mz) 2, JEN, z€ER.
Eo
(5.52)
Explicitly, one has
s1(2) = 2V(a)
=
Eo . ]o —tX 1
_E L 5
5 +l‘111{)1 de 2 £\ )], (5.53)
Eo
— l " _ _1_ 2
32(3) - 8V (z) 4V(x)
= —Eg—'—lim md)\e‘“,\ —l-—E(A z) etc (5.54)
4 o 2 i ) :

We will illustrate these results in the special case where V(z) is periodic.

Example 5.5. Assume V € C*(R), V real-valued, for some a > O,
V(z +a) = V(z) for all z € R. In this case the spectrum of H is given by

spec(H) = | J [Ea(n—1) E2a-1]- (5.55)
n=1
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Then for each z € R, £(A, ) is real-valued for A € (E;,_;, Ez,) and purely imagi-
nary for A € (Ey(n_1), E2n_1) (see, e.g., [4, 28]). More precisely,

0, A<Ey pu(z)<A<E, neN

f(A,z) — 1, Egn_l < A < [z,.(:l:), n e N (5-56)
1
3 Eyn-1) <A< Ezny, n€N

(and analogously for limiting cases where pn(2) € {Ezn_1,E2,}, n € N). Here
#n(z) denote the Dirichlet eigenvalues (or limits thereof) of Hp.., that is,

spec(Hpiz) = {pn(2)}nen U |J [Ban-1), Ezn1], Ezn-1 < tn(z) < Ezn, n € N.

n=1
. ‘ 5.57
Inserting (5.56) into (5.52) and noticing that 50
|E2n — Eapi| W 0(n=%) forallke N (5.58)

s'im?e V € C* (see [36, 40] and the references therein), one can interchange the
limit ¢ | 0 and the integral in (5.52) to obtain

2-1)"*j!si(2) = 2r(x) = B} + Y [Ejp_y + B} — 2ua(z)], jEN,z€R.
n=1
- o (5.59)
e penf)dlc trace formula (5.59) for j = 1 has been noticed by Hochstadt [25]
and Dubrovin [7]. The general case j € N appeared in McKean and van Moerbeke
[35] and Flaschka [8]. For more recent accounts, see, for example, [2, 29, 32, 33, 40].

Remark 5.6. The heat kernel approach in Secs. 2—4 naturally leads to the
heat kernel regularization for s;(z) in Theorem 5.4. Alternatively, we could have
exploited a resolvent regularization for r;(z) as follows. Applying (1.4) to f(A) =
(A= 2)™! and expanding in z~! near z~1 = 0 yields

TH{(Hp — 2)-' — (H — )1 = _ [ PEXD)
[( D; z) (H z) ] £ (A—z)2
_1__ K T L - €0\, 2)]
2z 2z(Ep - 2) +E/ (2A —2)2
A 2z + Z"J(‘”)z -1, (5.60)

where

z—100

( E} 2+l -
ri(z) = ——+ lim [ dA (,\—')JTJ( Ay [——E(/\ z)] JEN,z€R (561)

Eo
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under the assumptions on V as in Theorem 5.4. In particular,

n(@) =3 V()
=§2'1+ tim [ a5 )2[ — £, a:)] (5.62)

We shall return to a detailed discussion of resolvent regularization (proving the
existence of an asymptotic expansion of the type (5.7) under the hypothesis on V as
in Theorem 5.4) in Sec. 6 in connection with other self-adjoint boundary conditions
different from the Dirichlet boundary condition at z € R.

6. Other Boundary Conditions

In this section we shall study higher order trace formulas associated to boundary
conditions other than the Dirichlet conditions studied so far. In general, we want
to consider operators which decompose into a direct sum under the decomposition
L*(—00,y) ® L2(y, ) and which differ from H by a rank-one perturbation. It can
be shown the later condition forces the boundary conditions to match, that is, in
(6.1) below the boundary conditions

gy+0)+PB:g(y£0)=

have 8, = B_. Thus, we define

d?
Hg.,f = hf, h=’E§+V("‘)’ zeR

D(Hp,,) = {g € L*(R) | 9,9’ €ACic(R\{y}), hg € L*(R),

limg'(y + €) + Bg(y+€)] =0}, BER,y€R,
<40 (6.1)

where we assume again that V satisfies
V € C=(R), V real-valued and bounded from below. (6.2)

Thus Hp—o,, = Hn,y represents a Neumann boundary condition at y € R and
formally, Hg—oo;y = Hp;y. In analogy to

(HDi!l - Z)_l = (H - ‘z)—l - G(Z, Y, y)_l(G(Z,y, ')9 ')G(Zv ] y)’
z € C\{spec(Hp,y) Uspec(H)}, (6.3)

one now obtains

(Hpy —2)7 = (H—2)"" = [(B+3)(B+8)G (2,3, 9)] "

((B+81)G(z,9, ), )B+H)C(z,.,y), =z € C\{spec(Hp;y) Uspec(H)}, B (% t‘)-
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Here

8,G(z,y,2') := 3,G(z,z,z')|z=y, &G(z2,z,y) := 0G(z,y, z')|=,=y ,
6162G(Z, z, y) = axaz’G(zr z, zl)';p;:;;;':y , etc. (65)

and we note that
010(273/! .1:) = azG(Z,.’L', y)) z # ) (66)

renders the rank-one piece self-adjoint in (6.4) for z < inf spec(Hp,,). Hence the

Herglotz function G(2,y,y) is now replaced by [(8 + 8,)(8 + 32)G(z,v,y)]. The
latter is Herglotz too as can be inferred from the first resolvent equation

078, Im[G(z,z,1')] = /dz” [0zG(z,z,2")][02 G(2,2",2")}, r,s€{0,1} (6.7)
R

implying (together with (6.6))
Im{(8 + 81)(8 + 82)C(z,y,3,)]
- Im(z){ﬂ’ [as"16G,2" 0 + 5 [ & BGGw G ")
R R

+8 [ & Gn 062 + [ 016,20
R R
2 Im(2) [18:G(2, - 9)ll2 = 181G (z,,9)ll2]* > 0 for Im(z) >0
(6.8)

by Cauchy’s inequality. Equation (5.25) then turns into

T[(Hpo — 2)~" = (H — 2)71] = -% In[(8 + 81)(8 + 3)C(z,,3)], BER, z € R.

(6.9)
In order to introduce {g(A, z), Krein’s spectral shift function associated with the pair
(Hg;z, H) (in analogy to £(), z) = £o(), z) associated with (Hp,z = Heo,z, H)), we
next investigate [(8 + 81 )(8 + 82)G(z, 7, z)] a bit further. First of all we notice that

Hp.<H, peR,zeR (6.10)
as opposed to
Hp,=Hy.>H, z€R (6.11)

One way of understanding (6.10) is in terms of quadratic forms. Let
Q(Hp=0) = Ny be the form domain of the Neumann boundary condition object.

Then ¢’s in N, are continuous on R\{y} and have continuous boundary values
¢(y £0). Q(Hp) = N, with

(0, Hpp) = (0, Ha=09) — Bllo(y+)I - lp(y-)I?] .
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Let N° = {¢ € N | p(y+) = ¢(y—)}. Thus H is just the form Hp restricted to Ny,
»

9o Hg, < H. o
Moreover, one easily verifies the identity

(8 + 81)(B + 8)G(2,2,2)] =B*G(2,,2)

+ ﬂ[;; G(z,x,z)] + H(z,z,x),

2€C\R,BeR, 7€R, (6.12)
where ,
_ Ao () 613)
Ho,0) = 7, 0,7 @)
and
;; H(z,z,z) = [V(z) - z]dd—x G(z,z,z). (6.14)
From 1 )
Gzze) = soam + o(|z| /%), (6.15)
in accordance with
G(z,z,z) >0 for z < inf spec(H), (6.16)

and from (6.14) one infers

H(z,2,5) = H(z,%0,20) + / iz’ V(') - 7] [E‘:—,G(z,z',z')]
= H(z,%0,2o) + 0(|2'?) (6.17)
z}—o00
upon integration by parts. In particular, the leading asy'mptotic behavior of H
(z,z,z) as z | —oo is independent of z and can be obtained from the free case
V)(z) = 0. Since for V()(z) =0,

G Bz = 6.1
GO (z,z,1) = 572 HY(z,z,2) = 7 .
one infers 12
Az 20) =~ olls) (6.19)
and hence
(B +8,)(B + 32)G(z,%,2)] <0 for —z >0 large enough. (6.20)

Thus the exponential Herglotz representation [1] for (B +a)B+ 3)G(z,z,z))
yields

A
[(ﬂ+61)(ﬂ+32)G(2,1,1')] = exp{c+/[)\—_-l_-z"‘ 1+ 2 '\2] [ﬁﬁ(z\,z)+1]d)\} (6.21)
R
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for some ¢ € R, where for each z € R and a.e. A € R
1.
&N z) = - 16%1 Im {In[(8 + 61)(8 + B2)G(A + i€, 7,z)]} — 1 (6.22)
and

-1<§(A2)<0 ae. AeR, &(M\z)=0, A<inf spec(Hp.z) (6.23)

in agreement with (6.10) and (6.20). Hence

To(f(Hp;e) — £(H)] = / A F' (N, 2) (6.24)
R

) s yJ=D12and for f(A)=(A— -1
z € C\[inf spec(Hg,,), ). ( fA)=0A-2)"1,
The following example in the free case V(O)(,;) = 0 illustrates these facts.

Example 6.1. V(°)(3;~) =0. Then GO (z. z.2') = —i_ . giz"/?le~a'] 1/2
0 yields (2:2.7) = g3ia - Im (%) 2

[(6+0)(B+ )G (z,2,2)] = (i/2)[8*7/2 + 2%, peR  (6.25)

and
0, A<-p?
EgO)(A’x) — —il, —ﬂz <A<0, Be R\{O}, (6.26)
—5, A>0
£90a 0, A<0
o yT) =
=1L ase )
Thus
Tr H(‘.’) — A1 _ (pgle) _ =17 _ B -z
(Hpz —2)7' = (H) - 2)7 = 2+ 5D’ BE€R, z € C\{{-4%}U[0,00)},
(6.28)
—tH(?: __—tH@y 1 2
Tr[fe *Hpic — et ]——§+e“3, BER,t>0, (6.29)
where H(®) = — 4 D(H()) = H22(R). One has
spec(HS)) = {-B*}u[0,00), BER. (6.30)

Nfext we recall the well-known fact that the Weyl m-functions ¢ (2, x) associated
wnt.h Hp, i in L*((x,£00)) (see the paragraph following (5.23)) have the asymp-
totic expansion (5.18) as z — ico whenever V satisfies (6.2), see [3, 23 24). (Actu-
ally the L.p. property of h at +oo is irrelevant in this context and thé asymptotic
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expansion (5.18) is valid outside any cone |tanf| < € for € > 0 arbitrarily small.)
Hence (5.23), (5.31), and (6.14) imply the existence of asymptotic expansions for
G(z.1.1), £G(z,1,3), H(2,2,1) = [0:0:G(z,, )], and L H(z,z,%) a8 z — ic0
to all orders in z. In the following we derive recursion relations for the coefficients
in the expansion for [(8+ 8 )(8+ 82)G(z, z, x)] by reducing it to those of G(2,z,z)
and H(z,z,z) under the assumptions (6.2) on V. The ansatz

G(z,2,3) ~ =3 g(@) (6.31)
=0

inserted into the well-known differential equation for G(z,z,z) (essentially equiva-
lent to (5.19))

d 2 &
-_— 2 —_— — _— —
4V (z) - 2]G(z,x,x)" + [da: G(z,x,z)] 2G(z,z,x) [daﬂ G(z,:c,x)] 1 (6.32)
then yields the recursion relation [10]

@) =1, ) =7V,

j i
gin1(z) = —% Y ge(2)gir1-e(a) + % V(2) Y 9e()9-2(2) (6.33)
=1 £=0

1<~ , 1< :
+ 1Y Gl ole) - 3 2 i @rele), G EN
=0 =0

Equivalently, one could have used the linear third order equation

[i—as G(z,z, 1:)] —4[V(z) - 2] [;; G(z,:c,a:)] - 2V'(z)G(z,z,2) =0  (6.34)

to obtain
gu(l') =1,
' 1 . ' 1., . (635)
g5(@) = -7 6;21(2) + V(z)gj(e) + 5V (z)gj-1(z), JEN

which yields g;(x) upon (homogeneous) integration. Here g; are homogeneous dif-
ferential polynomials in V' of degree

deg(g;) =24, j€No (6.36)
assuming deg(V (™) = m + 2, m € No. Explicitly, one obtains
1 3., 1.,
w=1 a@)=3V@) @k)=3VE)-3V@)

— _1_ nn - _5_ " —- _§_ 1 2 i 3
g3(z) = 32V (z) 16V(:r:)V (z) 32V (z)* + 16V(a:) , etc. (6.37)
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Equation (6.14) then yields

% H(z,z,z) i %j;o[V(z)g;-(z) - 92»4‘1(3:)]2:"’_1/2 (6.38)

and hence

H29) ~ 1 > [ v - s@)| 40, (639
Z

—

x
Here [dz'V(z' )9;(z') denotes homogeneous integration, that is, all integration
constants are put zero. Moreover, as proven in [10],

9¢(z)g}(z) = diz hy j(z) (6.40)

for some homogeneous differential polynomial h¢; in V and hence Vg; = 2g, g; is
a total derivative (see (6.39)). The z-independent constant C(z) in (6.39) can be
obtained from the free case V(x) = 0 and one gets (cf. (6.18), (6.19))

C(z) =1iz'/?/2. (6.41)
Alternatively, one could have used
H(z,2,2)™" = ¢4(2,2)7" - ¢_(2,2)"! (6.42)

and the asymptotic expansions (5.18) for ¢4 (z,z). Combining (6.12), (6.31), (6.39),
and (6.41) then yields

[(B+81)(B+ &)G(z,z,2)] = (12/2/2) + (i/2) T ["29:- () + Bg)(z)

3=0
+ [ V@) - gn@] 68

= (iz1/2/2) f: cﬁ,j(x)z'j,

=0
where
Cﬂ,()(.’l}) = 11
) r (6.44)
85(@) = B9;2(@) + Bgj (@) + [ ' V()gla(&) - (@), s EN.
Explicitly, one gets
1
Cp,o(.’l:) =1, Cp,l(.’l:) = :32 - 5 V(.’L‘),
(6.45)

coa(z) = %ﬂ’V(z) + %ﬂV'(x) - %V(x)’ + %V"(z), ete.
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Hemce, applying (5.27)-(5.29) again, one infers

1n[(8 + 8,)(8 + 3)G(z,7,2)] = In(iz"/2/2) + Y dp,(2)2 7, (6.46)
=1
1
ds1(2) = ca(a) = £ = 5V (2),

= (6.47)

dg ;(z) = cp,(7) - ;Z bep,j-e(z)dpe(z), 522

=1
Explicitly,
1

ds.(z) = F* = 5 V(a), (6.48)

1 ﬂ 1 1 "
dga(z) = -3 B+ B2V(z) + 3 V'(z) - 3 Vz) + 3 V¥(z), etc.
This finally leads to the following theorem.

Theorem 6.2. Suppose V € C®(R), V real-valued and bounded from below.
Then for each N € N,

T(Hpie — )7 = (H = 2)7] = — 2 1l(8+ 8)(3 + %)G(z,2,2)]

N
~ Zr,«,_,-(z)z""" +0(z"¥1), BeR,zcR, (649)
Z—100 J=0
where
1
Tﬂ'o(x) = -51
-1 (6.50)
15,i(z) = jca;(z) = Y cas-elT)rse(z), JEN
=1
with cg j(z) computed from (6.44).
Proof. It suffices to note that
1 . .
rgo(z) = —3 rg.j{z) = jdg,(z), jEN (6.51)
upon differentiating (6.46) with respect to z. ]

Explicitly, one obtains from (6.50), (6.44),

1
Tﬂ,o(I) = —%, Tﬂ,l(x) = 62 - E V(I)’ (6.52)

roa(z) = —B* + 262V (z) + AV'(z) - % Vi) + i Vi(z), ete.



9
20 F. GESZTESY et al

It r.ema:ins to express 7 ;(z) in terms of £5(),7) in analogy to the resolvent
regularization procedure sketched in Remark 5.6. By exactly the same procedure
one proves the following result.

Theorem 6.3. Suppose V ¢ C*(R), V real-val
, -valued and bounded from below.
Assume that (4.2) holds and denote Epo(z) = infspec(Hp,;). Then from below

1
mso(z) = -3, (6.53)

r04(a) = B~ LV (@)

_ _Eppo(z) R 7 22 1
5+ z{l}g{) / d m [—5 - 55(1\,1)] ) (6.54)
Ep,0(z)
() = _Epo(=) T 2! - 1
78,5(z) = 5t lm di = J(=ay~1 [—*2' - 56(/\,1‘)] )
Ep,0(z)
JEN,z€eR. (6.55)

. Finally, the analog of Example 5.5 in the case where V(z) is periodic reads as
ows.

Example 6.4. Assume V ¢ C*®(R), V real-valued, for some ¢ > 0,

V(z +a) = V(z) for all z € R. Then the s is gi
. pectrum of H i
the spectrum of Hpg,; is of the type = given by (5.59) while

spec(Hp;z) = {Ag,n(2)}nene U | [Ea(n_1)> Ezn-1],
et (6.56)

)\ﬂ,ﬂ(z) S Eo, E2n—1 _<. Ali,n(-'l') S E2n) n€eN.
The analog of (5.56) then reads
0, A< /\p,o(.'l,‘), Ez,._l <A< t\p,n(f), neN
—11, As0(z) < A < By, Aa(2) <A< E,,, neN
—3 Ean-1) <A< Ez,;, neN

§o(A,z) = (6.57)

and one obtains from (6.55) the higher order periodic trace formulas

2p.i(2) = By = 2050V + 3 [Ej_y + By, — 22p n(a)]

n=1

) ﬁER,jEN,zER.

' o (6.58
While the periodic trace formulas (6.58) for 7 ;(z) were known in the Neumanrz

case f = 0 [36] (see also [31]), the cases § € R\{0} in (6.58) appear to be new.
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