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ABSTRACT.By presenting simple theorems for the absence of positive eigenval- 
ues for certain one-dimensional Schrodinger operators, we are able to  construct 
explicit potentials which yield purely singular continuous spectrum. 

This is one of a series of papers (see [2,11,3,7,1,13,4,6,12]) that discusses singular 
continuous spectrum in families of concrete operators. Our goal here is to provide 
examples of half-line Schrodinger operators which have singular continuous spec- 
t rum [0, m )  for all boundary conditions at  x = 0. In fact, singular continuity of 
the spectrum will be preserved under arbitrary compactly supported perturbations 
for these examples. This is of interest because it provides totally explicit operators 
without a need to appeal to generic values of parameters and because it is a con- 
crete example of the fact that while dense point spectrum is always unstable under 
rank one perturbations [3}, singular continuous spectrum m a y  be stable. 

To be totally explicit, it will follow from our discussion below that if z, = ezn3'*, 
n = l , 2 , . . . , and 

1 
n,  lz - z,I < 2 ,
V(z) = 

0 otherwise, 

then for any boundary condition at 0, H = -& + V(z) on [0, x )  has a(H) = 
gSc(H)= [0, m )  and a,,(H) = 0. Depending on the boundary condition, a,,(H) 
is either 0 or a single negative eigenvalue. And the whole-line problem, defined by 
symmetric extension of V, has a(H)= usc(H)= [0,oo),a,,(H) = a,,(H) = 0. 

Our examples here will be sparse, that is. they will be "mainly" zero. Our main 
technical result, in Section 2, will show that sparse potentials have no point spec- 
trum in [0, x)for any boundary condition. The proof will be very elementary. The 
examples of singular continuous spectrum in Section 3 will then come by combining 
the results of Sections 2 and 3 with the theorems of Simon-Spencer [14] and Stolz 
1151 on the absence of absolutely continuous spectrum for certain potentials. 

In Section 4 we give two other situations where our ideas apply: If 17 is mainly 
periodic instead of mainly zero, then one gets singular continuity in the spectral 
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bands of the underlying periodic potential. It is also easy to extend our results to 
Jacobi matrices. 

It has not escaped our notice that Pearson's examples [lo] are sparse and, in- 
deed, our Section 2 implies the absence of point spectrum in his examples (for any 
boundary condition!). However, we know of no way yet to prove the absence of ab- 
solutely continuous spectrum in his examples other than the one he uses. At least, 
combining our argument with the one of Pearson shows that Pearson's examples 
also work on the whole line, a fact not noted in [lo]. . . 

We do note, however, that Last and Simon (work in progress) have another way 
to construct potentials which decay at infinity and have purely singular contin- 
uous spectrum and by [ll],Baire generic V's vanishing at infinity have singular 
continuous spectrum on [0, co). 

A result of the type discussed in this paper has been stated before in [5], but with 
no proof. After we completed this work, we learned from [9] of some apparently 
unpublished results of Gordon on Jacobi matrices with sparse potentials with a 
similar flavor to what we do. 

G. Stolz would like to thank M. Aschbacher and C. Peck for the hospitality of 
Caltech where most of this work was done. 

Let V(x) be a measurable function on [0, co) which is L1 on any interval [0, R). 
For y > 0, one can look at solutions of the differential equation 

If @(x, y, E;V) is the solution with (z) = (A) and @(x, y, E;V) with (P;) = (:), then 
the 2 x 2 matrix 

is called the transfer or fundamental matrix. Solutions of -ufl + Vu = Eu obey 

and 

Constancy of the Wronskian implies that 
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Theorem 2.1. If V is  bounded from below and M obeys 

for some E ,  then -ul1 + Vu = E u  has no solution u E L2(0,co) 

Proof. Since A4 is unimodular (1) and 2 x 2, we have 

Thus, (4) implies that / /  (z,)/ /  @ L2. Then also u $ L2. 
Suppose, on the contrary, that u E L2. Differentiating uu', we get 

x 

t u(0)uf(O)+ /(uf2 - c u 2 )dt ,  

0 

where semiboundedness of V was used. If u E L2, but u)' $ L2, this yields 
$(u2))'(x)= u(x)uf(x) - CG as x + 00. This would imply the contradiction 
u2(x)+ 00. 

We are going to apply this to what we'll call sparse potentials. 

Definition. A sparse potential is a function V(x) on [0,ca) for which there exist 
x,+1 > x, + co, a, > 0 and h, < ca so 

xnt l -x ,
(i) a,+*n+1+1 + 00, 

(ii) I V ( x ) l ~ h n i f 1 x - x , 1 ~ ~ , , n = 1 , 2, . . . .  
(iii) /V(x)/ = 0 otherwise. 

By (i), (iii), sparse potentials are zero "most of the time". We define L, = 

x,+1 -2, - Qn -

Theorem 2.2. Let V be a sparse potential. Suppose that 

for all large n where Q,  -- n In n +C:==, (h j+ In j ) .  Then -ul' +Vu = E u  has 
no solutions with u E L v o r  any E > 0 . 
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Proof. M1(x)= A(x)M(x) where 

on (x, - a,, x, + a,) and 

On the other hand, the transfer matrix when V = 0 and E = lc2 > 0 is 

cos k(x - y) lc-I sin lc (x - y) 
- s i n ( x  - y) coslc(x - y) 

and has norm bounded by max(k, lc-l). 
Using (2), it follows that for y E (x, + a,, x,+1 -&,+I), we have 

for n large (and any fixed E) .  Thus, 

by hypothesis. Thus, (4) holds and there are no L2 solutions. 

Example 1. h, = n,  a, = i;(6) requires L, > exp((1 + e)n2). 

Example 2. h, = c, a, = n; (6) requires L, 2 exp((1+ e)n2)again. 

In the case of constant high barriers, like in Example 1, one actually has the 
following result, which gives improved estimates. 

Theorem 2.3. Let V be a sparse potential with 

h, + ca and 

n 

L, t n6, (fihi) exp (4 ca, 
j=1 j=1 

for some S > 0.T h e n  -ull +Vu = E u  has n o  solutions with u E L2 for a n y  E > 0.  

Looking at Example 1again, we see that (7) only requires L, 2 exp((1+e)n3/'). 
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Proof. We follow the proof of Theorem 2.2, but for n with h, > E + 1a,nd x, y E 
[x, - a,, x, +a,], replace A4 by the modified transfer matrix 

We have 

XI; = 

and therefore, 

Since 

M(x, + a,, x, - a,) 

we get 

1 1  M ( z ,  +a,, x, - a,) /I Imax((h, - I3)'j2, (h, - E)l l2)e x ~ ( 2 a n d m )  

5 A e x p ( 2 a n A ) .  

Now the proof is completed as before. 

As stated in the introduction, the idea behind these examples is to use [14] 
and [15] to eliminate a x .  spectrum and Theorems 2.2 and 2.3 to eliminate point 
spectrum. Both results apply with arbitrary bounded condition at x = 0. Non-
existence of a.c. spectrum is also stable under a compactly supported perturbation 
of V (a trace class perturbation of the resolvent, e.g., [4]). Obviously, the same is 
true for non-existence of square-integrable solutions. 

Therefore, we get examples with purely singular continuous spectrum for all 
boundary conditions and under arbitrary local perturbations. Whole-line problems 
differ from the direct sum of two half-line problems only by adding boundary con-
ditions at 0, a finite rank perturbation. Moreover, lack of L2 solutions on either 
half-line clearly implies no L2 solutions on the whole line. This shows that we also 
get whole-line examples of purely singular continuous spectrum. 

The statements on appin (-oo, 0] made in the introduction follow from elemen-
tary convexity considerations for solutions. 

Example 3. Let x, = e2"'I3 and 

Then -& + V(x) on L ~ ( o ?oo) has purely singular continuous spectrum in (0, oo) 
for any boundary condition at x = 0.For [14] says there is no a.c. spectrum and 
Theorem 2.3 says no point spectrum. 
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Example 4. Here we construct bounded potentials with purely singular continuous 
spectrum in (0, ca). Let W(x) be the random potential given by a random constant 
c, in each interval (n - 1, n) ,  n = 1 , 2 . .. , where the c, are independent and each 
uniformly distributed in [O,l]. Let 

n(n-1)
W(X+T -xn) ,  xn 5 %I x , + n ,V(X)= otherwise 

where x, = e2n2. Essentially, we've broken W(x) into pieces of size 1 ,2 , .  . . and 
placed them at the points X I ,  x2 . . . . Then for almost all choices of the random 
potential, -& + V(x) on L2 (0, ca) has purely singular continuous spectrum for 
all boundary conditions at x = 0. 

By Theorem 2.2 there is no point spectrum. To prove absence of a.c. spectrum, 
let x be the characteristic function on [O,1] and 

If Eo= k i  > 0 is such that 5 is not rational, then Theorem 3.4 of [8] guarantees 
the existence of an integer L = L(Eo) and 6 > 0 such that (Eo- 6, Eo+ 6) is 
contained in a spectral gap of -& + q ~ .Almost certainly, there are intervals In 
with length tending to m such that 

By construction, the same holds for V. By Theorem 1of [15], we have 

with probability one. A compactness argument and the fact that the countable set 
{ k i  : & rational) cannot support a.c. spectrum finally show almost sure absence 
of a.c. spectrum. 

Of course, the above construction and argument apply to much more general 
random potentials W. 

In Section 2 the important property of the regions with V = 0 was that, for a 
given E > 0, the norm of the transfer matrix Mo(x, y) is uniformly bounded in x, y. 
We are in the same situation if we look at the transfer matrix for -uff +Vou = Eu,  
where Vo is periodic and E is an interior point of one of the stability intervals for 
--,dT2 + Vo. Thus, all our results for sparse potentials have suitable extensions to 
"mainly" periodic potentials. We illustrate this with 

Example 5. Let Vo be real and periodic, x, = ezn3I2 and 

n,  Ix-xnl < i , n = 1 , 2 , . . . ,
V(x) = 

Vo (x) otherwise. 
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Then -& + V on L2(0, ca) with any boundary condition at x = 0 has purely 
singular continuous spectrum in the interior of the stability intervals of -& +Vo. 

The above methods can easily be applied to Jacobi matrices h on 12(0, ca) defined 
by 

(hu)(O) = ~ ( 1 )+ v(O)u(O), 
( h u ) ( x ) = u ( x - ~ ) + u ( x + ~ ) + u ( x ) u ( x ) ,x = 1 , 2  , . . . .  

As an example, we give 

Theorem 4.1. Let h, + CQ, x, be integers with x,+l > x, + oo and 

h,, x = x n , n = 1 , 2  , . . . ,
u(x) = 

0 otherwise. 

Furthermore, let en = x,+l - x, satisfy 

Then,  the Jacobi matrix h is  purely singular continuous i n  (-2,2). 

Proof. o,, (h) = 0 follows from h, + CQ and [14]. 
The transfer matrix to solutions of 

is given by 
T 

where 

By an analog to Theorem 2.2, it suffices to show that for e E (-2,2) 

We have 
IT(xn)I 5 hn + e l  + 1 

and, diagonalizing ( Ol a ) for e E (-2,2), 

uniformly in n. Thus, 

j=1 

for x E (x,, x ,+~) .  (9) follows from this and (8). 
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