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Essential Self-Adjointness of Schrédinger
Operators with Positive Potentials

B. Simon*

§ 1. Introduction

It is an amusing mathematical game to study questions of the essential
self-adjointness of — 4 + V despite the fact that for most of the Schrédinger
operators of physical interest, the necessary result has been known for
twenty years [12] and for the others for almost ten years [31, 7].

Let us first consider a one body system in an external potential where
V is bounded at oo in the sense that Ve [P + L® for some p. The best
general self-adjointness result for such potentials seems to be:

Theorem (Nelson-Faris). Let

(@) Ve Z(R™)+ L*(R™), m<3,

(b) Ve F(RY) + L*(RY), p>2,

() Ve L'"*(R™)+ L*(R™), mX=5.

Then — A+ V is essentially self-adjoint on C3 (R™) as an operator on
LZ(R™).

Remarks. 1. (a) is the famous result of Kato [12]; (b) and (c) for L*
with p>m/2 are due to Nelson [18] although in a slightly different form
they appear in Stummel [31] and Brownell [1].

2. The I™? result for m 2 5 seems to have first been noted by Faris [5];
see also Jorgens [10] and Miiller-Pfeiffer [16].

If we allow V’s of arbitrary sign, the conditions of the Nelson-Faris
theorem cannot be much improved (in case m = 4) for — A —cr~2 is not
essentially self-adjoint on C¥(R™) for ¢ large, and r "2 e I’(R™) + L* (R™)
for any p <m/2.

On the other hand, if Vis positive we expect that we may be able to
do better. First, we know that if Ve I! + I°, V=0, then — 4 + V can be
defined as a form sum on CJ which is closable and so associated with a
self-adjoint operator. (Form techniques are described in [20, 21].)
Second, in case Vis non locally I? (p > n/2) on a small set and positive,
one can sometime prove self-adjointness results, for example:

Example. ([9]; see also [32, 11, 23]).

* Sloan Foundation Fellow.
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Let V=V, +V, where V,€LP(R")+ L*(R"™); p>m/2, m=4. Let
¥, € L*(R™), with V] locally L? (p > m/2) away from 0. Suppose ¥, = cr~?
(¢c>1). Then —A4 + V is essentially self-adjoint on Cg (R™).

One thus expects that one should be able to handle a fairly large
class of positive I? potentials, in fact:

Theorem 1. Let Ve L*(R™)+ L*(R™ be bounded from below. Then
— 4 + Vis essentially self-adjoint on C§ (IR™).
This is the main result of this paper. It has an n-body analog:

Theorem 2. Let {V;}i_, and {V,}I.;-, be in [*(R™)+ L*(R™) and
bounded from below. Then — Y A+ Vi(r)+ ) V;i(r;—r; as an

i=1 i i<
operator on I?(R™") is essentially self-adjoint on C ‘6°(IR"J').

Remark. If the V,, V€ I* + I, p <n, one can use Cook’s method to
construct wave operators [3].

The techniques we use to prove Theorems 1 and 2 were originally
developed to study two dimensional self-coupled Bose field models [6].
It is something of a joke that methods invented to treat relativistic models
which are unphysical because space has too small a dimension turn out
to be useful to treat non-relativistic models which are unphysical because
space has too big a dimension.

§2. The Tools

There are four main tools we need to prove Theorems 1 and 2:
(i) The Abstract Theory of Hypercontractive Semigroups. This theory is an
abstraction of some techniques in constructive quantum field theory [6]
originating with Nelson [19]. The abstract self-adjointness theorem (see
Lemma A.4) is due to Segal [24] with refinements by Simon-Hoegh Krohn
[27]. An operator H, on I*(M, du) where M is a measure space of total
mass 1 is said to generate a hypercontractive semigroup if H, is self-
adjoint and e ™" #o obeys estimates || e "y ||p < ||y||,allt >0,all 1 S p< 0
andallye I’ N [*; |e”"Hoy|, < |y|, all t>T for some large T. Under
various conditions on V, e.g. if Ve I?(M,dy) and V is bounded from
below, H,+V has been proven essentially self-adjoint on D(H,) N
D(V). In an appendix we extend this theorem to show essential self-
adjointness on C*(H,) n D(V) (Theorem A.1).

(ii) Hermite Operators. (R", n~™2e~* d"x) is a measure space of
total mass 1. Consider the map U: I*(R™, d™x)— [*(R™, d u) where d u is
the above Gaussian measure; (Uf)(x) =n™* e***/2 f(x). U has the follo-
wing properties:

(a) U is unitary,

(b) UVU~! =V when V is any multiplication operator,

© U=4+x2— 1)U '=—-4+2x-V.
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This latter operator — 4 +2x - ¥ has Hermite polynomials as eigen-
functions and is sometimes called a Hermite operator. It has one
important property:

Theorem 3 Nelson [20]). — 4 +2x-F as an operator on L*(R™, d y1)
is the generator of a hypercontractive semigroup.

Proofs of this fact are also discussed in several other references,
e.g. [24,27].

(iii) Konrady’s Trick and the Kato-Wiist Theorem - Konrady [14] has
introduced a simple trick that sometimes works in proving A+ B
essentially self-adjoint on some set. First choose a third operator C so
that A + C is self-adjoint and so that 4 + C + B is self-adjoint (e.g. if B is
a Kato small perturbation of A%, one might take C = 42). Then one tries
to prove

ICw|* <4+ C+Byw|* +b*|w|*

for some b and all v in a core for A+ C+ B. It then follows that
A+B=A+C+B—C is essentially self-adjoint on any core for
A+ C+B for one has the following theorem of Kato [13] (recently
strengthened by Wiist [33], although we don’t need the strengthened
version):

Theorem 4. If X is self-adjoint and Yis symmetric, and for some b and all
Y ina core for X :
[Yv[* <[ Xw|*+b%[v]?

then X + Yis essentially self-adjoint on any core for X.

(iv) The Double Commutator Trick. To apply Theorem 4 in the case
where X=A4+C+B and Y= —C, one needs an operator inequality
C?<(A+ B+ C)*+b? or equivalently 0< (4 + B> + C(A+ B)+ (A + B)
C+ b2 If C and A + B are positive, Jaffe [8] has noted that the identity

C(A+B)+ (A +B)C=2C*+B)C* + [C,[CY (4 + B)]]

is often useful.

§3. Proof of Theorems 1 and 2

We first note that it is easy to show that & C D(—4 + VIMC7) so we
need only prove —A4+V is essentially self-adjoint on &. Let
Hy= —A4+ x*—1.Then C*(H,) = & (see e.g. [25]). Thus C*(H,)C D(V)
so it is sufficient to prove —A4+ V essentially self-adjoint on
C®(Hy)NnD(V)= C*®(H,). Without loss, we may suppose V' =0. Let us
first consider H, + V. Let U : 2(R™,dx)— [*(R",n ™%~ **dx) as in §2.
Let Hy=UH,U!. By Theorem 3, H, generates a hypercontractive
semigroup. Moreover, V=UVU™! is in 2R™,n"™2e"**dx) and if
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V=3 Vi+Y V,, Ve *(R"",n ™"?e"*dx) , so byTheoremA.1, Hy + V

i i, J
is essentially self-adjoint on C*(Hy)n D(V). Thus Hy+ V + 1 is essentially
selfadjoint on C*(H,)ND(V)= &.
Next, let us prove that

XS Hy+V+1)24+2m.
First note, that (as forms on & x %):
(A+Hy+VP=(=4+VP+x*+x3(=A44+V)+(—4+ V)x?

=(=4+VP+x*+2 Y x(=4+V)xi+ Y [x, [x: (—4+V)]].
i=1 i=1
Since (—4+W* and —A+V are positive and [x; [x;,(—4+ V)]]
=—2,(Hy+1+V) +2m=x*.
Thus, for any p € &,

[%*w]* | (Ho + V+ Dw|* +2m|p]*.

Since & is a core for Hy+ V; Theorem 4 fells us that & is a core for
—A+V=Hy+V-x*+1.

§4. Some Conjectures

It is clearly not necessary for V' to be bounded at oo for our methods
to imply —A4+ V is essentially self-adjoint. It is enough that V be
bounded by some e**** in the sense that [|V(x)|2e” 2***dx < co. This,
of course, suggests:

Conjecture 1. If V>0 and Ve I*(R™),, then —4+V is essentially
self-adjoint on C§ (R™).

By working hard, our methods could probably handle — 4 + V where
V=V, -V_(V,,V_20) with V, € L* + L*, V. € (L*)omp for some p>2
and g >m/2 (here (L) ,m, means the L? functions of compact support).
However, we suspect:

Conjecture2. f V=V, —-V_; V,,V_20; V, e (R, and V_e
DP(R™)+ L°(R™), p>m/2, then —A4+V is essentially self-adjoint on
C3 (R™).

The strongest conjecture suggested by this line of reasoning is:

Conjecture 3. If Ve *(R™),,. and —4 + V is bounded from below on
Cy(R™), then — 4 + Viis essentially self-adjoint on C§(R™).

In case, m£3, Conjecture 3 is a result of Stetkaer-Hansen [29];
however if m=5 Conjecture 3 is false as we show by counterexample in
Appendix 2.
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Unfortunately the tricks we have used to prove Theorems 1 and 2
will not prove Conjecture 2. Perhaps their most interesting “application”
is that they suggest Conjecture 2 is true and that they will therefore
motivate someone to prove it!

Appendix 1
Some New Results in the Theory of Hypercontractive Semigroups

Segal’s theorem [24] says that under certain circumstances Hy+ V
is essentially self-adjoint on D(H,)nD(V). We wish to show here that
under those circumstances, H,+ V is essentially self-adjoint on
C*(H)N D).

We recall that a hypercontractive semigroup [27] is a family e~
generated by a self-adjoint operator, H,, on L*(M,dy) for some
probability measure space (M, d u), so that

(i) e”"Mois a contraction on each I’ (1<p < 00;0=¢).

(ii) e *Ho is bounded from 12 to L* for some T > 0.
We recall that interpolation theorems imply [24, 27]:

(i) Forany1<r,s< oo,e” "Hoisbounded from L to L* for ¢ sufficiently
large.

The first step in our improvement is to note (all lemmas and the
theorem suppose e ~*Ho is hypercontractive):

Lemma A.1. Let 1<p<2. Then {e "o}, is strongly continuous on
[0, o) and if2= p> 1, Ker (e~ *Ho } [P) = {0}.

Proof. Since the maps e~ "Ho } [P are uniformly bounded, it is sufficient
to prove e *Hoy is strongly continuous for a dense set of . Since p <2,
I? is dense in I? and continuity of e~ *#oy in L? implies I? continuity. Fix
2>p>1. By the Stein interpolation theorem (interpolation in arg 2z)
[28], e~ #He is bounded from Z? to L* for z in a sectorial neighborhood of
(0, o). Since e~ *Hoy is [? and hence I? analytic when ye IZ, e *Hoy is
IP-analytic in a neighborhood of (0, o) for any y € I’. Now suppose
e~ Moy = O for some y € I and some t € (0, c0). By the semigroup property,
e sHoyy =0 for s>t By the analyticity, e *#oyp =0 for all se(0, ).
Finally, by strong continuity, y = s-lim e SHopy=0.

tHo

Lemma A.2. Let 2<p< co. Then {e""’°},§(J is strongly continuous

on [0, ).
Remarks. 1. Even without hypothesis (ii), one can prove strong conti-
nuity on each I? by using the analyticity techniques used in Lemma A.1.
2. e *Ho may not be strongly continuous on L. For example,
if Hy=—d*dx+2xd/dx on (R, n te ¥dx), e "Ho[L*]CC®(H,)



216 B. Simon:

={e***/2f|f € &} contains only continuous functions, so e~ *Hoy does
not converge in L* if p is L* but discontinuous.

Proof. By uniform boundedness, we need only prove e "Hoy is
I?-continuous for a dense subset of y. Pick Tso that e~ T#o is bounded
from I? to I?. By Lemma A.1, Ker(e™7#o M [9) = {0} where g ' + p~ 1 = 1.
As a consequence, Ran(e™"#o} 1?) is dense in I?. A fortiori, e~ THo[[2]
is dense in I*. But if ye I?, e”'Hoy is I2-continuous so e *Ho(e~ THoy)
= e~ THo(g~tHoyy) js IP-continuous. []

In case p= oo, e~ '#o may not be strongly continuous but we have the
weaker:

Lemma A.3. Ifyel*and V € If (p < o) then
Ve 'Hoy K, yy as t-0.

Proof. First suppose Ve L. Then the result follows from Lemma A.2.
If Ve L, choose V, € L* with V,— V in I*. Since {e "Hoy) is L bounded
a simple argument proves that Ve t#op — Vyp—-0in I7. [

Finally we need the essential self-adjointness of H,+ V in the
following form proven in [24] and [27]:

Lemma A.4. (a) Let Ve I” for some p>2, e~ "V € I! for all t > 0. Then
Hy +V is essentially self-adjoint on L*nD(H y)~D(V) for any q < .

(b) Let Ve I2; V bounded from below. Then H,+ V is essentially self-
adjoint on L nD(Hy)n D(V).
Remark. The symbols D(H,), D(V), C*(H,) always refer to I?-domain.
We thus conclude:

Theorem A.1. Under either hypothesis (a) or (b) of Lemma A4,
Hg + V is essentially self-adjoint on C*(Hg)nD(V).
Remarks. 1. In both the field theory case and the case we discuss here
2
C*(H,)CD(V) but this need not be so (e.g. Hy= - —(i(sz + 2x—d£1;
on(R,n~* e *dx); V=e!*l).
2. Actually, we will prove essential self-adjointness on
W(H)ND(V) where U(H,) is the set of analytic vectors for H, [17],
3. In the P(®), field theory, this essential self-adjointness is a
result of Rosen [22], who used “higher order estimates”. It is perhaps a
little surprising that these H.0.E. are not needed for the result.

Proof. Since Hy+ V is symmetric on C°(H,)nD(V), we need only
find a core inside C*(H,)nD(V). We consider case (b); case (a) is proved
similarly using Lemma A .2 in place of Lemma A .3. By Lemma A .4, we need
only find for any y e L°*D(Ho)nD(V), a sequence y, € C*(Hy)nD(V)
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with yp, Ly, Vy, L5 Vy and Hyp, > Hoyp. Let yp,=e Ho"pe
C*(H))NnL* CC*(Hy)nD(V). That y,—L>yp and Hyyp,— Hyyp
follow from strong continuity on I?. That Vy,—=> Vy follows from
LemmaA.3. O

Appendix 2
A Counterexample

Let m =5 and let H, be —4 on [2(R™,dx). Let V= —r~2 Then:

(@) Ve (L),

(b) Vis H,— bounded .

(c) Hy+aV is bounded from below on D(Hy) if and only if
asim—1)(m—3)+3.

(d) Hy+aV is essentially self-adjoint on C§(R™ if and only if
a=im—1)(m—3)-3.

(a)is trivial. Since V is in weak I 2 (i.e. v {x||V (x)| > t} < Ct™™ ? where
v is Lebesque measure), (b) follows from a result of Strichartz [30].
Alternatively, (b) can be proven from an inequality of Rellich discussed in
[23]. To prove.(c) and (d), notice first that, by (b), if D is any core for Hy,
then the closure of H,+ VD is the same as the closure of Hy+V
(defined on D(H,)). Moreover since m = 5, Cg (R™\{0}) is easily seen to be
a core for H, (this fact remains true even if m =4, but it is much harder
to prove in that case). Thus we need only prove (c) [respectively (d)] when
D(H,) [respectively Cg (R™)] is replaced by Cg (R™\{0}).

Let f,, be a complete set of eigenfunctions for the Laplace-Beltrami
operator, A, on the m—1 sphere, s0 Af,;=a,.f.. Here a,,=0 and
a,; =0 for all . Let #,,, = {g(r)r™~** f,ulge I*(0, )}. Then H, and V
leave ,, invariant and under the natural equivalence of #,, and
I2(0, o0), H, acts as

2
ﬁo; m= & + or 2

dr?

where a,, = +(m — 1) (m — 3) + a,,. Thus, to prove (c) and (d) we must only

prove:
2

(c) OnL2(0, ©), — —:7 — or~2 is bounded from below if and only
fa<i

(d) On I2(0, o©), — 7;27 — ar~? is essentially self-adjoint if and only
fag -3
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(¢') is well known (see [4], pp. 446 —447). (d) follows from a simple
application of the Weyl limit point limit circle method (see [2]). (a)—(d)
have a number of negative consequences:

L. “Conjecture” 3 in §4 is false if m> 5 for take a=2%(m— 1) (m— 3).

2. It is possible to have an analytic family of type (B) (in the sense of
[13]) in a region R (in this case |o| < (m — 1) (m — 3) +4) which is of type
(4) in a strict subregion of R (in this case excluding (m— 1) (m —3)
—3<a<im—1)(m-3)+3).

3. One cannot prove essential self-adjointness of H,+ W when W
is Hy — bounded of relative bound larger than 1, even if one knows that
aH,+ V is positive for some a < 1.

Since it may be surprising to some that essential self-adjointness
breaks down before semiboundedness, let us make a few remarks about
the phenomena. First, let us explain semi-heuristically the mathematics
behind the phenomena: Let u solve the ordinary differential equation,
u’=or ?u. Then u, =’ + where B, solves f(B— 1)=a, i.c.

Bi=3(-11)1+40q).

Boundedness from below is related to 8, being real (see [15], pp. 120 — 121
for a heuristic explanation of this) while by the Weyl criterion, essential
self-adjointness requires one of u, to be non-Z? at r=0, ie. f_ < —14,
ie. o = g

From another point of view, this is just the difference between
quantum mechanics from a form point of view [26] and from an operator
point of view. Essential self-adjointness on D(H,)nD(V) is a useful
technical result but the crucial physical requirement is that Ho+ V as a
sum of forms be closable on Q(H,)NQ(V) so that the sum of forms
defines a self-adjoint operator. Semi-boundedness and this closability
break down at the same point. In fact on the more familiar R3, this break-
down of essential self-adjointness before semiboundedness occurs also;
—4—r7# is self-adjoint on D(— 4) only if f <3 but it is semibounded if
B <2 and in the range 3 < < 2, all the usual quantum mechanics can be
developed [26].

It is a pleasure to thank P. Chernoff, D. Masson, E. Nelson and L. Rosen for useful
conversation or correspondence related to the material of Appendix 2.

Note Added in Proof: Conjectures 1 and 2 have been proven by T. Kato, Proc.
Jerusalem Conf. Func. Anal, 1972 (to appear).
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