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ABSTRACT.We relate the decomposition over [a ,  b] of a measure d p  (on IR ) 
into absolutely continuous, pure point, and singular continuous pieces to the 

b 
behavior of integrals S(Im F ( x  + ie))p d x  as e 1 0 .  Here F is the Borel 

a 

transform of d p  , that is, F ( z )  = S ( x  - z)-I dp(x)  . 

Given any positive measure p on B with 

one can define its Borel transform by 

We have two goals in this note. One is to discuss the relation of the decomposi- 
tion of p into components ( d p  = dp,, +dppp+dpsc with dp,,(x) = g(x)  dx  , 
dppp a pure point measure, and dp,, a singular continuous measure) to inte- 
grals of powers of Im F(x+ie) . This is straightforward, and global results (e.g., 

00 

involving J IIm F ( x +  ie)I2 dx  ) are well known to harmonic analysts (see, e.g., 
-00 

Koosis [5, pg. 1571)-but there seems to be a point in writing down elementary 
b 

proofs of the local results (eg., involving J IIm F ( x  + ie)I2 d x  ). 
a 

Secondly, by proper use of these theorems, we can simplify the proofs in [7] 
that certain sets of operators are Gd's in certain metric spaces. 

b 
In $2,we will see that J IIm F(x+ie)lP dx  with p > 1 is sensitive to singular 

a 
parts of d p  and can be used to prove they are absent. In $3, we see the opposite 
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3750 B. SIMON 

results when p < 1 and the singular parts are irrelevant, so that integrals can be 
used for a test of whether pa, = 0 .  Finally, in $4, we turn to the aforementioned 
results on Gs sets of operators. 

Since we only discuss Im F( z ) and 

IrnF(x + ic) = c J (x :;Ui € 2  , 

our results actually hold if (1.1) is replaced by 

2. p-NORMS FOR P > 1 

Theorem 2.1. Fix p > 1. Suppose that 

sup 1b 

lImF(x + ic)lP d x  < m. 
O < t < l  

a 

Then d p  is purely absolutely continuous on ( a ,  b) , % E LP(a, b) ; and for 
any [c , dl c ( a ,  b) , Im F ( x  + ic) converges to % in LP . Conversely, if 
[a ,  b] c (e , f )  with d p  purely absolutely continuous on (e,f ), and if $j$ E 
LP(e, f ), then (2.1) holds. 

Remarks. 1. This criterion with p = 2 is used by Klein [4], who has a different 

proof. 


2. The p = 2 results can be viewed as following from Kato's theory of 
smooth perturbations [2,6]. 

3. It is easy to construct measures supported on R\(a ,  b) so that (2.1) 
fails or so that the LP norm oscillates, for example, suitable point measures 
C andx,,with x, 7 a .  For this reason, we are forced to shrinklexpand ( a ,  b) 
to (c ,d) l ( e ,  f ). 
Proof. Let dp, (x) = r l I m  F ( x  + ie)d x  . Then [8] dp, d p  weakly, as -t 

6 10 ,  that is, lim J f (x) dp, (x) = J f (x) dp(x) for f a continuous function 
F In 

of compact support. Let q be the dual index to p and f a continuous function 
supported in ( a ,  b) . Then 

Thus, f ++ J f d p  is a bounded functional on Lq , and thus x(, ,b ) d p  = g d x  
for some g E LP(a, b) . 

We claim that when x ( ~ ,  = g d x  with g E LP(a, b) , then for any b,  d p  
[c, dl c ( a ,  b) , Im F ( x  + ic) -+ g in LP(c, d)-this implies the remaining 
parts of the theorem. 
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To prove the claim, write F = Fl+F2where Fl comes from dpl  = x(, ,b) d p  
and dp2 = (1 -x ( ~ ,b) )  d p  . k Im Fl is a convolution of g d x  with an approxi-
mate delta function. So, by a standard argument, Im Fl -t g in LP . On the 
other hand, since dist([c , d l ,  B\(a , b)) > 0 ,  one easily obtains the bound 

IImF2(x+ iE)l 5 CE for x E [c, dl. 

The following is a local version of Wiener's theorem. 

Theorem 2.2. 
b 

1
(2.1) lim E / 11mF ( X + ~ E ) [ '  d x  = ~ ( { a ) ) ' + ~~ ( { b ) ) ~ +  P({x)l2)€10 

a xE(a ,b) 

Proof. Using (1.3), we see that 

/ ( ~ mF(X + if))' d x  = / / g C ( x , ~ ) d p ( x ) d ~ ( ~ ) ,  

where 

It is easy to see that for 0 < E < 1: 
I

(i) ,y) dist(x,[a,b])2+1 

(ii) lim g, (x,y) = 0 if x # y or x 4 [a ,  b] ,€10 
(iii) lim g,(x ,y) = 5 if x =y E ( a ,  b) ,€10 
(iv) l img,(x,  y ) = :  if x = y  is a or b .

€10 
Thus, the desired result follows from dominated convergence. 

b 
Remarks. 1. It is not hard to extend this to J IIm F(x + ic)lpd x  for any 

a 
00 

p > 1. The limit has J (1+x2)-p12d x  in place of n (which can be evaluated 
-00 

exactly in terms of gamma functions) and p({x))p in place of p({x))' ;for the' 
above proof extends to p an even integer. Interpolation then shows that the 
continuous part of p makes no contribution to the limit, and a simple argument 
restricts the result to a finite sum of point measure where it is easy. (Note: For 
1 <p < 2 ,  one interpolates between boundedness for p = 1 and the zero limit 
if p = 2 and p is continuous.) 

b 
2. On the other hand, sup E" J Im F(x + i ~ ) ~d x  for 0 < a < 1 says 

O < t < l  a 
something about how singular the singular part of d p  can be. If the sup is 
finite, then p(A) = 0 for any subset A of [a ,  b] with Hausdorff dimension 
d < 1 - a .  This will be proven in [I]. 
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Corollary 2.3. p has no pure points in [a ,  b] ifand only if 

(ImF(x + ik-1))2 d x  = 0. 

(Of course the limit exists, but we'll need this form in $4.) 

3. P-NORMS FOR P < 1 

Theorem 3.1. Fix p < 1 . Then 

a a 

First Proof. Write d p  as three pieces: dp l  = (1 - , b + l l )  d p ,  dp2 = g d xx ~ ~ - ~  
with g E L1 (a - 1,b + I ) ,  and dp3 singular and finite and concentrated on 
[a - 1 , b + 11 and correspondingly, F = Fl + F2+ F3. It is easy to see that 
IIm Fl(x + iE)l 5 CE on [a ,  b], so its contribution to the limit of the integral 
is 0. Since i Im F2(x+ ie) is a convolution of g with an approximate delta 
function, i Im F2-+ g in L1 , and so by Holder's inequality, 

S(;1mF2(x + i ~ ) ~ ~ d x+Sg(x)Pdx for anyp < 1. 
a a 

It thus suffices to prove that 

Let S be a set with p3(R\S) = 0 and IS1 = 0.  Given 6 ,  by regularity of 
measures, find C c S c b with C compact and b c (a - 2 ,  b + 1 )  open, 
so p(S\C) < 6 and Ib\SI < 6 ,  so p(R\C) < 6 and lbl < 6 .  Let h be a 
continuous function which is 1 on R \ b  and 0 on C . 

By Holder's inequality (with index ), 

for any set A . Noting that J(iIm F3)d x  = p3(R) < 00,we see that 
R 

On the other hand, 
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The last integral converges to J h ( x )d p 3 ( x )5 J d p 3 ( x )= p3(R\C) = 6 .  
w\c 

Thus 
b 

Since 6 is arbitrary, the 6is a zero-and so the limit is zero. 

Second Proof (suggested to me by T. Wolfl). As in the first proof, by writing p 
as a sum of a finite measure and a measure obeying ( 1 . 1 )  but supported away 
from [ a ,b],we can reduce the result to the case where p is finite. Let M P ( x )  
be the maximal function of p : 

M,(x) = sup (2 t ) - 'p (x- t ,  x + t ) .  
t>O 

By the standard Hardy-Littlewood argument (see, e.g., Katznelson [3]) ,  

which in particular implies 
h 

a 

for all p < 1 . 
Since k Im F ( x  + ic)  5 M, ( x )  for all E and k Im F ( a  + ic)  + ( & ) ( x )  

a.e. in x , the desired result follows by the dominated convergence theorem. 

Remark. The reader will note that the first proof is similar to the proof in [7] 
that the measures with no a.c. part are a Gs. In a sense, this part of our 
discussion in $4 is a transform for the proof of [7]to this proof instead! 

Corollary 3.2. A measure p has no absolutely continuous part on ( a ,  b )  ifand 
only if 

lim ] ImFiX + i k ) I 2 d x= 0.-
k-00 

4. Gs PROPERTIES OF SETS OF MEASURES AND OPERATORS 

Lemma 4.1. Let X be a topological space and f, : X + R a sequence of non-
negative continuous functions. Then { x  I lim,? ,00Fn(x)= 0 )  is a Gs. 
Proof. 

{ x (  -lim Fn(x)=O x l V k ~ N 3 ntN F , ( X )  < l }  
n-cc k 

As a corollary of this and Corollaries 2.3 and 3.2, we obtain a proof of the 
result of [9]. 
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Theorem 4.1. Let M be the set ofprobability measures on [a ,  b] in the topology 
of weak convergence (this is a complete metric space). Then {p I p is purely 
singular continuous) is a dense Gg . 
Proof. By Corollary 3.2 

and by Corollary 2.3 

so by Lemma 4.1, each is a Gg . Here we use the fact that p H F,(x + ie) is 
weakly continuous for each x , e > 0 and dominated above for each e > 0 ,  
so the integrals are weakly continuous. By the convergence of the Riemann-
Stieltjes integrals, the point measures are dense in M ,  so {p 1 p a  = 0 is 
dense. On the other hand, the fact that Im FP(x+ ie)d x  converge in M to 
d p  shows that the a.c. measures are dense in M ,  so {p I ppp= 0) is dense. 
Thus, by the Baire category theorem, {p I ppp= 0) n {p I pa, = 0) is a dense 
Gg! 

Finally, we recover our results in [7]. We call a metric space X of selfadjoint 
operators on a Hilbert space R' regular if and only if A, + A in the metric 
topology implies that A, + A in strong resolvent sense. (Strong resolvent 

I1 II convergence of selfadjoint operators means (A, - z)-lq - (A - z)-'q for 
all a, and all z with Im z # 0 .  Notice this implies that for any a ,  b ,p and 

b 
e > O  andany V C R ' ,  A ~ ~ I m ( q , ( A - ~ - i e ) - ~ q ) ~ d x = F ~ , b , ~ , ~ , ~ ( A )is 

a 
a continuous function in the metric topology. 

Theorem 4.3. For any open set b c R and any regular metricspace of operators, 
{A I A has no a.c. spectrum in b )  is a Gg . 
Proof. Any b is a countable union of intervals, so it suffices to consider the 
case b = ( a ,  b) . Let q, be an orthonormal basis for R'. Then 

{A I A has no a.c. spectrum in ( a ,  b)) = n{A I Fa, 112, ilk, V n  (A)) 
n k+w 

is a Ga by Lemma 4.1 and Corollary 3.2. 

Similarly, using Corollary 2.3, we obtain 

Theorem 4.4. For any interval [a ,  b] and any regular metric space of operators, 
{A I A has no point spectrum in [a ,  b]) is a Gs . 
Note. This is slightly weaker than the result in [7] but suffices for most applica-
tions. One can recover the full result of [7], namely Theorem 4.4 with [a ,  b] 
replaced by an arbitrary closed set K ,  by first noting that any closed set is 
a union of compacts, so it suffices to consider compact K . For each K , let 
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Kc = {x I dist(x, K) < E)  . Then one can show that if d p  has no pure points 
in K , then 

lime J
/ ( 1 m ~ , ( x + i c ) ) ~ d x = 0 ;  

€10 
Kc 

and if it does have pure points in K , then 

-lim k-' IImF(x + ik-')12 dx  > 0 
k-00 

Kc 

and Theorem 4.4 extends. 

It is a pleasure to thank S. Jitomirskaya, A. Klein, and T. Wolff for valuable 
discussions. 
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