Essential Self-Adjointness of Schrödinger Operators with Positive Potentials

B. Simon*

§ 1. Introduction

It is an amusing mathematical game to study questions of the essential self-adjointness of $-\Delta + V$ despite the fact that for most of the Schrödinger operators of physical interest, the necessary result has been known for twenty years [12] and for the others for almost ten years [31, 7].

Let us first consider a one body system in an external potential where V is bounded at ∞ in the sense that $V \in L^p + L^\infty$ for some p. The best general self-adjointness result for such potentials seems to be:

Theorem (Nelson-Faris). Let

- (a) $V \in L^2(\mathbb{R}^m) + L^{\infty}(\mathbb{R}^m)$, $m \leq 3$,
- (b) $V \in L^p(\mathbb{R}^4) + L^{\infty}(\mathbb{R}^4)$, p > 2,
- (c) $V \in L^{m/2}(\mathbb{R}^m) + L^{\infty}(\mathbb{R}^m)$, $m \ge 5$.

Then $-\Delta + V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$ as an operator on $L^2(\mathbb{R}^m)$.

Remarks. 1. (a) is the famous result of Kato [12]; (b) and (c) for L^p with p > m/2 are due to Nelson [18] although in a slightly different form they appear in Stummel [31] and Brownell [1].

2. The $L^{m/2}$ result for $m \ge 5$ seems to have first been noted by Faris [5]; see also Jörgens [10] and Müller-Pfeiffer [16].

If we allow V's of arbitrary sign, the conditions of the Nelson-Faris theorem cannot be much improved (in case $m \ge 4$) for $-\Delta - cr^{-2}$ is not essentially self-adjoint on $C_0^\infty(\mathbb{R}^m)$ for c large, and $r^{-2} \in L^p(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$ for any p < m/2.

On the other hand, if V is positive we expect that we may be able to do better. First, we know that if $V \in L^1 + L^{\infty}$, $V \ge 0$, then $-\Delta + V$ can be defined as a form sum on C_0^{∞} which is closable and so associated with a self-adjoint operator. (Form techniques are described in [20, 21].) Second, in case V is non locally L^p (p > n/2) on a small set and positive, one can sometime prove self-adjointness results, for example:

Example. ([9]; see also [32, 11, 23]).

^{*} Sloan Foundation Fellow.

Let $V = V_1 + V_2$ where $V_2 \in L^p(\mathbb{R}^m) + L^{\infty}(\mathbb{R}^m)$; p > m/2, $m \ge 4$. Let $V_1 \in L^2(\mathbb{R}^m)$, with V_1 locally L^p (p > m/2) away from 0. Suppose $V_1 \ge c r^{-2}$ (c > 1). Then $-\Delta + V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$.

One thus expects that one should be able to handle a fairly large class of positive L^2 potentials, in fact:

Theorem 1. Let $V \in L^2(\mathbb{R}^m) + L^{\infty}(\mathbb{R}^m)$ be bounded from below. Then $-\Delta + V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$.

This is the main result of this paper. It has an *n*-body analog:

Theorem 2. Let $\{V_i\}_{i=1}^n$ and $\{V_{i,j}\}_{i=j=1}^n$ be in $L^2(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$ and bounded from below. Then $-\sum\limits_{i=1}^n \Delta_i + \sum\limits_i V_i(\mathbf{r}_i) + \sum\limits_{i< j} V_{i,j}(\mathbf{r}_i - \mathbf{r}_j)$ as an operator on $L^2(\mathbb{R}^m)$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^m)$.

Remark. If the V_{ij} , $V_i \in L^2 + L^p$, p < n, one can use Cook's method to construct wave operators [3].

The techniques we use to prove Theorems 1 and 2 were originally developed to study two dimensional self-coupled Bose field models [6]. It is something of a joke that methods invented to treat relativistic models which are unphysical because space has too small a dimension turn out to be useful to treat non-relativistic models which are unphysical because space has too big a dimension.

§ 2. The Tools

There are four main tools we need to prove Theorems 1 and 2: (i) The Abstract Theory of Hypercontractive Semigroups. This theory is an abstraction of some techniques in constructive quantum field theory [6] originating with Nelson [19]. The abstract self-adjointness theorem (see Lemma A.4) is due to Segal [24] with refinements by Simon-Hoegh Krohn [27]. An operator H_0 on $L^2(M, d\mu)$ where M is a measure space of total mass 1 is said to generate a hypercontractive semigroup if H_0 is self-adjoint and e^{-tH_0} obeys estimates $\|e^{-tH_0}\psi\|_P \le \|\psi\|_P$ all t > 0, all $1 \le p \le \infty$ and all $\psi \in L^p \cap L^2$; $\|e^{-tH_0}\psi\|_4 \le \|\psi\|_2$ all t > T for some large T. Under various conditions on V, e.g. if $V \in L^2(M, d\mu)$ and V is bounded from below, $H_0 + V$ has been proven essentially self-adjoint on $D(H_0) \cap D(V)$. In an appendix we extend this theorem to show essential self-adjointness on $C^\infty(H_0) \cap D(V)$ (Theorem A.1).

- (ii) Hermite Operators. $(\mathbb{R}^m, \pi^{-m/2}e^{-x^2}d^mx)$ is a measure space of total mass 1. Consider the map $U: L^2(\mathbb{R}^m, d^mx) \to L^2(\mathbb{R}^m, d\mu)$ where $d\mu$ is the above Gaussian measure; $(Uf)(x) = \pi^{m/4}e^{+x^2/2}f(x)$. U has the following properties:
 - (a) U is unitary,
 - (b) $UVU^{-1} = V$ when V is any multiplication operator,
 - (c) $U(-\Delta + x^2 1)U^{-1} = -\Delta + 2x \cdot \nabla$.

This latter operator $-\Delta + 2x \cdot V$ has Hermite polynomials as eigenfunctions and is sometimes called a Hermite operator. It has one important property:

Theorem 3 Nelson [20]). $-\Delta + 2x \cdot V$ as an operator on $L^2(\mathbb{R}^m, d\mu)$ is the generator of a hypercontractive semigroup.

Proofs of this fact are also discussed in several other references, e.g. [24, 27].

(iii) Konrady's Trick and the Kato-Wüst Theorem · Konrady [14] has introduced a simple trick that sometimes works in proving A + B essentially self-adjoint on some set. First choose a third operator C so that A + C is self-adjoint and so that A + C + B is self-adjoint (e.g. if B is a Kato small perturbation of A^2 , one might take $C = A^2$). Then one tries to prove

$$||C\psi||^2 \le ||(A+C+B)\psi||^2 + b^2||\psi||^2$$

for some b and all ψ in a core for A+C+B. It then follows that A+B=A+C+B-C is essentially self-adjoint on any core for A+C+B for one has the following theorem of Kato [13] (recently strengthened by Wüst [33], although we don't need the strengthened version):

Theorem 4. If X is self-adjoint and Y is symmetric, and for some b and all w in a core for X:

$$||Y\psi||^2 \le ||X\psi||^2 + b^2||\psi||^2$$

then X + Y is essentially self-adjoint on any core for X.

(iv) The Double Commutator Trick. To apply Theorem 4 in the case where X = A + C + B and Y = -C, one needs an operator inequality $C^2 \le (A + B + C)^2 + b^2$ or equivalently $0 \le (A + B)^2 + C(A + B) + (A + B)$ $C + b^2$. If C and A + B are positive, Jaffe [8] has noted that the identity

$$C(A+B)+(A+B)C=2C^{\frac{1}{2}}(A+B)C^{\frac{1}{2}}+[C^{\frac{1}{2}},[C^{\frac{1}{2}},(A+B)]]$$

is often useful.

§3. Proof of Theorems 1 and 2

We first note that it is easy to show that $\mathscr{G}\subset D(\overline{-\Delta+V} \cap C_0^\infty)$ so we need only prove $-\Delta+V$ is essentially self-adjoint on \mathscr{G} . Let $H_0=-\Delta+x^2-1$. Then $C^\infty(H_0)=\mathscr{G}$ (see e.g. [25]). Thus $C^\infty(H_0)\subset D(V)$ so it is sufficient to prove $-\Delta+V$ essentially self-adjoint on $C^\infty(H_0)\cap D(V)=C^\infty(H_0)$. Without loss, we may suppose $V\geq 0$. Let us first consider H_0+V . Let $U:L^2(\mathbb{R}^m,dx)\to L^2(\mathbb{R}^m,\pi^{-m/2}e^{-x^2}dx)$ as in §2. Let $H_0'=UH_0U^{-1}$. By Theorem 3, H_0' generates a hypercontractive semigroup. Moreover, $V=UVU^{-1}$ is in $L^2(\mathbb{R}^m,\pi^{-m/2}e^{-x^2}dx)$ and if

 $V=\sum_i V_i+\sum_{i,\ j} V_{i\ j},\ V\in L^2(\mathbb{R}^{m\ n},\pi^{-m\ n/2}\,e^{-x^2}\,d\ x)$, so by Theorem A.1, $H_0'+V$ is essentially self-adjoint on $C^\infty(H_0')\cap D(V)$. Thus H_0+V+1 is essentially selfadjoint on $C^\infty(H_0)\cap D(V)=\mathscr{S}$.

Next, let us prove that

$$x^4 \le (H_0 + V + 1)^2 + 2m$$
.

First note, that (as forms on $\mathscr{S} \times \mathscr{S}$):

$$(1 + H_0 + V)^2 = (-\Delta + V)^2 + x^4 + x^2(-\Delta + V) + (-\Delta + V)x^2$$

= $(-\Delta + V)^2 + x^4 + 2\sum_{i=1}^m x_i(-\Delta + V)x_i + \sum_{i=1}^m [x_i, [x_i, (-\Delta + V)]].$

Since $(-\Delta + V)^2$ and $-\Delta + V$ are positive and $[x_i, [x_i, (-\Delta + V)]]$ = $-2, (H_0 + 1 + V)^2 + 2m \ge x^4$.

Thus, for any $w \in \mathcal{S}$.

$$||x^2\psi||^2 \le ||(H_0 + V + 1)\psi||^2 + 2m||\psi||^2$$
.

Since $\mathscr S$ is a core for $H_0 + V$, Theorem 4 pells us that $\mathscr S$ is a core for $-\Delta + V = H_0 + V - x^2 + 1$.

§ 4. Some Conjectures

It is clearly not necessary for V to be bounded at ∞ for our methods to imply $-\Delta + V$ is essentially self-adjoint. It is enough that V be bounded by some $e^{+\alpha x^2}$ in the sense that $\int |V(x)|^2 e^{-2\alpha x^2} dx < \infty$. This, of course, suggests:

Conjecture 1. If V > 0 and $V \in L^2(\mathbb{R}^m)_{loc}$, then $-\Delta + V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$.

By working hard, our methods could probably handle $-\Delta + V$ where $V = V_+ - V_-(V_+, V_- \ge 0)$ with $V_+ \in L^p + L^\infty$, $V_- \in (L^q)_{\text{comp}}$ for some p > 2 and q > m/2 (here $(L^q)_{\text{comp}}$ means the L^q functions of compact support). However, we suspect:

Conjecture 2. If $V = V_+ - V_-$; $V_+, V_- \ge 0$; $V_+ \in L^2(\mathbb{R}^m)_{loc}$ and $V_- \in L^p(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$, p > m/2, then $-\Delta + V$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^m)$.

The strongest conjecture suggested by this line of reasoning is:

Conjecture 3. If $V \in L^2(\mathbb{R}^m)_{loc}$ and $-\Delta + V$ is bounded from below on $C_0^{\infty}(\mathbb{R}^m)$, then $-\Delta + V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$.

In case, $m \le 3$, Conjecture 3 is a result of Stetkaer-Hansen [29]; however if $m \ge 5$ Conjecture 3 is false as we show by counterexample in Appendix 2.

Unfortunately the tricks we have used to prove Theorems 1 and 2 will not prove Conjecture 2. Perhaps their most interesting "application" is that they suggest Conjecture 2 is true and that they will therefore motivate someone to prove it!

Appendix 1

Some New Results in the Theory of Hypercontractive Semigroups

Segal's theorem [24] says that under certain circumstances $H_0 + V$ is essentially self-adjoint on $D(H_0) \cap D(V)$. We wish to show here that under those circumstances, $H_0 + V$ is essentially self-adjoint on $C^{\infty}(H_0) \cap D(V)$.

We recall that a hypercontractive semigroup [27] is a family e^{-tH_0} generated by a self-adjoint operator, H_0 , on $L^2(M, d\mu)$ for some probability measure space $(M, d\mu)$, so that

- (i) e^{-tH_0} is a contraction on each L^p $(1 \le p \le \infty; 0 \le t)$.
- (ii) e^{-tH_0} is bounded from L^2 to L^4 for some T > 0.

We recall that interpolation theorems imply [24, 27]:

(ii') For any $1 < r, s < \infty, e^{-tH_0}$ is bounded from L^r to L^s for t sufficiently large.

The first step in our improvement is to note (all lemmas and the theorem suppose e^{-tH_0} is hypercontractive):

Lemma A.1. Let $1 \le p \le 2$. Then $\{e^{-tH_0}\}_{t \ge 0}$ is strongly continuous on $[0, \infty)$ and if $2 \ge p > 1$, Ker $(e^{-tH_0} \upharpoonright L^p) = \{0\}$. Proof. Since the maps $e^{-tH_0} \upharpoonright L^p$ are uniformly bounded, it is sufficient

Proof. Since the maps $e^{-iH_0}
V$ are uniformly bounded, it is sufficient to prove $e^{-tH_0} \psi$ is strongly continuous for a dense set of ψ . Since p < 2, L^2 is dense in L^p and continuity of $e^{-tH_0} \psi$ in L^2 implies L^p continuity. Fix 2 > p > 1. By the Stein interpolation theorem (interpolation in arg z) [28], e^{-zH_0} is bounded from L^p for z in a sectorial neighborhood of $(0, \infty)$. Since $e^{-zH_0} \psi$ is L^2 and hence L^p analytic when $\psi \in L^2$, $e^{-zH_0} \psi$ is L^p -analytic in a neighborhood of $(0, \infty)$ for any $\psi \in L^p$. Now suppose $e^{-tH_0} \psi = 0$ for some $\psi \in L^p$ and some $t \in (0, \infty)$. By the semigroup property, $e^{-sH_0} \psi = 0$ for $s \ge t$. By the analyticity, $e^{-sH_0} \psi = 0$ for all $s \in (0, \infty)$. Finally, by strong continuity, $\psi = s$ -lim $e^{-sH_0} \psi = 0$. \square

Lemma A.2. Let $2 \le p < \infty$. Then $\{e^{-tH_0}\}_{t \ge 0}$ is strongly continuous on $[0, \infty)$.

Remarks. 1. Even without hypothesis (ii), one can prove strong continuity on each L^p by using the analyticity techniques used in Lemma A.1. 2. e^{-tH_0} may not be strongly continuous on L^{∞} . For example, if $H_0 = -\frac{d^2}{dx} + 2x\frac{d}{dx}$ on $(\mathbb{R}, \pi^{-\frac{1}{2}}e^{-x^2}dx)$, $e^{-tH_0}[L^{\infty}] \subset C^{\infty}(H_0)$

 $\equiv \{e^{+x^2}/^2 f | f \in \mathcal{S}\}\$ contains only continuous functions, so $e^{-tH_0}\psi$ does not converge in L^{∞} if ψ is L^{∞} but discontinuous.

Proof. By uniform boundedness, we need only prove $e^{-tH_0}\psi$ is L^p -continuous for a dense subset of ψ . Pick T so that e^{-TH_0} is bounded from L^2 to L^p . By Lemma A.1, $\operatorname{Ker}(e^{-TH_0} \upharpoonright L^p) = \{0\}$ where $q^{-1} + p^{-1} = 1$. As a consequence, $\operatorname{Ran}(e^{-TH_0} \upharpoonright L^p)$ is dense in L^p . A fortiori, $e^{-TH_0}[L^2]$ is dense in L^p . But if $\psi \in L^2$, $e^{-tH_0}\psi$ is L^2 -continuous so $e^{-tH_0}(e^{-TH_0}\psi) = e^{-TH_0}(e^{-tH_0}\psi)$ is L^p -continuous. \square

In case $p = \infty$, e^{-tH_0} may not be strongly continuous but we have the weaker:

Lemma A.3. If $\psi \in L^{\infty}$ and $V \in L^{p}$ $(p < \infty)$ then

$$Ve^{-tH_0}\psi \xrightarrow{L^p} V\psi$$
 as $t\to 0$.

Proof. First suppose $V \in L^{\infty}$. Then the result follows from Lemma A.2. If $V \in L^{\infty}$, choose $V_n \in L^{\infty}$ with $V_n \to V$ in L^p . Since $\{e^{-tH_0}\psi\}$ is L^{∞} bounded a simple argument proves that $Ve^{-tH_0}\psi - V\psi \to 0$ in L^p .

Finally we need the essential self-adjointness of $H_0 + V$ in the following form proven in [24] and [27]:

Lemma A.4. (a) Let $V \in L^p$ for some p > 2, $e^{-tV} \in L^1$ for all t > 0. Then $H_0 + V$ is essentially self-adjoint on $L^q \cap D(H_0) \cap D(V)$ for any $q < \infty$.

(b) Let $V \in L^2$; V bounded from below. Then $H_0 + V$ is essentially selfadjoint on $L^{\infty} \cap D(H_0) \cap D(V)$.

Remark. The symbols $D(H_0)$, D(V), $C^{\infty}(H_0)$ always refer to L^2 -domain. We thus conclude:

Theorem A.1. Under either hypothesis (a) or (b) of Lemma A.4, $H_0 + V$ is essentially self-adjoint on $C^{\infty}(H_0) \cap D(V)$.

Remarks. 1. In both the field theory case and the case we discuss here $C^{\infty}(H_0) \subset D(V)$ but this need not be so $\left(\text{e.g. } H_0 = -\frac{d^2}{dx^2} + 2x\frac{d}{dx}\right)$ on $(\mathbb{R}, \pi^{-\frac{1}{2}} e^{-x^2} dx)$; $V = e^{|x|}$.

- 2. Actually, we will prove essential self-adjointness on $\mathfrak{A}(H_0) \cap D(V)$ where $\mathfrak{A}(H_0)$ is the set of analytic vectors for H_0 [17],
- 3. In the $P(\Phi)_2$ field theory, this essential self-adjointness is a result of Rosen [22], who used "higher order estimates". It is perhaps a little surprising that these H.O.E. are not needed for the result.

Proof. Since $H_0 + V$ is symmetric on $C^{\infty}(H_0) \cap D(V)$, we need only find a core inside $C^{\infty}(H_0) \cap D(V)$. We consider case (b); case (a) is proved similarly using Lemma A.2 in place of Lemma A.3. By Lemma A.4, we need only find for any $\psi \in L^{\infty} \cap D(H_0) \cap D(V)$, a sequence $\psi_n \in C^{\infty}(H_0) \cap D(V)$

with $\psi_n \xrightarrow{L^2} \psi$, $V\psi_n \xrightarrow{L^2} V\psi$ and $H_0\psi_n \xrightarrow{L^2} H_0\psi$. Let $\psi_n = e^{-H_0/n}\psi \in C^\infty(H_0) \cap L^\infty \subset C^\infty(H_0) \cap D(V)$. That $\psi_n \xrightarrow{L^2} \psi$ and $H_0\psi_n \xrightarrow{L^2} H_0\psi$ follow from strong continuity on L^2 . That $V\psi_n \xrightarrow{L^2} V\psi$ follows from Lemma A.3. \square

Appendix 2

A Counterexample

Let $m \ge 5$ and let H_0 be $-\Delta$ on $L^2(\mathbb{R}^m, dx)$. Let $V = -r^{-2}$. Then:

(a) $V \in (L^2)_{loc}$.

(b) V is H_0 – bounded.

(c) $H_0 + \alpha V$ is bounded from below on $D(H_0)$ if and only if $\alpha \le \frac{1}{4}(m-1)(m-3) + \frac{1}{4}$.

(d) $H_0 + \alpha V$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^m)$ if and only if $\alpha \leq \frac{1}{4}(m-1)(m-3)-\frac{3}{4}$.

(a) is trivial. Since V is in weak L^{m-2} (i.e. $v\{x||V(x)|>t\} \le Ct^{-m-2}$ where v is Lebesque measure), (b) follows from a result of Strichartz [30]. Alternatively, (b) can be proven from an inequality of Rellich discussed in [23]. To prove (c) and (d), notice first that, by (b), if D is any core for H_0 , then the closure of $H_0 + V \upharpoonright D$ is the same as the closure of $H_0 + V$ (defined on $D(H_0)$). Moreover since $m \ge 5$, $C_0^{\infty}(\mathbb{R}^m \backslash \{0\})$ is easily seen to be a core for H_0 (this fact remains true even if m = 4, but it is much harder to prove in that case). Thus we need only prove (c) [respectively (d)] when $D(H_0)$ [respectively $C_0^{\infty}(\mathbb{R}^m)$] is replaced by $C_0^{\infty}(\mathbb{R}^m \backslash \{0\})$.

Let f_{ml} be a complete set of eigenfunctions for the Laplace-Beltrami operator, A, on the m-1 sphere, so $Af_{ml} = a_{ml}f_{ml}$. Here $a_{m0} = 0$ and $a_{ml} \ge 0$ for all l. Let $\mathscr{H}_{ml} = \{g(r)r^{(n-1)/2}f_{ml}|g \in L^2(0,\infty)\}$. Then H_0 and V leave \mathscr{H}_{ml} invariant and under the natural equivalence of \mathscr{H}_{ml} and $L^2(0,\infty)$, H_0 acts as

$$\tilde{H}_{0; ml} = -\frac{d^2}{dr^2} + \alpha_{ml}r^{-2}$$

where $\alpha_{ml} = \frac{1}{4}(m-1)(m-3) + a_{ml}$. Thus, to prove (c) and (d) we must only prove:

(c') On $L^2(0, \infty)$, $-\frac{d^2}{dr^2} - \alpha r^{-2}$ is bounded from below if and only if $\alpha \le \frac{1}{4}$.

(d') On $L^2(0, \infty)$, $-\frac{d^2}{dr^2} - \alpha r^{-2}$ is essentially self-adjoint if and only if $\alpha \le -\frac{3}{4}$.

- (c') is well known (see [4], pp. 446-447). (d') follows from a simple application of the Weyl limit point limit circle method (see [2]). (a) (d) have a number of negative consequences:
 - 1. "Conjecture" 3 in §4 is false if $m \ge 5$ for take $\alpha = \frac{1}{4}(m-1)(m-3)$.
- 2. It is possible to have an analytic family of type (B) (in the sense of [13]) in a region R (in this case $|\alpha| < \frac{1}{4}(m-1)(m-3) + \frac{1}{4}$) which is of type (A) in a strict subregion of R (in this case excluding $\frac{1}{4}(m-1)(m-3) \frac{3}{4} < \alpha < \frac{1}{4}(m-1)(m-3) + \frac{1}{4}$).
- 3. One cannot prove essential self-adjointness of $H_0 + W$ when W is H_0 bounded of relative bound larger than 1, even if one knows that $aH_0 + V$ is positive for some a < 1.

Since it may be surprising to some that essential self-adjointness breaks down before semiboundedness, let us make a few remarks about the phenomena. First, let us explain semi-heuristically the mathematics behind the phenomena: Let u solve the ordinary differential equation, $u'' = \alpha r^{-2} u$. Then $u_{\pm} = r^{\beta} \pm$ where β_{\pm} solves $\beta(\beta - 1) = \alpha$, i.e.

$$\beta_{\pm} = \frac{1}{2}(-1 \pm \sqrt{1+4\alpha})$$
.

Boundedness from below is related to β_{\pm} being real (see [15], pp. 120 – 121 for a heuristic explanation of this) while by the Weyl criterion, essential self-adjointness requires one of u_{\pm} to be non- L^2 at r=0, i.e. $\beta_{-} \le -\frac{1}{2}$, i.e. $\alpha \ge \frac{3}{4}$.

From another point of view, this is just the difference between quantum mechanics from a form point of view [26] and from an operator point of view. Essential self-adjointness on $D(H_0) \cap D(V)$ is a useful technical result but the crucial physical requirement is that $H_0 + V$ as a sum of forms be closable on $Q(H_0) \cap Q(V)$ so that the sum of forms defines a self-adjoint operator. Semi-boundedness and this closability break down at the same point. In fact on the more familiar \mathbb{R}^3 , this breakdown of essential self-adjointness before semiboundedness occurs also; $-\Delta - r^{-\beta}$ is self-adjoint on $D(-\Delta)$ only if $\beta < \frac{3}{2}$ but it is semibounded if $\beta < 2$ and in the range $\frac{3}{2} < \beta < 2$, all the usual quantum mechanics can be developed [26].

It is a pleasure to thank P. Chernoff, D. Masson, E. Nelson and L. Rosen for useful conversation or correspondence related to the material of Appendix 2.

Note Added in Proof: Conjectures 1 and 2 have been proven by T. Kato, Proc. Jerusalem Conf. Func. Anal., 1972 (to appear).

References

- Brownell, F.: A note on Kato's uniqueness criterion for Schrödinger operator selfadjoint extensions. Pacific J. Math. 9, 953—973 (1959).
- Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw Hill 1953.

- 3. Cook, J.: Convergence to the Møller wave-matrix. J. Math. and Physics 36, 82-87 (1957).
- 4. Courant, R., Hilbert, D.: Methods of mathematical physics, I. New York; Interscience, 1953.
- 5. Faris, W.: The product formula for semigroups defined by Friedrichs' extension. Pacific J. Math. 22, 47—70 (1967).
- 6. Glimm, J., Jaffe, A.: Field theory models. In: 1970 Les Houches Lectures. Ed. Stora, R. DeWitt, C. New York: Gordon and Breach 1971.
- 7. Ikebe, T., Kato, T.: Uniqueness of self-adjoint extensions of singular elliptic differential operators. Arch. Rat. Mech. Anal. 9, 77—92 (1962).
- 8. Jaffe, A.: Dynamics of a Cutoff $\lambda \phi^4$ field theory. Princeton University Thesis, 1965.
- 9. Jörgens, K.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_0^{\infty}(G)$. Math. Scand. 15, 5—17 (1964).
- Jörgens, K.: Spectral theory of Schrödinger operators. University of Colorado Lecture Notes, 1970.
- 11. Kalf, H., Walter, J.: Strongly singular potentials and essential self-adjointness of singular elliptic operators in C_0^∞ ($R^n \setminus \{0\}$). J. Func. Anal. (to appear).
- 12. Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70, 195—211 (1951).
- 13. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.
- 14. Konrady, J.: Almost positive perturbations of positive selfadjoint Operators. Commun. Math. Phys. 22, 295—299 (1971).
- 15. Landau, L., Lifshitz, E.: Quantum mechanics. Reading, Mass.: Addison-Wesley, 1958.
- 16. Müller-Pfeiffer, E.: Über die Lokalisierung des wesentlichen Spektrums des Schrödinger-Operators. Math. Nachr. 46, 157—170 (1970).
- 17. Nelson, E.: Analytic vectors. Ann. Math. 70, 572-615 (1959).
- 18. Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math Phys. 5, 332—343 (1964).
- 19. Nelson, E.: A quartic interaction in two dimensions In: Proc. Conf. Math. Theory Elem. Particles. M.I.T. Press, 69—73, 1966.
- 20. Nelson, E.: Topics in dynamics, I. Princeton, Princeton University Press 1969.
- 21. Reed, M., Simon, B.: Methods of modern mathematical Physics, I. New York: Academic Press. 1972.
- 22. Rosen, L.: The $(\phi^{2n})_2$ Quantum field theory: Higher order estimates. Comm. Pure Appl. Math. 24 417—457 (1971).
- 23. Schmincke, U.-W.: Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z. 124, 47—50 (1972).
- 24. Segal, I.: Construction of nonlinear local quantum processes, I. Ann. Math. 92 462-481 (1970).
- 25. Simon, B.: Distributions and their hermite expansions. J. Math. Phys. 12, 140—148 (1971).
- 26. Simon, B.: Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971.
- 27. Simon, B., Höegh-Krohn, R.: Hypercontractive semigroups and self-coupled bose fields in two-dimensional space-time. J. Func. Anal. 9, 121—180 (1972).
- 28. Stein, E.: Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Study 63 (1970).
- 29. Stetkaer-Hansen, H.: A Generalization of a theorem of Wienholtz concerning essential self-adjointness of singular elliptic operators. Math. Scand. 19, 108—112 (1966).
- 30. Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031—1060 (1967).

- 31. Stummel, F.: Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann. 132, 150—176 (1956).
- 32. Walter, J.: Note on a paper by Stetkaer-Hansen concerning essential self-adjointness of Schrödinger operators. Math. Scand. 25, 94—96 (1969).
- 33. Wüst, R.: Generalizations of Rellich's theorem on perturbation of (essentially) self-adjoint operators. Math. Z. 119, 276—280 (1971).

Prof. Barry Simon Princeton University Princeton, N.J. 08540 (USA)

(Received January 24, 1972; in revised form April 20, 1972)