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We consider a positive self-adjoint operator 4 and formal rank one perturbations
B=A+ap. ),

where pe #_.(A) but ¢ ¢ #_,(A), with #;(A) the usual scale of spaces. We show
that B can be defined for such ¢ and what are essentially negative infinitesimal
values of «. In a sense we will make precise, every rank one perturbation is one of
three forms: (i) o e #_,(A4), aeR; (i) ¢ #_;, 2= cc; or (iii) the new type we
consider here. € 1995 Academic Press, Inc.

1. INTRODUCTION

There has recently been considerable interest in the study of rank one
perturbations of positive self-adjoint operators (see [11, and Refs. therein]).
Let A >0 on a Hilbert space 3 and consider

B=A+x(¢, ). (1.1)

Simon-Wolff [12] first pointed out that a natural framework for this was
to consider ¢ € .#_,(A4), where #.(A) is the usual scale of spaces associated
to A; that is, if 20, #(A4)= D(|A}**) with the norm ||| given by

lplZ=<@. (A+1) @),

and if s <0, #(A) is the completion of 3# in the |||, norm. #, < #,if s> ¢
and one can define #, (A)=(), H.(A) and H_ _(A)=), #(A).
A *=# _1n a natural way.

When @ e #_(A), Y — |(, ¢)|* defines a quadratic form on Q(A4)=
A, ,(A), which is 4A-bounded with relative bound zero. So the standard

form perturbation theory [7, 10] lets one define (1.1) for any ae R.

* This material is based upon work supported by the National Science Foundation under
Grant DMS-9101715. The Government has certain rights in this material.
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Define

F(z)=(p,(4,—2) "' ¢) (1.2a)
F(zy=F,_o(2). (1.2b)

One easily proves the formulae (going back to Krein and Aronszajn),

F(z2)=F(z)/1 +aF(z) (1.3)
(A,—z2) 'o=(1+aF(z)) ' (A—z) ¢ (1.4a)
(A, —2) '=(Ad—z) ' —a(l +aF) " ((A—2)"" o, WA —z2) o

(1.4b)

From (1.4) one sees s-lim,_, .(A4,—z)"" exists. If ¢ ¢ H#(A)=H, it
defines an operator 4, on . This is studied in [5].
Our primary goal here is two-fold:

(a} To construct a family of rank one perturbations A4 +a(e, )¢
where ¢ ¢ #_,(A4) but only in #_,(A). Here a is infinitesimal.

(b) Every pair of semibounded operators with (4 +#) "' —(B+i) !
rank one can be written using the a(¢, -)¢ construction with ¢ € #_; and
o finite or infinite.

These two apparently paradoxical statements are not paradoxical
because in (b) we did not specify if B is a perturbation of A or vice-versa.
In fact, one can always label them so that 4 < B. Then we will show that
B=A+alop, ) with o e #_(A4) with ae [0, oo ]. If « < o0, then 4 can be
obtained from B by a rank one perturbation with ¢ € #_,(B). But if 2 = oo,
it 1s necessary to use the J# ,(B) construction to recover 4 from B.

At first, it is comforting that infinitesimal coupling is needed to undo
infinite coupling, but that feeling is unfounded. For multiplicative perturba-
tions, infinitesimal should undo infinite, but these perturbations are
additive. In fact, (#, )y with e #_,(B)/#_,(B) is so infinite we need
infinitesimal coupling to undo (g, )¢ with ¢ € #_,(A).

A theme that we will explore in this paper is that if 4, B have resolvents
that differ by a rank one, then there exists a symmetric operator C with
deficiency indices (1, 1) so that 4 and B are both self-adjoint extensions of
C. To say that Bis A +a(¢e, )¢ with a =oc and @ e # ,(A4) (equivalently
that A is B+ a(e, )@ with e #_,(B)/#_,(A) and « infinitesimal) is
equivalent to saying that B is the Friedrich’s extension. From this point of
view, our assertion (b) above is a special case of the Birman-Krein—Vishik
theory of quadratic forms of positive self-adjoint extensions [3, 8, 13, 6, 2].

In Section 2, we present the construction of rank one perturbations with
@€ H_,. In Section 3, we use resolvent ordering to prove assertion (b). In
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Section 4, we explain the relation of infinite and infinitesimal coupling. In
Section 5, we consider fairly general situations 4, =4 + o,(¢,, -)@, with ¢,
a cutoff of pe #__(A) and show that as n— oo, A, converges to A4 in
strong resolvent sense unless ¢ € # ,(A) or g€ # _,(A), a,<0 and a,— 0
at a suitable rate. This provides another view of the fact the only rank one
perturbations are the 5#_,(A4) and # ,(A) constructions. In Section 6, we
discuss the connection to the theory of self-adjoint extensions of deficiency
indices (1, 1). Finally, Section 7 presents some simple examples.

2. THE Basic #_,(A) CONSTRUCTION

Let pe # ,(A) so (4—z)"' ¢ makes sense for any z¢spec(A4) and in
particular, for Im z # 0. Motivated by (1.4), we try to construct a self-
adjoint operator whose resolvent R(z) obeys

Riz)y=(A—z2)""—0a(z) K(z2), (2.1a)
where

K(z)=((4=2)"" g, NA-2)""o. (2.1b)

The idea is to define R(z) by (2.1} and then to pick the unknown func-
tion o(z) in order that R obey the equation obeyed by any resolvent,

— = R(2)2 (2.2)

Since dK/dz=(A—z2)"' K+ K(A—z) ! and (d/d=)(A—-2z)"'=(A~-2)"2
(2.2) is equivalent to

d
E; K(z)= —a(z)? K(2) (2.3)

But K(z)>=K(z)(¢, (A—z) "2 ). Thus (2.2) is equivalent to

d 2
;1:6"(:)=<¢.(A—:)"</7)- (2.4)

Supposing that 4>0, we note that (2.4) shows that o', originally
defined for Im z#0, can be continued through (— o0, 0). Self-adjointness
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for R, that is, R*(z) = R(Z) requires o ~' be real there; and thus the solutions
can be written

')y =f+(p. [(A=2)"' = (A4+ 1) o) (2.5)
with £ real and equal to ¢ ~'( —1). This motivates:

THEOREM 2.1. Fix feR. Suppose A=0 and o€ # _,(A). For Im=z+#0,
define Ry(z) by (2.1) with o(z) given by (2.5). Then there is a self-adjoint
operator Z,f with Ry(z) = (Zﬂ—:)’l.

Proof. Let
Go)=(p,[(A—2) '—(A+1)" ") (2.6)
Then for y e (— 0, 8), dG/dy = (@, (A —y)~? ¢) > 0. Thus, there is at most
one y<O0, call it y,, so o(y)~'=0. Therefore, Ry(z) extends to

C\[0, 5c) U { yo} with Ry y) self-adjoint if y e R\[0, cv) U { y,}. Fix any
y1<0 with y,#y, and define A;=R,(y,)"'—yp,. Then Ry:) and
(A4 ,,—:)*1 obey the same differential equation (1.2) and same initial
conditions at y = y,, and so they are equal on Imz#0. |

Remark. One can think of (2.1) in the form
(Ag—z)"'=(A—z)""—ou:z) K(2)
op(z) =B+ (@, (A=) ' =(A+ 1) @)

as a renormalized form of (1.4), which can be written

(A, =) '=(A—-2)""—6,(2) K(z)
6.(2) '=a" +(p,(A—2)" @)
If g€ #_,(A4), then A,=A4,, where B and o are related by

B=a "+, (A+ 1) o). (2.7)

If o ¢ #_,, in essence we need to take a~!' = —oo to undo the divergence

of (¢,(A+1)"'¢), and « is infinitesimal and negative. The condition
@€ H_,(A) is required for the single renormalization to work.

THEOREM 22. If @ ¢ #_,(A), then each operator A, defined in
Theorem 2.1 obeys Zﬁ < A with Zﬂ;éA. If p e #_(A), there exist Jl,’s with
A=A with Ay# A.

Remark. Recall [7] that we say 4, B obey A = B if and only if there is
ae R with 4>al, Bz al; and for z <a real, we have (B—z) " '2 (4 —z) !
as bounded operators.
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Proof. If @€ #_,(A), we have seen above that {4} is the same as
{A,} using (2.7). Since A, > A if a> 0, that proves the #_, result.

If p¢#_,, then G(—y)—> —oc as y— oo, Thus, there is some y,e
(—x,0),50 G(y)+ p <0 for all y < y,. By (2.5) and (2.1c), (A;— y)"'>
(A—y~')>0 for such y, s0 A;> yg, A= yo, and A,<4. 1

3. EvErRY RaNK ONE PERTURBATION Is #_,(A4)-BOUNDED

In this section, we want to consider pairs of operators 4, B so that
(A+i)"'—=(B+i) 'is rank one. We start with two results that illuminate
the notion:

ProprosiTiON 3.1. Let A, B be self-adjoint operators. Then Q(z)=
(A—z)""—(B—z)"" is rank one for one z with Im = #0 if and only if it is
rank one for all such -.

Proof.
(A=) '=(1+(w—2)(4=2)" YA -w)"", (3.1)
so using the fact that
(@ (A—z)""—(B—z)""y)
=((A=2)"" ¢, BB=z)""Y) — (A(A=2)"" ¢, (B—z)"" ),
we see that
Qz)=(1+(w—z)A—2)"") Qw)(1 +(w—z)}B—=z)"")
and so Rank Q(z) < Rank Q(w). |}
ProposiTION 3.2. Suppose that A, B are self-adjoint, A4=0, and
(A+i)~"'—(B+i)~" is rank one. Then B is bounded from below.

Proof. By (3.1) for B, we(—a,0) is in spec(B) if and only if 1+
(w—i¥B—i)"!is not invertible. But

Liw)y=14+{(w—i)B—i)~!
=1l+(w—ifd—i)"! +(w=—D(B=i)"'=(A4—-DH"H
=L,(w)+ Ly(w),

where L,=1+(w—iA—=i)"'=(A—w)(A4—i)""' is invertible for
we(—o,0)and L,={(w—i)((B—i)"'—(A+i)~") is rank one.

SRO 130 2-7
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Thus, L(w) is invertible if and only if 1+ L,(w) ™' L,(w) is invertible.
By (3.1), wespec(B) if and only if 1+ L (w)~' Lyw) is not invertible.
Thus, since L, is rank one, wespec(B) if and only if F(lw)=
Tr(L,(w)~ ' Ly(w))= —1. F is an entire analytic function with F(w)# —1
if Im w # 0. We conclude B has isolated point spectrum on ( — oc, 0).

Thus, there exist real w, with F(w,)# —1 and so (B—wy) ' —
(A—wy)~' is rank one. For rank one perturbations of self-adjoint
operators, eigenvalues intertwine. Since A has no eigenvalues in (— oo, 0),
B can have only one eigenvalue in ( —oc, 0); that is, B is bounded from
below. ]

COROLLARY 3.3. If A>0 and (A+i)~'—(B+i)~" is rank one, then
either A=B or B> A.

Proof. Pick w below spec(d)uspec(B). Then (4—w) '>0,
(B—w)~'>0, and since (4—w) '—(B—w)"! is rank one and self-
adjoint, either (4 —w) '=(B—w) ' or (B—w) ' 2= (4 —w) "L It follows
that either AZBor B=A. }

THEOREM 3.4. Let A, B be self-adjoint operators with B= A > 0. Suppose
that (A+1)"'—(B+1)"" is rank one. Then B=A+a(@, o with
peH (A) and xe [0, 0] (with a= x allowed).

Proof. Write
(A+1)"'=(B+ 1)~ +(n ), (3.2)

which we can do because (4+1)" "> (B+1)"".
We claim that e #, ,(A) with (1, (A + 1)y)<1; see Lemma 3.5 below.
Define ¢ =(A4 + 1}y so (3.2) becomes

(B+1) '=(A+1)'—((A+ 1) g, A+ 1) @,
which is just (1.4) if

X

l+a{@, (A+1)" o)

or
1 (33)
A=——"—"""""7, .
1—=(n,(4+ Dn)
where (#, (A + 1)) =1 corresponds to o= o0, {1.4) at z= —1 implies the

general relation for all z. |
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LEMMA 3.5. Let A=0 be self-adjoint. Suppose ne # with (5, Yy <
(A+1)"" Then ne #, (A) with (5, (A+ gy < 1.

Proof. Let E, be the spectral projection E,,(4). Let ¢, =
(A+1) E,n. Then, by hypothesis,

107, 9 )12 < (@, (A+ 1) ! @) (34)
Equation (3.4) is equivalent to
(n, Ec(A+ 1)) <(n, E.(A+ 1)y)
or
(n E.(A+ gy <1

Taking k — oc, we see ne #,,(A) and (5, (A+ 1)) <1. |

Remark. 1t may seem puzzling that the « in (3.3) obeys 1 <a < oc. How
about B=A4+a(¢,-)¢ with a <1? The resolution is that until we nor-
malize ¢ in some way, the scale of « is irrelevant. If we demand @ obey
(@, (A+1)""@)=1, then we take @ =¢/(n, (4+1)n)"? and a(e, )p=
@, -)p, where now

(n, (A+1)n)

1A+ Dy

As (17, (A + 1)n) runs from O to 1, & runs from O to infinity.
As an application of Lemma 3.5, we return to the construction of
Section 2:

THEOREM 3.6. Suppose A>0, p e #_,(A) but ¢ ¢ #_,(A), and that A,
is the operator of Theorem 2.1. Then

(i) f+1(25)3f+1(1‘1)
(i) o, (Ap)# K, \(A)

Remark. We will see later in Section 6 that »#, ;(4) has codimension 1
in #, (Ap).

Proof. By Theorem 2.2, A;,< A which implies (i). To see (ii), note that
by the construction in Section 2 for all sufficiently large ¢ >0,

(Ag+o) '=(A+c) ' —a(e)(A+c) . NAd+e) o

with o(c)<0. Thus by Lemma 3.5, (A+c) 'pe, (4. Since
@é¢H_(A), we have that (A+¢) ' o¢ i, (4. |
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4. RELATION TO INFINITE COUPLING

Suppose B=A+a(p, Yo with ge #_,(A). If a<oc, then H#, (B)=
H#, (A) and A=B—a(p, )@ so A can be recovered from B by the %,
construction. Qur goal here is to show that when a=oc, 4 can be
recovered from B by the .# ,(B) construction of Section 2, and vice-versa
that the 4 — Zﬂ construction can be undone with infinite coupling.

Recall [5]if ope # (A) but o¢.# and A, = A+ (g, -) @, then there
exists a natural ne #_,(A_ ) which obeys

(A, —z) 'n=Fz)""(A-2)""¢ (4.1)
with F given by (1.2b).
ProrosiTiON 4.1. Suppose A=20, pe H_(A) but ¢ ¢ H, and n is given
by (4.1). Then n¢ #_(A,).

Proof. ne # (A, )ifandonlyiflim,_ _{(#, (c/(A .+ c)I/(A.+1))n)
is finite. But by (4.1)

< ¢ 1 )_ 1 ¢ 1 )
"4 qed 1) TRCOA-o\" dxcas1?)

The expectation on the right side of this equation has a non-zero limit as
¢— oc since e H_(A). But F{—c¢)—0 as ¢ — oo so the limit is infinity;
that is, n¢ #_(A..). |

THEOREM 4.2. Suppose Az0and oe #_(A) but p¢ #. Let B=A_ =
A+ (¢, ). Then for some f and the perturbation n, B, = A, that is, A can
be recovered from B by the construction of Section 2.

Proof. By (1.4b) in the limit
(B—z) '=(A-z2)'=Fz) ' (A=) @, NA~2)" .
By (4.1)
(A—z)"'=(B—z)""+ F((B=2)"'n, {B—-z)""n
which shows that (4+1)"'isa (B,+1)~". |

Remark. By Section 2, the coefficient in front of ((B—2)"'¢,")
(B—z2)"'¢ should be (f+G(z))™', where G(z)=(n [(A.—z)"'—
(A, +1)"'1n). The resulting relation of Im F(z)~! and Im(G(z)) is
exactly what was found in [S].
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5. LiMITS

We have shown in the last two sections that if (4 —z)"'—(B—=2)""'is
rank one (and both are bounded below), then B can be recovered from 4
via either a @€ #_,(A4) construction with ae{—oc, 00] or else by the
peH ,(AN\AF_|(A) construction with « infinitesimal. Thus it should be
impossible to define 4 + a(¢, )@ if @ ¢ # ,(A). That is what we will prove
in this section.

TueorReM 5.1. Let A>0 and pe #_ (A). Let ¢,=E, ,1(A)p and
A, =A+2,(0,.)0,.
Then:
(1) If @ ¢ #_,(A), then for any choice of «,, {A,,—z)" " converges to
(A —z)"" strongly as n— oo for any ze C\R.
(n) If op¢ H _ (A) and o, =20, then for any choice of a, (subject to

2,20), (A,—z)"! converges to (A —z)"" strongly as n— oo for any
e C\R.

(iit) If o ¢ #_(A) and ,,— . #0, then for any choice of x,, (subject
to a,—a), (A,—z)"" strongly 1o (A—2)"" as n— o for any z € C\R.

Remarks. (1) Thus to obtain a non-trivial limit, we either need

peHN _(A)orelse pe #_,(A) and a, negative and infinitesimal.

(2) In cases (ii) and (iii), if ¢ € #_,(A), our proof shows norm
convergence.

Proof. By general principles [9], weak convergence of resolvents
implies strong convergence. Since the {(4, —z) "'} are uniformly bounded
for fixed z € C\R, it suffices to prove convergence of (,, (4, —z) ' ¢,) for
‘//i € '}fjx .

By (1.4b),

(An—:)_l =(A _:)*l - [a;l +(¢,,(A —:)_l (pn)] -
x((A—=2) ", NA—-z2)"" @, (5.1

Since (¢, (A—z)"'¢,) is uniformly bounded if ye#,  (A) (since

pe#_.(A)), strong convergence is equivalent to
|yn| = |:xn_1 + ((pn’ (A —:)—1 (pn)l - G
Now

Imy,=(Im:z) (4 —z2)"" @,lI*

goes to infinity as n— oc if @ ¢ #_,, so (1) is proven.
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Suppose now @ € ¥ _,. Since

Rey,=a, ' +(¢,, A[(A—Rez)’+(Imz2)?] 'g,)—Rez [(4-2)"" ¢,

we see that if «,, >0 and @, ¢ # ,(A), then Re y, — o, and similarly if a, '

has a finite limit Rey, — . §

Remark. Friedman [4] has shown that if V, are functions on R” with
supp V< {x| |x|<n™'} and H,= —4+V,, then if v>2, H,—> H in
strong resolvent sense if ¥, >0 (irrespective of how big V', is); and if v >4,
H,— H with no positivity assumption. Note that d,e.#_ _(—4) if and
only if 2a>v. Thus d,€ .#_, only if v<2 and Jd,€ .#_, if and only if v < 4.
We can therefore regard Theorem 5.1 as a kind of analog of Friedman’s
results.

6. SELF-ADJOINT EXTENSIONS

The punchline of this section is that rank one perturbations of 4 >0 is
really the same as the theory of self-adjoint extensions of deficiency indices
(1, 1) of a positive operator. From this point of view, the « = oo operator
found by Gesztesy—Simon [5] is exactly the Friedrich’s extension.

Let 420 and pe # ,(A). Whatever 4, =4 + (¢, -} is to mean A,
should equal Ay if (¢, y) =0. Thus, define

D,={yeD(A)]| (¢, ¥)=0}.
Since @ € #_,(A), (@, ) is defined for y e D(A) = #_,(A4).

LEMMA. Let Ay=A[ D, with domain D,. Then A, has deficiency
indices (1, 1).

Proof. 1Tt suffices to prove that Ran(A4,+ 1) has codimension 1. But by
definition, ¥ € D, if and only if (4 + 1)y is orthogonal to (4 + 1) ~' ¢; that
is, Ran(4,+ 1)={(4+1) ' ¢} has codimension 1. |

The rank one perturbations are thus the self-adjoint extensions of
A,. Deficiency one extension of semibounded operators (and generally
semibounded extensions of semibounded operators) have been studied
extensively [3, 8, 13, 6, 2]. The result of this theory is that these are
parametrized by a single parameter y which runs in ( — o0, cc ] with + wo
allowed. They are best described in terms of quadratic forms. The operator
A'™) is the Friedrich’s extension and has form domain Q(A4'*’). There is a
vector £ defined by (4,4 1)*¢ =0 and for y # «c,

QA7) = QA + {4} e,
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where + means disjoint sums and
(Y +28), AP+ 45N = (Y, A7) + 2%

& is easily seen to be (4 + 1)~ ! ¢.

The original operator 4 is some A'™, If 4 = 4" with y, # oc, then the
A" are precisely {A+c(y—yo)e@, Y@} for a suitable constant ¢
(=(¢@,(A+1)"" @)). The y = oc operator is exactly a Friedrich’s extension.

If 3, = oc, we see in this situation, where the other 4"”s are obtained by
the construction in Section 2.

7. EXAMPLES

ExaMPLE 1. Take 4= —4 on L*R"). We want to see what ¢ can be
used for rank one perturbations defined at a single point 0. Since ¢ is sup-
ported at 0, ¢ € .#__ (A) means ¢ is a distribution, so its Fourier transform
is a polynomial P in p. For ¢ € #_(A), we need
jﬁ—d”'f{p” <. (7.1)

(p~+1)

This can only happen if v=1 and P has degree 0, that is, ¢ =d(x). For ¢
to be in .#_,(A), we need the analog of (7.1) with (p*>+ 1) replaced by
(p>+ 1) This allows P of degree 0 if v=2,3 and degree 1 if v=1. Thus,
the rank one theory works exactly for d(x) inv=1,2, 3, and §'(x)in v=1.
The # ,(A) construction exactly corresponds to point interactions as dis-
cussed extensively (see [ 1, and Refs. therein]). Of course, our construction
specialized to this case is just the standard one for point interactions; so
our construction in Section 2 can be viewed as an abstraction of that
method. One thing one can look at i1s undoing the point interaction in
dimension 2 and 3. For concreteness, take v=23. Then fH(ZI,) is strictly
bigger than #, ,(A). The extra functions have a Coulomb singularity at
x=0; that is, ¥ € #,,(4,) has the form

Yix)y=ce "M x|~ 4+
with € #, ,(—4). u is a convenient parameter; ¢ is independent of x. One

can think of ¢ as formally given by lim ., [x]|¥(x). Since ¥ is not
bounded, we cannot use that definition but can use

c(y)=Ilim r

r—o  4nr?

J yix) dix.
x| <r
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So ¢ defines a vector (peéﬁl(ﬁﬂ) and the various Z,,’s are just 71,,0+
af @, ) for e (—oo, o0). @ = oo recovers the original Laplacian.

EXAMPLE 2. Let 4 be —d?/dx? on L*0, ) with Neumann boundary
condition at zero. Let ¢(x)=45(x)e #_,(A). Then A+ a(¢@, )¢ precisely
corresponds to the boundary conditions

sin(#) 1'(0) + cos(#) u(0) =0,

where x = —cot(f). x = o¢ corresponds to Dirichlet boundary condition.
The corresponding # as discussed in [ 5] is just 8'(x); that is, 8’ € # ,(A.).
The construction in Section 2 tells us how to reconstruct 4, from A4 .
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