Essential Self-Adjointness of Schrödinger Operators with Positive Potentials

B. Simon*

§ 1. Introduction

It is an amusing mathematical game to study questions of the essential self-adjointness of $-A + V$ despite the fact that for most of the Schrödinger operators of physical interest, the necessary result has been known for twenty years [12] and for the others for almost ten years [31, 7].

Let us first consider a one body system in an external potential where V is bounded at ∞ in the sense that $V \in L^p + L^\infty$ for some p. The best general self-adjointness result for such potentials seems to be:

Theorem (Nelson-Faris). Let

(a) $V \in L^p(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$, $m \leq 3$,
(b) $V \in L^p(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$, $p > 2$,
(c) $V \in L^{m/2}(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$, $m \geq 5$.

Then $-A + V$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^m)$ as an operator on $L^2(\mathbb{R}^m)$.

Remarks. 1. (a) is the famous result of Kato [12]; (b) and (c) for L^p with $p > m/2$ are due to Nelson [18] although in a slightly different form they appear in Stummel [31] and Brownell [1].

2. The $L^{m/2}$ result for $m \geq 5$ seems to have first been noted by Faris [5]; see also Jörgens [10] and Müller-Pfeiffer [16].

If we allow V's of arbitrary sign, the conditions of the Nelson-Faris theorem cannot be much improved (in case $m \geq 4$) for $-A - cr^{-2}$ is not essentially self-adjoint on $C_0^\infty(\mathbb{R}^m)$ for c large, and $r^{-2} \in L^p(\mathbb{R}^m) + L^\infty(\mathbb{R}^m)$ for any $p < m/2$.

On the other hand, if V is positive we expect that we may be able to do better. First, we know that if $V \in L^1 + L^\infty$, $V \geq 0$, then $-A + V$ can be defined as a form sum on C_0^∞ which is closable and so associated with a self-adjoint operator. (Form techniques are described in [20, 21].) Second, in case V is non locally L^p ($p > n/2$) on a small set and positive, one can sometime prove self-adjointness results, for example:

Example. ([9]; see also [32, 11, 23]).

* Sloan Foundation Fellow.
Let $V = V_1 + V_2$ where $V_2 \in L^p(\mathbb{R}^n) + L^\infty(\mathbb{R}^n)$; $p > m/2$, $m \geq 4$. Let $V_1 \in L^2(\mathbb{R}^n)$, with V_1 locally $L^p (p > m/2)$ away from 0. Suppose $V_1 \geq 0$. Then $-A + V$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^n)$.

One thus expects that one should be able to handle a fairly large class of positive L^2 potentials, in fact:

Theorem 1. Let $V \in L^2(\mathbb{R}^n) + L^\infty(\mathbb{R}^n)$ be bounded from below. Then $-A + V$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^n)$.

This is the main result of this paper. It has an n-body analog:

Theorem 2. Let $\{V_i\}_{i=1}^n$ and $\{V_{ij}\}_{1 < j \leq n}$ be in $L^2(\mathbb{R}^n) + L^\infty(\mathbb{R}^n)$ and bounded from below. Then $- \sum_{i=1}^n A_i + \sum_{i \neq j} V_{ij} (r_i - r_j)$ as an operator on $L^2(\mathbb{R}^n)$ is essentially self-adjoint on $C_0^\infty(\mathbb{R}^n)$.

Remark. If the v_i, $V_i \in L^2 + L^p$, $p < n$, one can use Cook's method to construct wave operators [3].

The techniques we use to prove Theorems 1 and 2 were originally developed to study two dimensional self-coupled Bose field models [6]. It is something of a joke that methods invented to treat relativistic models which are unphysical because space has too small a dimension turn out to be useful to treat non-relativistic models which are unphysical because space has too big a dimension.

§ 2. The Tools

There are four main tools we need to prove Theorems 1 and 2:

(i) The Abstract Theory of Hypercontractive Semigroups. This theory is an abstraction of some techniques in constructive quantum field theory [6] originating with Nelson [19]. The abstract self-adjointness theorem (see Lemma A.4) is due to Segal [24] with refinements by Simon-Hoegh Krohn [27]. An operator H_0 on $L^2(M, d\mu)$ where M is a measure space of total mass 1 is said to generate a hypercontractive semigroup if H_0 is self-adjoint and e^{-tH_0} obeys estimates $\|e^{-tH_0}v\|_p \leq \|v\|_p$ all $t > 0$, all $1 \leq p \leq \infty$ and all $v \in L^p \cap L^2$; $\|e^{-tH_0}v\|_4 \leq \|v\|_2$ all $t > T$ for some large T. Under various conditions on V, e.g. if $V \in L^2(M, d\mu)$ and V is bounded from below, $H_0 + V$ has been proven essentially self-adjoint on $D(H_0) \cap D(V)$. In an appendix we extend this theorem to show essential self-adjointness on $C_0^\infty(H_0) \cap D(V)$ (Theorem A.1).

(ii) Hermite Operators. $(\mathbb{R}^n, \pi^{-m/2} e^{-\xi^2} d^n x)$ is a measure space of total mass 1. Consider the map $U : L^2(\mathbb{R}^n, d^n x) \to L^2(\mathbb{R}^n, d\mu)$ where $d\mu$ is the above Gaussian measure; $(Uf)(x) = \pi^{m/4} e^{\xi^2/2} f(x)$. U has the following properties:

(a) U is unitary,
(b) $UVU^{-1} = V$ when V is any multiplication operator,
(c) $U(-A + x^2 - 1)U^{-1} = -A + 2x \cdot V$.

This latter operator \(-\Delta + 2x \cdot V\) has Hermite polynomials as eigenfunctions and is sometimes called a Hermite operator. It has one important property:

Theorem 3 Nelson [20]). \(-\Delta + 2x \cdot V\) as an operator on \(L^2(\mathbb{R}^n, d\mu)\) is the generator of a hypercontractive semigroup.

Proofs of this fact are also discussed in several other references, e.g. [24, 27].

(iii) Konrad’s Trick and the Kato-Wüst Theorem. Konrad [14] has introduced a simple trick that sometimes works in proving \(A + B\) essentially self-adjoint on some set. First choose a third operator \(C\) so that \(A + C\) is self-adjoint and so that \(A + C + B\) is self-adjoint (e.g. if \(B\) is a Kato small perturbation of \(A^2\), one might take \(C = A^2\)). Then one tries to prove

\[
\|C\psi\|^2 \leq \|(A + C + B)\psi\|^2 + b^2\|\psi\|^2
\]

for some \(b\) and all \(\psi\) in a core for \(A + C + B\). It then follows that \(A + B = A + C + B - C\) is essentially self-adjoint on any core for \(A + C + B\) for one has the following theorem of Kato [13] (recently strengthened by Wüst [33], although we don’t need the strengthened version):

Theorem 4. If \(X\) is self-adjoint and \(Y\) is symmetric, and for some \(b\) and all \(\psi\) in a core for \(X\):

\[
\|Y\psi\|^2 \leq \|X\psi\|^2 + b^2\|\psi\|^2
\]

then \(X + Y\) is essentially self-adjoint on any core for \(X\).

(iv) The Double Commutator Trick. To apply Theorem 4 in the case where \(X = A + C + B\) and \(Y = -C\), one needs an operator inequality

\[
C^2 \leq (A + B + C)^2 + b^2 \text{ or equivalently } 0 \leq (A + B)^2 + C(A + B) + (A + B) C + b^2.
\]

If \(C\) and \(A + B\) are positive, Jaffe [8] has noted that the identity

\[
C(A + B) + (A + B)C = 2C(A + B)C + [C, [C, (A + B)]]
\]

is often useful.

§3. Proof of Theorems 1 and 2

We first note that it is easy to show that \(\mathcal{S} \subset D(\mathcal{C} \circ \mathcal{C}^\mathcal{D})\) so we need only prove \(-\Delta + V\) is essentially self-adjoint on \(\mathcal{S}\). Let \(H_0 = -\Delta + x^2 - 1\). Then \(C^\mathcal{D}(H_0) = \mathcal{S}\) (see e.g. [25]). Thus \(C^\mathcal{D}(H_0) \subset D(V)\) so it is sufficient to prove \(-\Delta + V\) essentially self-adjoint on \(C^\mathcal{D}(H_0) \cap D(V) = C^\mathcal{D}(H_0)\). Without loss, we may suppose \(V \geq 0\). Let us first consider \(H_0 + V\). Let \(U : L^2(\mathbb{R}^n, dx) \to L^2(\mathbb{R}^n, \pi^{-m/2} e^{-x^2} dx)\) as in §2. Let \(H_0 = U H_0 U^{-1}\). By Theorem 3, \(H_0\) generates a hypercontractive semigroup. Moreover, \(V = U V U^{-1}\) is in \(L^2(\mathbb{R}^n, \pi^{-m/2} e^{-x^2} dx)\) and if
\[V = \sum_i V_i + \sum_{i,j} V_{ij}, \quad V \in L^2(\mathbb{R}^m, \pi^{-m/2} e^{-x^2} \, dx) \], so by Theorem A.1, \(H_0 + V \) is essentially self-adjoint on \(C^\infty(\mathbb{R}^m) \cap D(V) \). Thus \(H_0 + V + 1 \) is essentially self-adjoint on \(C^\infty(\mathbb{R}^m) \cap D(V) = \mathcal{S} \).

Next, let us prove that

\[x^2 \leq (H_0 + V + 1)^2 + 2m. \]

First note, that (as forms on \(\mathcal{S} \times \mathcal{S} \)):

\[
(1 + H_0 + V)^2 = (-A + V)^2 + x^4 + x^2(-A + V) + (-A + V)x^2
\]

\[= (-A + V)^2 + x^4 + 2 \sum_{i=1}^m x_i(-A + V)x_i + 2 \sum_{i=1}^m [x_i, x_i, (-A + V)] \cdot x^4. \]

Since \((-A + V)^2\) and \(-A + V\) are positive and \([x_i, x_i, (-A + V)]\) is the commutator of \(-A + V\),

Thus, for any \(\psi \in \mathcal{S} \),

\[\|x^2 \psi\|^2 \leq \| (H_0 + V + 1) \psi \|^2 + 2m \| \psi \|^2. \]

Since \(\mathcal{S} \) is a core for \(H_0 + V \), Theorem 4 tells us that \(\mathcal{S} \) is a core for \(-A + V = H_0 + V - x^2 + 1\).

\section*{4. Some Conjectures}

It is clearly not necessary for \(V \) to be bounded at \(\infty \) for our methods to imply \(-A + V\) is essentially self-adjoint. It is enough that \(V \) be bounded by some \(e^{\epsilon x^2} \) in the sense that \(\int V(x)^2 e^{-2x^2} \, dx < \infty \). This, of course, suggests:

Conjecture 1. If \(V > 0 \) and \(V \in L^2(\mathbb{R}^m)_{\text{loc}} \), then \(-A + V\) is essentially self-adjoint on \(C_0^\infty(\mathbb{R}^m) \).

By working hard, our methods could probably handle \(-A + V\) where \(V = V_+ - V_- \), \(V_+ , V_- \geq 0 \) with \(V_+ \in L^p + L^\infty \), \(V_- \in (L^q)_{\text{comp}} \) for some \(p > 2 \) and \(q > m/2 \) (here \((L^q)_{\text{comp}}\) means the \(L^q \) functions of compact support). However, we suspect:

Conjecture 2. If \(V = V_+ - V_- ; V_+ , V_- \geq 0 \); \(V_+ \in L^2(\mathbb{R}^m)_{\text{loc}} \) and \(V_- \in L^p(\mathbb{R}^m) + L^q(\mathbb{R}^m) \), \(p > m/2 \), then \(-A + V\) is essentially self-adjoint on \(C_0^\infty(\mathbb{R}^m) \).

The strongest conjecture suggested by this line of reasoning is:

Conjecture 3. If \(V \in L^2(\mathbb{R}^m)_{\text{loc}} \) and \(-A + V\) is bounded from below on \(C_0^\infty(\mathbb{R}^m) \), then \(-A + V\) is essentially self-adjoint on \(C_0^\infty(\mathbb{R}^m) \).

In case, \(m \leq 3 \), Conjecture 3 is a result of Stetkaer-Hansen [29]; however if \(m \geq 5 \) Conjecture 3 is false as we show by counterexample in Appendix 2.
Unfortunately the tricks we have used to prove Theorems 1 and 2 will not prove Conjecture 2. Perhaps their most interesting “application” is that they suggest Conjecture 2 is true and that they will therefore motivate someone to prove it!

Appendix 1

Some New Results in the Theory of Hypercontractive Semigroups

Segal’s theorem [24] says that under certain circumstances \(H_0 + V \) is essentially self-adjoint on \(D(H_0) \cap D(V) \). We wish to show here that under those circumstances, \(H_0 + V \) is essentially self-adjoint on \(C^\omega(H_0) \cap D(V) \).

We recall that a hypercontractive semigroup [27] is a family \(e^{-tH_0} \) generated by a self-adjoint operator, \(H_0 \), on \(L^2(M, d\mu) \) for some probability measure space \((M, d\mu) \), so that

(i) \(e^{-tH_0} \) is a contraction on each \(L^p \) (\(1 \leq p \leq \infty \); \(0 \leq t \)).

(ii) \(e^{-tH_0} \) is bounded from \(L^2 \) to \(L^q \) for some \(T > 0 \).

We recall that interpolation theorems imply [24, 27]:

(ii') For any \(1 < r, s < \infty \), \(e^{-tH_0} \) is bounded from \(L^r \) to \(L^s \) for \(t \) sufficiently large.

The first step in our improvement is to note (all lemmas and the theorem suppose \(e^{-tH_0} \) is hypercontractive):

Lemma A.1. Let \(1 \leq p \leq 2 \). Then \(\{e^{-tH_0}\}_{t \geq 0} \) is strongly continuous on \([0, \infty) \) and if \(2 \leq p > 1 \), \(\text{Ker} (e^{-rH_0} \uparrow L^p) = \{0\} \).

Proof. Since the maps \(e^{-tH_0} \uparrow L^p \) are uniformly bounded, it is sufficient to prove \(e^{-tH_0} \psi \) is strongly continuous for a dense set of \(\psi \). Since \(p < 2 \), \(L^2 \) is dense in \(L^p \) and continuity of \(e^{-tH_0} \psi \) in \(L^2 \) implies \(L^p \) continuity. Fix \(2 > p > 1 \). By the Stein interpolation theorem (interpolation in arg \(z \) [28], \(e^{-zH_0} \) is bounded from \(L^p \) to \(L^q \) for \(z \) in a sectorial neighborhood of \((0, \infty) \). Since \(e^{-zH_0} \psi \) is \(L^2 \) and hence \(L^p \) analytic when \(\psi \in L^2 \), \(e^{-zH_0} \psi \) is \(L^p \)-analytic in a neighborhood of \((0, \infty) \) for any \(\psi \in L^p \). Now suppose \(e^{-tH_0} \psi = 0 \) for some \(\psi \in L^p \) and some \(t \in (0, \infty) \). By the semigroup property, \(e^{-zH_0} \psi = 0 \) for \(s \geq t \). By the analyticity, \(e^{-zH_0} \psi = 0 \) for all \(s \in (0, \infty) \). Finally, by strong continuity, \(\psi = s \lim_{z \to 0} e^{-zH_0} \psi = 0 \). ☐

Lemma A.2. Let \(2 \leq p < \infty \). Then \(\{e^{-tH_0}\}_{t \geq 0} \) is strongly continuous on \([0, \infty) \).

Remarks. 1. Even without hypothesis (ii), one can prove strong continuity on each \(L^p \) by using the analyticity technique used in Lemma A.1.

2. \(e^{-tH_0} \) may not be strongly continuous on \(L^\infty \). For example, if \(H_0 = -d^2/dx + 2x d/dx \) on \((\mathbb{R}, \pi^{-\frac{1}{2}} e^{-x^2} d\mu) \), \(e^{-tH_0} [L^\infty] \subset C^\omega(H_0) \)
\[\{ e^{x^2/2} f | f \in \mathcal{S} \} \] contains only continuous functions, so \(e^{-itH_0} \psi \) does not converge in \(L^\infty \) if \(\psi \) is \(L^\infty \) but discontinuous.

Proof. By uniform boundedness, we need only prove \(e^{-itH_0} \psi \) is \(L^p \)-continuous for a dense subset of \(\psi \). Pick \(T \) so that \(e^{-iT H_0} \) is bounded from \(L^2 \) to \(L^p \). By Lemma A.1, \(\text{Ker}(e^{-iT H_0} \uparrow L^p) = \{ 0 \} \) where \(q^{-1} + p^{-1} = 1 \). As a consequence, \(\text{Ran}(e^{-iT H_0} \uparrow L^p) \) is dense in \(L^p \). A fortiori, \(e^{-iT H_0}[L^2] \) is dense in \(L^p \). But if \(\psi \in L^2 \), \(e^{-iT H_0} \psi \) is \(L^2 \)-continuous so \(e^{-iT H_0}(e^{-iT H_0} \psi) = e^{-iT H_0}(e^{-iT H_0} \psi) \) is \(L^p \)-continuous. \(\square \)

In case \(p = \infty \), \(e^{-itH_0} \) may not be strongly continuous but we have the weaker:

Lemma A.3. If \(\psi \in L^\infty \) and \(V \in L^p \) \((p < \infty)\) then

\[V e^{-itH_0} \psi \xrightarrow{L^p} V \psi \quad \text{as} \quad t \to 0. \]

Proof. First suppose \(V \in L^\infty \). Then the result follows from Lemma A.2. If \(V \in L^2 \), choose \(V_n \in L^2 \) with \(V_n \to V \) in \(L^p \). Since \(\{ e^{-iT H_0} \psi \} \) is \(L^2 \) bounded a simple argument proves that \(\forall \psi \) bounded \(\forall \psi \to 0 \) in \(L^p \).

Finally we need the essential self-adjointness of \(H_0 + V \) in the following form proven in [24] and [27]:

Lemma A.4. (a) Let \(V \in L^p \) for some \(p > 2 \), \(e^{-iV} \in L^1 \) for all \(t > 0 \). Then \(H_0 + V \) is essentially self-adjoint on \(L^2 \cap D(H_0) \cap D(V) \) for any \(q < \infty \).

(b) Let \(V \in L^2 \); \(V \) bounded from below. Then \(H_0 + V \) is essentially self-adjoint on \(L^2 \cap D(H_0) \cap D(V) \).

Remark. The symbols \(D(H_0) \), \(D(V) \), \(C^\infty(H_0) \) always refer to \(L^2 \)-domain.

We thus conclude:

Theorem A.1. Under either hypothesis (a) or (b) of Lemma A.4, \(H_0 + V \) is essentially self-adjoint on \(C^\infty(H_0) \cap D(V) \).

Remarks. 1. In both the field theory case and the case we discuss here \(C^\infty(H_0) \subset D(V) \) but this need not be so \((\text{e.g. } H_0 = -\frac{d^2}{dx^2} + 2x \frac{d}{dx}\) on \((\mathbb{R}, \pi^{-\frac{1}{2}} e^{-x^2} dx)\); \(V = e^{ix} \)).

2. Actually, we will prove essential self-adjointness on \(\mathfrak{A}(H_0) \cap D(V) \) where \(\mathfrak{A}(H_0) \) is the set of analytic vectors for \(H_0 \) [17],

3. In the \(D(\phi_2) \) field theory, this essential self-adjointness is a result of Rosen [22], who used "higher order estimates". It is perhaps a little surprising that these H.O.E. are not needed for the result.

Proof. Since \(H_0 + V \) is symmetric on \(C^\infty(H_0) \cap D(V) \), we need only find a core inside \(C^\infty(H_0) \cap D(V) \). We consider case (b); case (a) is proved similarly using Lemma A.2 in place of Lemma A.3. By Lemma A.4, we need only find for any \(\psi \in L^p \cap D(H_0) \cap D(V) \), a sequence \(\psi_n \in C^\infty(H_0) \cap D(V) \)
with \(\psi_n \xrightarrow{L^2} \psi \), \(V \psi_n \xrightarrow{L^2} V \psi \) and \(H_0 \psi_n \xrightarrow{L^2} H_0 \psi \). Let \(\psi_n = e^{-H_0/\alpha} \psi \in C^0(H_0) \cap L^p \subseteq C^0(H_0) \cap D(V) \). That \(\psi_n \xrightarrow{L^2} \psi \) and \(H_0 \psi_n \xrightarrow{L^2} H_0 \psi \) follow from strong continuity on \(L^2 \). That \(V \psi_n \xrightarrow{L^2} V \psi \) follows from Lemma A.3. \(\square \)

Appendix 2

A Counterexample

Let \(m \geq 5 \) and let \(H_0 = -\Delta \) on \(L^2(\mathbb{R}^m, dx) \). Let \(V = -r^{-2} \). Then:

(a) \(V \in (L^2)_{\text{loc}} \).

(b) \(V \) is \(H_0 \) - bounded.

(c) \(H_0 + \alpha V \) is bounded from below on \(D(H_0) \) if and only if \(\alpha \leq \frac{1}{2}(m - 1)(m - 3) + \frac{1}{2} \).

(d) \(H_0 + \alpha V \) is essentially self-adjoint on \(C_0^\infty(\mathbb{R}^m) \) if and only if \(\alpha \leq \frac{1}{2}(m - 1)(m - 3) - \frac{1}{2} \).

(a) is trivial. Since \(V \) is in weak \(L^{\infty} \) (i.e. \(v \{x \| V(x) > t \} \leq C t^{-m/2} \)) where \(v \) is Lebesgue measure, (b) follows from a result of Strichartz [30]. Alternatively, (b) can be proven from an inequality of Rellich discussed in [23]. To prove (c) and (d), notice first that, by (b), if \(D \) is any core for \(H_0 \), then the closure of \(H_0 + V \) is the same as the closure of \(H_0 + V \) (defined on \(D(H_0) \)). Moreover since \(m \geq 5 \), \(C_0^\infty(\mathbb{R}^m \setminus \{0\}) \) is easily seen to be a core for \(H_0 \) (this fact remains true even if \(m = 4 \), but it is much harder to prove in that case). Thus we need only prove (c) [respectively (d)] when \(D(H_0) \) [respectively \(C_0^\infty(\mathbb{R}^m) \)] is replaced by \(C_0^\infty(\mathbb{R}^m \setminus \{0\}) \).

Let \(f_{\mathfrak{m}l} \) be a complete set of eigenfunctions for the Laplace-Beltrami operator, \(A \), on the \(m-1 \) sphere, so \(Af_{\mathfrak{m}l} = a_{\mathfrak{m}l} f_{\mathfrak{m}l} \). Here \(a_{m0} = 0 \) and \(a_{ml} \geq 0 \) for all \(l \). Let \(\mathfrak{H}_{\mathfrak{m}l} = \{f(r) e^{-1/2} f_{\mathfrak{m}l} \mid f \in L^2(0, \infty) \} \). Then \(H_0 \) and \(V \) leave \(\mathfrak{H}_{\mathfrak{m}l} \) invariant and under the natural equivalence of \(\mathfrak{H}_{\mathfrak{m}l} \) and \(L^2(0, \infty), H_0 \) acts as

\[
\tilde{H}_0; \; ml = -\frac{d^2}{dr^2} + a_{\mathfrak{m}l} r^{-2}
\]

where \(a_{\mathfrak{m}l} = \frac{1}{2}(m - 1)(m - 3) + a_{ml} \). Thus, to prove (c) and (d) we must only prove:

(c') On \(L^2(0, \infty), -\frac{d^2}{dr^2} - \alpha r^{-2} \) is bounded from below if and only if \(\alpha \leq \frac{1}{2} \).

(d') On \(L^2(0, \infty), -\frac{d^2}{dr^2} - \alpha r^{-2} \) is essentially self-adjoint if and only if \(\alpha \leq -\frac{1}{4} \).
(c') is well known (see [4], pp. 446–447). (d') follows from a simple application of the Weyl limit point limit circle method (see [2]). (a)–(d) have a number of negative consequences:

1. "Conjecture" 3 in §4 is false if \(m \geq 5 \) for take \(\alpha = \frac{1}{4} (m - 1)(m - 3) \).

2. It is possible to have an analytic family of type (B) (in the sense of [13]) in a region \(R \) (in this case \(|x| < \frac{1}{4} (m - 1)(m - 3) + \frac{1}{2} \)) which is of type (A) in a strict subregion of \(R \) (in this case excluding \(\frac{1}{4} (m - 1)(m - 3) - \frac{1}{2} < |x| < \frac{1}{4} (m - 1)(m - 3) + \frac{1}{2} \)).

3. One cannot prove essential self-adjointness of \(H_0 + W \) when \(W \) is \(H_0 \)–bounded of relative bound larger than 1, even if one knows that \(aH_0 + V \) is positive for some \(a < 1 \).

Since it may be surprising to some that essential self-adjointness breaks down before semiboundedness, let us make a few remarks about the phenomena. First, let us explain semi-heuristically the mathematics behind the phenomena: Let \(u \) solve the ordinary differential equation, \(u'' = \alpha r^{-2} u \). Then \(u_\pm = r^\beta \pm \) where \(\beta_\pm \) solves \(\beta (\beta - 1) = \alpha \), i.e.

\[
\beta_\pm = \frac{1}{2} (-1 \pm \sqrt{1 + 4 \alpha})
\]

Boundedness from below is related to \(\beta_\pm \) being real (see [15], pp. 120–121 for a heuristic explanation of this) while by the Weyl criterion, essential self-adjointness requires one of \(u_\pm \) to be non-\(L^2 \) at \(r = 0 \), i.e. \(\beta_\pm \leq -\frac{1}{2} \), i.e. \(\alpha \leq \frac{1}{4} \).

From another point of view, this is just the difference between quantum mechanics from a form point of view [26] and from an operator point of view. Essential self-adjointness on \(D(H_0) \cap D(V) \) is a useful technical result but the crucial physical requirement is that \(H_0 + V \) as a sum of forms be closable on \(Q(H_0) \cap Q(V) \) so that the sum of forms defines a self-adjoint operator. Semi-boundedness and this closability break down at the same point. In fact on the more familiar \(\mathbb{R}^d \), this break-down of essential self-adjointness before semiboundedness occurs also; \(-A - r^{-2} \) is self-adjoint on \(D(-A) \) only if \(\beta < \frac{d}{2} \) but it is semibounded if \(\beta < 2 \) and in the range \(\frac{d}{4} < \beta < 2 \), all the usual quantum mechanics can be developed [26].

It is a pleasure to thank P. Chernoff, D. Masson, E. Nelson and L. Rosen for useful conversation or correspondence related to the material of Appendix 2.

References

Prof. Barry Simon
Princeton University
Princeton, N.J. 08540 (USA)

(Received January 24, 1972; in revised form April 20, 1972)