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UNIQUENESS THEOREMS IN INVERSE SPECTRAL THEORY
FOR ONE-DIMENSIONAL SCHRÖDINGER OPERATORS

F. GESZTESY AND B. SIMON

Abstract. New unique characterization results for the potential V (x) in con-
nection with Schrödinger operators on R and on the half-line [0,∞) are proven
in terms of appropriate Krein spectral shift functions. Particular results ob-
tained include a generalization of a well-known uniqueness theorem of Borg
and Marchenko for Schrödinger operators on the half-line with purely discrete
spectra to arbitrary spectral types and a new uniqueness result for Schrödinger
operators with confining potentials on the entire real line.

1. Introduction

The purpose of this article is to prove a variety of new uniqueness theorems for

potentials V (x) in one-dimensional Schrödinger operators − d2

dx2 + V on R and on
the half-line R+ = [0,∞) in terms of appropriate Krein spectral shift functions
recently introduced in a series of papers describing new trace formulas for V (x) on
R [15],[17],[19],[20] and on R+ [14].

First we briefly recall these trace formulas for Schrödinger operatorsH = − d2

dx2 +
V on the real line R assuming V to be real-valued, continuous, and bounded from

below. In addition to H, one also considers the family of operators Hβ
y = − d2

dx2 +V ,
β ∈ R ∪ {∞}, y ∈ R, with an additional boundary condition of the type g′(y±) +
βg(y±) = 0 for elements g in the domain of Hβ

y ; see (A.30) and (3.2) for detailed
domain descriptions. Here, in obvious notation, β =∞ denotes the corresponding
operator H∞y with an additional Dirichlet boundary condition at y ∈ R. Denoting

by ξβ(λ, y) Krein’s spectral shift function for the pair (Hβ
y , H), β ∈ R∪{∞}, y ∈ R

(see (3.12)–(3.18)), the following trace formulas have been derived in [15] in the
Dirichlet case β =∞ and in [20] for β ∈ R:

V (x) = E0 + lim
z→i∞

∞∫
E0

dλ
z2

(λ− z)2
[1− 2ξ∞(λ, x)],

E0 = inf{σ(H)}, β =∞, x ∈ R,

(1.1)
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V (x) = 2β2 +Eβ0 (x) + lim
z→i∞

∞∫
Eβ0 (x)

dλ
z2

(λ− z)2
[1 + 2ξβ(λ, x)],

Eβ0 (x) = inf{σHβ
x )}, β ∈ R, x ∈ R.

(1.2)

(Here σ( · ) denotes the spectrum.) These trace formulas extend previous results by
[7–9],[12],[22],[26],[28],[29],[34],[35],[39],[40] in the short-range, periodic, and certain
almost periodic cases.

A similar result can be derived for half-line Schrödinger operators. Assuming
again V to be real-valued, continuous, and bounded from below, denote by H+,α =

− d2

dx2 + V , α ∈ [0, π), the family of Schrödinger operators on the half-line R+ =
[0,∞) with the boundary condition sin(α)g′(0+) + cos(α)g(0+) = 0 for elements g
in the domain of H+,α (cf. (A.14)). For α1, α2 ∈ (0, π), α1 6= α2, let ξα1,α2(λ) be
Krein’s spectral shift function for the pair (H+,α2 , H+,α1) (cf. (2.8)–(2.10)). Then
the following trace formula can be inferred from the results in [14]:
(1.3)

V (0) = cot2(α) + lim
z→i∞

{
−z− i cot(α)z1/2 + 2

∫
R

dλ
z2

(λ− z)2
ξ0,α(λ)

}
, α ∈ (0, π).

A quick look at (1.1), (1.2), and (1.3) reveals the fact that ξβ(λ, x), λ, x ∈ R,
determines V (x), x ∈ R, and ξ0,α(λ), λ ∈ R, determines V (0) in the half-line case.
However, clearly both of these statements describe a mismatch and hence miss
the point: ξβ(λ, x) depends on two real variables as opposed to one in V (x) and,
analogously, ξ0,α(λ) depends on one real variable while V (0) is just a constant. From
the point of view of inverse spectral theory, the problems that need clarification
appear to be the following: Does ξβ(λ, x0) for fixed x0 ∈ R and all λ ∈ R determine
V (x) for all x ∈ R and, similarly, does ξα1,α2(λ), α1 6= α2, for all λ ∈ R determine
V (x) for all x ≥ 0 in the half-line case? The present paper provides complete
solutions to these problems.

In Section 2 we treat the half-line case and provide an affirmative answer to
the problem posed: ξα1,α2(λ), α1 6= α2, for a.e. λ ∈ R indeed uniquely determines
V (x) for a.e. x ≥ 0 (cf. Theorem 2.4), extending a well-known result of Borg
[5] and Marchenko [32], obtained independently from each other around 1952 for
operators with purely discrete spectrum, to arbitrary spectral types (see Corollary
2.5). We conclude Section 2 with an application of our main Theorem 2.4 to three-
dimensional Schrödinger operators with spherically symmetric potentials, and state
a new uniqueness theorem in this context (cf. Theorem 2.6).

Section 3 is devoted to Schrödinger operators on the entire real line. While
the corresponding question posed concerning ξβ(λ, x0) turns out to have a negative
answer, that is, ξβ(λ, x0) for fixed x0 ∈ R and a.e. λ ∈ R in general cannot determine
V uniquely for a.e. x ∈ R, Theorem 3.2 shows that ξβ1(λ, x0) and ξβ2(λ, x0), β1 6=
β2, for a.e. λ ∈ R uniquely determine V a.e. except in the Dirichlet and Neumann
cases β1 = 0, β2 = ∞, respectively, β1 = ∞, β2 = 0. In the latter case, V is
uniquely determined up to reflection symmetry with respect to x0. When combining
ξβ(λ, x0), λ ∈ R, with additional Dirichlet data and/or norming constants, further
unique characterizations of V can be achieved. This is illustrated in connection with
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Theorem 3.6, which provides a new uniqueness result for Schrödinger operators on
R with purely discrete spectra.

Since our techniques rely heavily on the use of certain properties of Herglotz
functions and especially on the Weyl-Titchmarsh theory, we collected a variety of
pertinent results in Appendix A.

Perhaps we should emphasize at this point that we do not discuss explicit recon-
struction procedures for V (x) in this paper (the reader can find standard results on
reconstruction techniques, e.g., in [13],[29],[30],[32], and [33]). Here we exclusively
focus on deriving new minimal sets of spectral data which uniquely determine the
potential V a.e. The basic outline of our philosophy of how to recover V (x) from
ξ∞(λ, x0), λ ∈ R, and Dirichlet data is described in [15]. We shall return to this
topic elsewhere.

Analogous results for second-order finite difference operators are in preparation
[18].

2. Schrödinger operators on [0,∞)

In this section we shall describe a uniqueness result for Schrödinger operators on
the half-line [0,∞), which extends a well-known theorem of Borg [5] and Marchenko
[32] in the special case of purely discrete spectra to arbitrary spectral types.

We shall freely exploit the notation introduced in Appendix A and recall τ+,
H+,α, φα, θα, ψ+,α, m+,α, dρ+,α, and G+,α(z, x, x′) as introduced in (A.13)–(A.27).
In particular, we shall assume hypothesis (A.12), that is,

(2.1) V ∈ L1([0, R]) for all R > 0, V real-valued

throughout this section and recall that H+,α, defined in terms of separated bound-
ary conditions, is a real operator of uniform spectral multiplicity one.

The basic uniqueness criterion for Schrödinger operators on the half-line [0,∞)
we shall rely on repeatedly in the following can be stated as follows.

Theorem 2.1 (See, e.g., [32]). Suppose α1, α2 ∈ [0, π), α1 6= α2, and define

H+,j,αj , m+,j,αj , ρ+,j,αj associated with the differential expressions τj = − d2

dx2 +
Vj(x), x ≥ 0, where Vj , j = 1, 2, satisfy hypothesis (2.1). Then the following are
equivalent:

(i) m+,1,α1(z) = m+,2,α2(z), z ∈ C+.
(ii) ρ+,1,α1((−∞, λ]) = ρ+,2,α2((−∞, λ]), λ ∈ R.

(iii) α1 = α2 and V1(x) = V2(x) for a.e. x ≥ 0.

We begin our analysis with a simple warm-up relating Green’s functions for
different boundary conditions at x = 0. (We also recall our convention of Appendix
A to fix the boundary condition (if any) at x = +∞.)

Lemma 2.2. Let αj ∈ [0, π), j = 1, 2, x, x′ ∈ R+, and z ∈ C\{σ(H+,α1) ∪
σ(H+,α2)}. Then
(i)

(2.2) G+,α2(z, x, x′)−G+,α1(z, x, x′) = − ψ+,α1(z, x)ψ+,α1(z, x′)

cot(α2 − α1) +m+,α1(z)
.
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(ii)

G+,α2(z, 0, 0)

G+,α1(z, 0, 0)
=

1

(β1 − β2) sin2(α1)[cot(α2 − α1) +m+,α1(z)]
(2.3)

= (β1 − β2) sin2(α2)[cot(α2 − α1)−m+,α2(z)],

βj = cot(αj), j = 1, 2.(2.4)

(iii)

Tr[(H+,α2 − z)−1 − (H+,α1 − z)−1] = − d

dz
ln[cot(α2 − α1) +m+,α1(z)](2.5)

=
d

dz
ln[cot(α2 − α1)−m+,α2(z)].(2.6)

Proof. (2.2) is a direct consequence of (A.16)–(A.18), (A.23), and (A.38). Similarly,
(2.3) and (2.4) follow by combining (A.25) and (A.38). (2.5) follows from (2.2) and
(A.44) in the limit z1 → z2 = z. (2.6) is clear from

(2.7) cot(α2 − α1) +m+,α1(z) = [sin(α2 − α1)]2[cot(α2 − α1)−m+,α2(z)]−1,

a simple consequence of (A.38). �

Since m+,α(z) is a Herglotz function, we may now introduce Krein’s spectral
shift function [27] ξα1,α2(λ) for the pair (H+,α2 , H+,α1) according to (A.2), (A.4)
by

(2.8) cot(α2 − α1) +m+,α1(z) = exp

{
Re[ln(cot(α2 − α1) +m+,α1(i))]

+

∫
R

[
1

λ− z −
λ

1 + λ2

]
ξα1,α2(λ) dλ

}
, 0 ≤ α1 < α2 < π, z ∈ C\R.

This is extended to all α1, α2 ∈ [0, π) by

(2.9) ξα,α(λ) = 0, ξα2,α1(λ) = −ξα1,α2(λ) for a.e. λ ∈ R.

(2.7) then implies

(2.10) cot(α2 − α1)−m+,α2(z) = exp

{
Re[ln(cot(α2 − α1)−m+,α2(i))]

−
∫
R

[
1

λ− z −
λ

1 + λ2

]
ξα1,α2(λ) dλ

}
, 0 ≤ α1 < α2 < π, z ∈ C\R.

Next we summarize a few properties of ξα1,α2(λ).
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Lemma 2.3. (i) Suppose 0 ≤ α1 < α2 < π. Then for a.e. λ ∈ R,

(2.11)

(2.12)

(2.13)

ξα1,α2(λ) =


lim
ε↓0

π−1Im{ln[cot(α2 − α1) +m+,α1(λ+ iε)]}

− lim
ε↓0

π−1Im{ln[cot(α2 − α1)−m+,α2(λ+ iε)]}

lim
ε↓0

π−1Im
{

ln
[

1
sin(α1)

G+,α1(λ+iε,0,0)

G+,α2(λ+iε,0,0)

]}
.

(For α1 = 0, G+,α1(λ+iε, 0, 0)/ sin(α1) has to be replaced by −1 in (2.13) according
to (A.25).) Moreover,

(2.14) 0 ≤ ξα1,α2(λ) ≤ 1 a.e.

(ii) Let αj ∈ [0, π), 1 ≤ j ≤ 3. Then the “chain rule”

(2.15) ξα1,α3(λ) = ξα1,α2(λ) + ξα2,α3(λ)

holds for a.e. λ ∈ R.
(iii) For all α1, α2 ∈ [0, π),

(2.16) ξα1,α2 ∈ L1(R; (1 + λ2)−1 dλ).

(iv) Assume α1, α2 ∈ [0, π), α1 6= α2. Then

(2.17) ξα1,α2 ∈ L1(R; (1 + |λ|)−1 dλ) if and only if α1, α2 ∈ (0, π).

(v) For all α1, α2 ∈ [0, π),

(2.18) Tr[(H+,α2 − z)−1 − (H+,α1 − z)−1] = −
∫
R

(λ− z)−2ξα1,α2(λ) dλ.

Proof. (i) (2.11)–(2.13) follow from (2.3), (2.4) (resp. (2.7)), (2.8), (A.2), and (A.4).
(2.14) is clear from (A.4).

(ii) is a consequence of (2.13).
(iii) is obvious from 0 ≤ |ξα1,α2 | ≤ 1 a.e.
(iv) By (2.9) we may assume 0 ≤ α1 < α2 < π. Then (A.39) yields

(2.19)

cot(α2 − α1)−m+,α2(z) =
z→i∞

{
0, α1 = 0,

cot(α2 − α1)− cot(α2) > 0, 0 < α1 < α2 < π,

and it suffices to apply Theorem A.1(iii) to cot(α2 − α1) − m+,α2(z) taking into
account (2.10).

(v) follows from (2.5) and from applying − d
dz ln( · ) to (2.8). �

We note that ξα1,α2(λ) (for α1, α2 ∈ (0, π)) has been introduced by Javrjan
[23],[24]. In particular, he proved (2.5) and (2.18) in the non-Dirichlet cases where
0 < α1, α2 < π. We also remark that (2.18) extends to more general situations of
the type

(2.20) Tr[F (H+,α2)− F (H+,α1)] =

∫
R

F ′(λ)ξα1,α2(λ) dλ

for appropriate functions F (see, e.g., [38]).
Given these preliminaries, we are now able to state our main uniqueness result

for half-line Schrödinger operators.
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Theorem 2.4. Suppose Vj satisfy hypothesis (2.1), and introduce the differential

expressions τj = − d2

dx2 + Vj(x), x ≥ 0, j = 1, 2. Let αj,` ∈ [0, π), ` = 1, 2, suppose
0 ≤ α1,1 < α1,2 < π, 0 ≤ α2,1 < α2,2 < π, and define H+,j,αj,` for j, ` = 1, 2
associated with τj as in (A.14). In addition, let ξj,αj,1,αj,2 , j = 1, 2, be Krein’s
spectral shift function for the pair (H+,j,αj,1 , H+,j,αj,2). Then the following are
equivalent:

(i) ξ1,α1,1,α1,2(λ) = ξ2,α2,1,α2,2(λ) for a.e. λ ∈ R.
(ii) α1,1 = α2,1, α1,2 = α2,2, and V1(x) = V2(x) for a.e. x ≥ 0.

Proof. We only need to prove that (i) implies (ii). From Lemma 2.3(iv), one infers
that

(2.21) αj,1 >
(=)

0 if and only if

∫
R

(1 + |λ|)−1|ξαj,1,αj,2(λ)| dλ <
(=)
∞, j = 1, 2.

Since by hypothesis α1,1 >
(=)

0 if and only if α2,1 >
(=)

0, one is led to the following

case distinction.
a) 0 < α1,1 < α1,2 < π, 0 < α2,1 < α2,2 < π. Then (2.10) and (A.39) imply

(2.22)

∞∫
z

dz′
∫
R

(λ− z′)−2ξj,αj,1,αj,2(λ) dλ = ln

[
cot(αj,2 − αj,1)−m+,j,αj,2(z)

cot(αj,2 − αj,1)− cot(αj,2)

]
(2.23) =

z→i∞
(βj,2 − βj,1)iz−1/2 + (β2

j,1 − β2
j,2)2−1z−1 + o(z−1),

βj,` = cot(αj,`), j, ` = 1, 2.

Given (i), the asymptotic behavior (2.23) then yields

(2.24) α1,1 = α2,1 and α1,2 = α2,2.

Insertion of (2.24) into (2.22), still assuming (i), then yields

(2.25) m+,1,α1,2(z) = m+,2,α1,2(z)

and hence V1 = V2 a.e. by Theorem 2.1.
b) 0 = α1,1 < α1,2 < π, 0 = α2,1 < α2,2 < π. Then (2.10) and (A.39) imply

z∫
i

dz′
∫
R

(λ− z′)−2ξj,0,αj,2(λ) dλ

= − ln

[
cot(αj,2)−m+,j,αj,2(z)

cot(αj,2)−m+,j,αj,2(i)

]
(2.26)

=
z→i∞

ln(z1/2) + ln[i sin2(αj,2)] + ln[cot(αj,2)−m+,j,αj,2(i)]

− cot(αj,2)iz−1/2 + o(z−1/2), j = 1, 2.(2.27)

Given (i), the O(z−1/2)-term in (2.27) then yields

(2.28) α1,2 = α2,2
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and the O(1)-term in (2.27) yields

(2.29) m+,1,α1,2(i) = m+,2,α1,2(i).

Inserting (2.28) and (2.29) into (2.26), still assuming (i), then yields

(2.30) m+,1,α1,2(z) = m+,2,α1,2(z)

and hence again, V1 = V2 a.e. by Theorem 2.1. �

As a corollary, we obtain a well-known uniqueness result originally due to Borg
[5] and Marchenko [32], obtained independently in 1952.

Corollary 2.5 (Borg [5], Theorem 1; Marchenko [32], Theorem 2.3.2; see also
[30]). Define τj and H+,j,α, α ∈ [0, π), as in Theorem 2.4. Assume in addition
that H+,1,α1 and H+,2,α2 have purely discrete spectra for some (and hence for all)
αj ∈ [0, π), that is,

(2.31) σess(H+,j,αj ) = ∅ for some αj ∈ [0, π), j = 1, 2.

Then the following are equivalent:
(i) σ(H+,1,α1,1) = σ(H+,2,α2,1), σ(H+,1,α1,2) = σ(H+,2,α2,2), αj,` ∈ [0, π), j, ` =

1, 2, sin(α1,1 − α1,2) 6= 0.
(ii) α1,1 = α2,1, α1,2 = α2,2, and V1(x) = V2(x) for a.e. x ≥ 0.

Proof. Without loss of generality, we may assume 0 ≤ α1,1 < α1,2 < π, 0 ≤ α2,1 <
α2,2 < π, and hence we need to prove that (i) implies ξ1,α1,1,α1,2 = ξ2,α2,1,α2,2

a.e. First we note that ξj,αj,1,αj,2(λ), being Krein’s spectral shift function for the
pair (H+,j,αj,2 , H+,j,αj,1), j = 1, 2, increases (decreases) by 1 whenever λ passes an
eigenvalue of H+,j,αj,1 (H+,j,αj,2,) as λ increases from −∞ to +∞, and stays con-
stant otherwise. (We recall that σ(H+,α) is simple.) This step-function behavior,
together with 0 ≤ ξj,αj,1,αj,2 ≤ 1 a.e., indeed yields ξ1,α1,1,α1,2 = ξ2,α2,1,α2,2 a.e. and
one can apply Theorem 2.4. �

Roughly speaking, Corollary 2.5 says that two sets of purely discrete spectra
σ(H+,α1), σ(H+,α2) associated with distinct boundary conditions at x = 0 (but a
fixed boundary condition (if any) at +∞), that is, sin(α2−α1) 6= 0, uniquely deter-
mine V a.e. Our main result, Theorem 2.4, removes all a priori spectral hypotheses
and shows that Krein’s spectral shift function ξα1,α2(λ) for the pair (H+,α2 , H+,α1)
with distinct boundary conditions at x = 0, sin(α2 − α1) 6= 0, uniquely determines
V a.e. This illustrates that Theorem 2.4 is the natural generalization of Borg’s and
Marchenko’s theorem from the discrete spectrum case to arbitrary spectral types.

Finally, we give a simple application of Theorem 2.4 in the context of three-
dimensional Schrödinger operators with spherically symmetric potentials.

Assuming hypothesis (2.1) for V , we introduce the potential

(2.32) v(x) = V (|x|), x ∈ R3,

and define the self-adjoint Schrödinger operator h in L2(R3) associated with the dif-
ferential expression −∆+v(x) by decomposition with respect to angular momenta,
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which represents h as an infinite direct sum of half-line operators in L2(R+; r2 dr)
associated with differential expressions of the type

(2.33) τ̂+,` = − d2

dr2
− 2

r

d

dr
+
`(`+ 1)

r2
+ V (r), r = |x| > 0, ` ∈ N0 = N ∪ {0}.

A simple unitary transformation reduces (2.33) to

(2.34) τ+,` = − d2

dr2
+
`(`+ 1)

r2
+ V (r)

and associated Hilbert space L2(R+) (see, e.g., [37], Appendix to Sect. X.1).
Next, let g(z, x, x′), x 6= x′, denote the Green’s function of h (i.e., the integral

kernel of (h− z)−1) and define another self-adjoint operator hβ in L2(R3) by

(2.35)
(hβ − z)−1 = (h− z)−1 +Dβ(z)−1(g(z, 0, · ) , · )g(z, · , 0),

β ∈ R, z ∈ C\{σ(hβ) ∪ σ(h)},

where

(2.36) Dβ(z) = β − lim
|ε|↓0

[g(z, 0, ε)− (4π|ε|)−1], z ∈ C\σ(h).

As shown, for example, in [1],[41], hβ models h plus an additional point (delta)
interaction centered at x = 0 whose strength is parametrized by β ∈ R. (Clearly,
h∞ = h.) The function Dβ(z) is Herglotz, and one computes (see [14])

(2.37) Tr[(hβ − z)−1 − (h− z)−1] = − d

dz
ln[Dβ(z)].

This then allows one to define Krein’s spectral shift function ξβ(λ) for the pair
(hβ , h) by

(2.38) ξβ(λ) = lim
ε↓0

π−1Im{ln[Dβ(λ+ iε)]} a.e.,

which yields

(2.39) Tr[(hβ − z)−1 − (h− z)−1] = −
∫
R

(λ− z)−2ξβ(λ) dλ.

Our uniqueness result for three-dimensional Schrödinger operators then reads as
follows.

Theorem 2.6. Define hj, hj,βj , βj ∈ R, associated with −∆ + vj(x), x ∈ R3,
j = 1, 2, and introduce Krein’s spectral shift function ξj,βj (λ) for the pair (hj,βj , hj),
j = 1, 2. Then the following are equivalent:

(i) ξ1,β1(λ) = ξ2,β2(λ) for a.e. λ ∈ R.
(ii) β1 = β2 and v1(x) = v2(x) for a.e. x ∈ R3.
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Proof. Since τ+,` is l.p. at r = 0 for all ` = N, the whole problem can be reduced
to the angular momentum sector ` = 0. For ` = 0, however, h corresponds to
H+,∞ and hβ to H+,α, β = cot(α), in the notation of (A.14). In particular,
ξβ(λ) introduced in (2.38) corresponds to ξ0,α(λ) in our notation (2.8). Hence,
an application of Theorem 2.4 completes the proof. �

An analogous result could be derived for two-dimensional Schrödinger operators
with centrally symmetric potentials. Since this requires the replacement of τ+ =

− d2

dx2 + V (x), x ≥ 0, by

(2.40) τ+ = − d2

dx2
− 1

4x2
+ V (x), x > 0,

a differential expression singular at x = 0, we omit further details at this point.

3. Schrödinger operators on R

This section explores uniqueness results for Schrödinger operators on the whole
real line.

As in Section 2, we shall rely on the notation introduced in Appendix A and
hence recall τ , H, φα, θα, ψ±,α, m±,α, dρ±,α, and G(z, x, x′) as introduced in
(A.29)–(A.47). In particular, we shall assume hypothesis (A.28), that is,

(3.1) V ∈ L1
loc(R), V real-valued

throughout this section. Following [20], we introduce, in addition, the following
family of self-adjoint operators Hβ

y in L2(R),
(3.2)

Hβ
y f = τf, β ∈ R ∪ {∞}, y ∈ R,

D(Hβ
y ) = {g ∈ L2(R | g, g′ ∈ AC([y,±R]) for all R > 0; g′(y±) + βg(y±) = 0;

lim
R→±∞

W (f±(z±), g)(R) = 0; τg ∈ L2(R)}.

Thus HD
y := H∞y (HN

y := H0
y ) corresponds to the Schrödinger operator with an

additional Dirichlet (Neumann) boundary condition at y. In obvious notation, Hβ
y

decomposes into the direct sum of half-line operators

(3.3) Hβ
y = Hβ

−,y ⊕H
β
+,y

with respect to

(3.4) L2(R) = L2((−∞, y])⊕ L2([y,∞)).

In particular, Hβ
+,y equals H+,α for β = cot(α) and y = 0 in our notation (A.14),

and, as indicated at the end of Appendix A, our (variable) reference point x = y
will be added as a subscript to obtain θα,y(z, x), φα,y(z, x), ψ±,α,y(z, x), m±,α,y(z),
Mα,y(z), etc. H and Hβ

y , defined in terms of separated boundary conditions, are
real operators. Moreover, as observed in Appendix A, the point spectrum of H is
simple.
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Next, we recall a few results from [20]. With G(z, x, x′) and Gβy (z, x, x′) the

Green’s functions of H and Hβ
y , one obtains

Gβy (z, x, x′) = G(z, x, x′)− (β + ∂2)G(z, x, y)(β + ∂1)G(z, y, x′)

(β + ∂1)(β + ∂2)G(z, y, y)
,

β ∈ R, z ∈ C\{σ(Hβ
y ) ∪ σ(H)},

(3.5)

(3.6)
G∞y (z, x, x′) = G(z, x, x′)−G(z, y, y)−1G(z, x, y)G(z, y, x′),

z ∈ C\{σ(H∞y ) ∪ σ(H)}.

Here

(3.7)
∂1G(z, y, x′) := ∂xG(z, x, x′)|x=y , ∂2G(z, x, y) := ∂x′G(z, x, x′)|x′=y ,

∂1∂2G(z, y, y) := ∂x∂x′G(z, x, x′)|x=y=x′ , etc.

and

(3.8) ∂1G(z, y, x) = ∂2G(z, x, y), x 6= y.

As a consequence,

(3.9)
Tr[(Hβ

y − z)−1 − (H − z)−1]

= − d

dz
ln[(β + ∂1)(β + ∂2)G(z, y, y)], β ∈ R,

(3.10) Tr[(H∞y − z)−1 − (H − z)−1] = − d

dz
ln[G(z, y, y)].

In analogy to G(z, y, y) (cf. (A.47)), also

(3.11) (β + ∂1)(β + ∂2)G(z, y, y) is Herglotz

for each y ∈ R. Hence, both admit exponential representations of the form

(3.12) G(z, y, y) = exp

{
c∞(y) +

∫
R

[
1

λ− z −
λ

1 + λ2

]
ξ∞(λ, y) dλ

}
,

(3.13) c∞(y) ∈ R, 0 ≤ ξ∞(λ, y) ≤ 1 a.e.,

(3.14) ξ∞(λ, y) = lim
ε↓0

π−1Im{ln[G(λ+ iε, y, y)]} for a.e. λ ∈ R,

(3.15)

(β + ∂1)(β + ∂2)G(z, y, y)

= exp

{
cβ(y) +

∫
R

[
1

λ− z −
λ

1 + λ2

]
[ξβ(λ, y) + 1] dλ

}
, β ∈ R,
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(3.16) cβ(y) ∈ R, −1 ≤ ξβ(λ, y) ≤ 0 a.e., β ∈ R,

(3.17) ξβ(λ, y) = lim
ε↓0

π−1Im{ln[(β + ∂1)(β + ∂2)G(λ + iε, y, y)]} − 1, β ∈ R,

for each y ∈ R. Moreover,

(3.18) Tr[(Hβ
y − z)−1 − (H − z)−1] = −

∫
R

(λ− z)−2ξβ(λ, y) dλ, β ∈ R ∪ {∞}.

(Strictly speaking, the results (3.5)–(3.18) have been derived in [20] assuming τ to
be in the l.p. case at ±∞. However, these results extend to our present setting
without effort.)

For later purpose, we also note the identities (for each y ∈ R),

(3.19) G(z, y, y) = M0,y,2,2(z) = [m−,0,y(z)−m+,0,y(z)]−1,

sin2(α)(β + ∂1)(β + ∂2)G(z, y, y) = Mα,y,2,2(z) = [m−,α,y(z)−m+,α,y(z)]−1,

β = cot(α), α ∈ (0, π),

(3.20)

and especially
(3.21)
m+,α2,y(z)2 + {[m−,α2,y(z)−m+,α2,y(z)] + 2 cot(α1 − α2)}m+,α2,y(z)

+ cot2(α1 − α2) + [m−,α2,y(z)−m+,α2,y(z)] cot(α1 − α2)

−[sin(α1 − α2)]−2[m−,α2,y(z)−m+,α2,y(z)][m−,α1,y(z)−m+,α1,y(z)]−1 = 0,

α1 6= α2, z ∈ C\R,

following directly from (A.38).
As a consequence of Theorem 2.1, the basic uniqueness criterion for Schrödinger

operators on R reads as follows.

Theorem 3.1. Suppose α1, α2 ∈ [0, π), α1 6= α2, and assume Vj, j = 1, 2, satisfy

hypothesis (3.1). Define Hj, m±,j,αj ,y(z),Mj,αj,y(z) associated with τj = − d2

dx2 +
Vj(x), x ∈ R, j = 1, 2. Then the following are equivalent:

(i) m+,1,α1,y(z) = m+,2,α2,y(z), m−,1,α1,y(z) = m−,2,α2,y(z), z ∈ C+.
(ii) M1,α1,y(z) = M2,α2,y(z), z ∈ C+.

(iii) α1 = α2 and V1(x) = V2(x) for a.e. x ∈ R.

The following is our principal characterization result for Schrödinger operators
on R.

Theorem 3.2. Let β1, β2 ∈ R ∪ {∞}, β1 6= β2, and x0 ∈ R.
(i) ξβ1(λ, x0) and ξβ2(λ, x0) for a.e. λ ∈ R uniquely determine V (x) for a.e. x ∈

R if the pair (β1, β2) differs from (0,∞), (∞, 0).
(ii) If (β1, β2) = (0,∞) or (∞, 0), assume in addition that τ is in the limit point

case at +∞ and −∞. Then ξ∞(λ, x0) and ξ0(λ, x0) for a.e. λ ∈ R uniquely
determine V a.e. up to reflection symmetry with respect to x0; that is, both
V (x), V (2x0 − x) for a.e. x ∈ R correspond to ξ∞(λ, x0) and ξ0(λ, x0) for
a.e. λ ∈ R.
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Proof. (i) Identifying x0 and y in (3.21), one can solve for m+,α2,y(z) to obtain

m+,α2,x0(z) = −1

2
[m−,α2,x0(z)−m+,α2,x0(z)]− cot(α1 − α2)

±
{

1

4
[m−,α2,x0(z)−m+,α2,x0(z)]2

+
1

sin2(α1 − α2)

[m−,α2,x0(z)−m+,α2,x0(z)]

[m−,α1,x0(z)−m+,α1,x0(z)]

}1/2

, z ∈ C\R.

(3.22)

By (3.12), (3.15), (3.19), and (3.20), [m−,αj ,x0(z)−m+,αj,x0(z)] are both determined

by ξβj (λ, x0), βj = cot(αj), j = 1, 2, respectively and hence the right-hand-side of
(3.22) is determined up to the +/− ambiguity. In order to resolve that ambiguity,
we now consider the following case distinction:

a) αj ∈ (0, π) (i.e., βj ∈ R), j = 1, 2. Then by (A.39),

(3.23) m±,α2,x0(z) =
z→i∞

cot(α2) + o(z−1/2),

which inserted into (3.22) results in
(3.24)

m+,α2,x0(z) =
z→i∞

cot(α2−α1) + o(z−1/2)±
{

sin2(α1)

sin2(α1 − α2) sin2(α2)
+O(z−1)

}1/2

.

A comparison of (3.23) and (3.24) reveals that only one choice of the sign (the
+ sign, choosing the branch of

√
· such that

√
x > 0 for x > 0) in (3.24) can

be compatible with the leading behavior cot(α2) in (3.23). This resolves the sign
ambiguity in (3.24) and hence in (3.22), and thus determines m+,α2,x0(z). Since
ξβ2(λ, x0) determines [m−,α2,x0(z) −m+,α2,x0(z)], m−,α2,x0(z) is also determined.
Thus, both Weyl m-functions m±,α2,x0(z) are known, and this in turn determines
V a.e. by Theorem 3.1.

b) α2 = 0 (i.e., β2 =∞), α1 6= π/2 (i.e., β1 6= 0). Then by (A.40),

(3.25) m±,0,x0(z) =
z→i∞

±iz1/2 + o(1),

which inserted into (3.22) yields

(3.26) m+,0,x0(z) =
z→i∞

iz1/2 − cot(α1) + o(1)± {O(1)}1/2.

Since by (3.25) the {O(1)}1/2-term must cancel − cot(α1), this again resolves the
sign ambiguity in (3.26) (once more the + sign turns out to be the right one)
and hence in (3.22). Thus, m+,0,x0(z) is determined. Since ξ∞(λ, x0) determines
[m−,0,x0(z)−m+,0,x0(z)], also m−,0,x0(z) and hence V is determined a.e. as in part
a).

(ii) In the exceptional case where (β1, β2) = (0,∞), (∞, 0), the exchange

(3.27) V (x)→ V (2x0 − x) implies m±,0,x0(z)→ −m∓,0,x0(z),
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since we assumed the l.p. case at ±∞. This substitution leaves

(3.28) [m−,0,x0(z)−m+,0,x0(z)]−1 = G(z, x0, x0)

and

m−,0,x0(z)m+,0,x0(z)[m−,0,x0(z)−m+,0,x0(z)]−1

= [m−,π/2,x0
(z)−m+,π/2,x0

(z)]−1 = ∂1∂2G(z, x0, x0),

(3.29)

and hence ξ∞(λ, x0) and ξ0(λ, x0) invariant (cf. (3.19) and (3.20)). (Here we used
that m±,π/2,x0

(z) = −[m±,0,x0(z)]−1, see (A.38).) �
Corollary 3.3. Suppose τ is in the limit point case at +∞ and −∞, and let
β ∈ R∪ {∞} and x0 ∈ R. Then ξβ(λ, x0) for a.e. λ ∈ R uniquely determines V (x)
for a.e. x ∈ R if and only if V is reflection symmetric with respect to x0, that is,
V (2x0 − x) = V (x) a.e.

Proof. First suppose that V (2x0 − x) = V (x) a.e. Then (A.38) yields

(3.30) m−,α,x0(z) = −m+,π−α,x0(z), α ∈ [0, π).

If β ∈ R\{0} (i.e., α ∈ (0, π)\{π/2}, β = cot(α)), then (3.30) implies

(3.31) [m−,α,x0(z)−m+,α,x0(z)]−1 = [m−,π−α,x0(z)−m+,π−α,x0(z)]−1.

By (3.15), this yields ξβ(λ, x0) = ξ−β(λ, x0) a.e., and hence V is uniquely deter-
mined a.e. by Theorem 3.2. On the other hand, if β =∞ or 0 (i.e., α = 0 or π/2),
then (3.30) yields

(3.32) m−,0,x0(z) = −m+,0,x0(z) or m−,π/2,x0
(z) = −m+,π/2,x0

(z).

This determines m±,0,x0(z) or m±,π/2,x0
(z) and hence V a.e. by Theorem 3.1.

Conversely, suppose V is not reflection symmetric with respect to x0. Define

V̂ (x) = V (2x0 − x) a.e. and denote by m̂±,α,x0(z0), M̂α,x0(z), and ξ̂β(λ, x0) the

corresponding quantities associated with V̂ . Then

(3.33) m̂±,π−α,x0(z) = −m∓,α,x0(z), α ∈ [0, π)

(identifying α = 0 and π), and hence

(3.34) M̂π−α,x0(z) =

(
Mα,x0,1,1(z) −Mα,x0,1,2(z)
−Mα,x0,2,1(z) Mα,x0,2,2(z)

)
6= Mα,x0(z)

since m−,α,x0(z) 6= −m+,α,x0(z) for all α ∈ [0, π). (The latter fact is obvious from
the asymptotic behavior (A.39) for α ∈ (0, π)\{π/2}, and also follows from our
hypothesis that V is not reflection symmetric w.r.t. x0 for α = 0, π/2. Alternatively,
it also follows from our hypothesis and Theorem 3.1.) (3.34), however, shows that

ξβ(λ, x0) = ξ̂−β(λ, x0) is common to V and V̂ 6= V . �
In view of Corollary 2.5, it seems appropriate to formulate Theorem 3.2 in the

special case of purely discrete spectra.
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Corollary 3.4. Suppose H (and hence Hβ
y for all y ∈ R, β ∈ R∪{∞}) has purely

discrete spectrum, that is, σess(H) = ∅, and let β1, β2 ∈ R ∪ {∞}, β1 6= β2, and
x0 ∈ R.

(i) σ(H), σ(H
βj
x0 ), j = 1, 2, uniquely determine V a.e. if the pair (β1, β2) differs

from (0,∞) and (∞, 0).
(ii) If (β1, β2) = (0,∞) or (∞, 0), assume in addition that τ is in the limit point

case at +∞ and −∞. Then σ(H), σ(H∞x0
), and σ(H0

x0
) uniquely determine

V a.e. up to reflection symmetry with respect to x0, that is, both V (x) and

V̂ (x) = V (2x0 − x) for a.e. x ∈ R correspond to σ(H) = σ(Ĥ), σ(H∞x0
) =

σ(Ĥ∞x0
), and σ(H0

x0
) = σ(Ĥ0

x0
). Here, in obvious notation, Ĥ, Ĥ∞x0

, Ĥ0
x0

correspond to τ̂ = − d2

dx2 + V̂ (x), x ∈ R.
(iii) Suppose τ is in the limit point case at +∞ and −∞, and let β ∈ R ∪ {∞}.

Then σ(H) and σ(Hβ
x0

) uniquely determine V a.e. if and only if V is reflection
symmetric with respect to x0.

(iv) Suppose that V is reflection symmetric with respect to x0 and τ is non-
oscillatory at +∞ and −∞. Then V is uniquely determined a.e. by σ(H)
in the sense that V is the only potential symmetric with respect to x0 with
spectrum σ(H).

Proof. (i) We denote σ(H) = {en}n∈J0, σ(Hβ
x0

) = {λβn(x0)}n∈Iβ , where Iβ = J0,
β ∈ R, and I∞ = J , with J0 = N0 or Z and J = N or Z depending on whether
or not H is bounded from below. Moreover, we use the ordering en < en+1,

λβn(x0) ≤ λβn+1(x0). By general principles,

(3.35)
λβ0 (x0) ≤ e0, β ∈ R if H is bounded from below,

en ≤ λβn(x0) ≤ en+1, β ∈ R ∪ {∞}.

By hypothesis, ξβ(λ, x0), β ∈ R∪{∞}, is a pure step function which jumps by +1 at
every (necessarily simple) eigenvalue of H (since ψ+,α,x0(em, x) and ψ−,α̃,x0(em, x)
for em ∈ σ(H), α, α̃ ∈ [0, π), are unique up to constant multiples). Similarly,
ξβ(λ, x0) jumps by −m(λβn(x0)) (m(λ) denotes the multiplicity of an eigenvalue λ)
at any eigenvalue of Hβ

x0
. As long as all multiplicities involved are equal to one,

that is,

(3.36) m(λβjn (x0)) = 1, n ∈ Iβj ,

σ(H), σ(Hβ1
x0

), and σ(Hβ2
x0

) clearly determine ξβj (λ, x0), j = 1, 2. The case where

some eigenvalues ofH
βj
x0 are degenerate needs a bit more care. Assume, for example,

(3.37) λβ1
m0

(x0) = λβ1

m0+1(x0) := em0 , i.e., m(em0) = 2

for some m0 ∈ Iβ1 . Since half-line spectra are necessarily simple, (3.37) implies that

Hβ1
+,x0

and Hβ1
−,x0

, the corresponding half-line operators in L2((x0,±∞)) (cf. (3.3),

(3.4)) associated with Hβ1
x0

, have the same simple eigenvalue em0 . As a consequence,

H itself has em0 as a (simple) eigenvalue, that is, em0 ∈ σ(H). Thus, ξβ1(λ, x0)
jumps by −2 + 1 = −1 at λβ1

m0
(x0) and stays −1 until em0+1 ∈ σ(H).

Similarly, suppose λβ1
m0

(x0) = em0−1 for some m0 ∈ Iβ1 and let ψ+,α1,x0(em0 , x)
= const.ψ−,α1,x0(em0−1, x), β1 = cot(α1), be the unique eigenfunction of H as-

sociated with em0−1. Then also λβ1

m0−1(x0) = em0−1, since the restrictions of
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ψ±,α1,x0(em0−1, x) to x ≤ x0 and x ≥ x0 are eigenfunctions of Hβ1
−,x0

and Hβ1
+,x0

,

respectively. Hence σ(H), σ(Hβ1
x0

), and σ(Hβ2
x0

) determine ξβj (λ, x0), j = 1, 2, and
we may apply Theorem 3.2(i).

(ii) now follows from Theorem 3.2(ii), and (iii) is clear from Corollary 3.3. (iv)
is a consequence of (iii), the fact that τ being non-oscillatory at ±∞ implies the
l.p. case at ±∞, and the ordering

(3.38)
λ0

0(x0) = e0, λ∞2m+1(x0) = e2m+1 = λ∞2m+2(x0),

λ0
2m+1(x0) = e2m+2 = λ0

2m+2(x0), m ∈ N0. �

We emphasize that Corollary 3.4(iii) is, of course, implied by the result of Borg
[5] and Marchenko [32] (see Corollary 2.5 with α1 = 0, α2 = π/2).

So far, we have exclusively dealt with ξ-functions and spectra in connection
with uniqueness theorems. A variety of further uniqueness results can be obtained
by invoking alternative information such as the left/right distribution of λβn(x0)

(i.e., whether λβn(x0) is an eigenvalue of Hβ
−,x0

in L2((−∞, x0]) or of Hβ
+,x0

in

L2([x0,∞))) and/or associated norming constants. For brevity we concentrate on
only one such case, the Dirichlet boundary condition β =∞.

We start by introducing Dirichlet data instead of merely Dirichlet eigenvalues.
For notational convenience we now denote the Dirichlet eigenvalues λ∞n (x0) by

(3.39) µn(x0), n ∈ J,

with J ⊆ N or Z an appropriate index set. Let (a, b) ⊆ R\σ(H) be a spectral gap of
H and assume µn(x0) ∈ (a, b). The corresponding Dirichlet datum is then defined
by

(3.40) (µn(x0), σn(x0)), σn(x0) ∈ {−,+},

where σn(x0) = −/+ records whether µn(x0) is a left/right Dirichlet eigenvalue
(i.e., an eigenvalue of H∞−,x0

, respectively H∞+,x0
).

A combination of ξ-functions and Dirichlet data allows one to rephrase the cel-
ebrated uniqueness theorem of Borg [4] for periodic potentials as follows. Assume
in addition to hypothesis (3.1) that V is periodic with period Ω > 0. Then Floquet
theory yields that the spectra of H and H∞x0

are of the type

σ(H) =
⋃
n∈N

[E2(n−1), E2n−1], E0 < E1 ≤ E2 < E3 ≤ · · · ,(3.41)

σ(H∞x0
) = σ(H) ∪ {µn(x0)}n∈N, E2n−1 ≤ µn(x0) ≤ E2n, n ∈ N.(3.42)

Let I(x0) ⊆ N denote the set of all indices j such that

(3.43) µj(x0) /∈ {En}n∈N0 (i.e., µj(x0) /∈ σ(H)).

Then Borg’s result can be rephrased as follows.
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Theorem 3.5 (Borg [4], see also [34],[35]). Let V ∈ L1
loc(R) be real-valued and

periodic of period Ω > 0. Then ξ∞(λ, x0) for a.e. λ ∈ R and σj(x0), j ∈ I(x0),
uniquely determine V for a.e. x ∈ R.

For the proof, it suffices to note that (cf., e.g., [15],[20],[26])

(3.44) ξ∞(λ, x0) =


1
2 , λ ∈ (E2(n−1), E2n−1), n ∈ N,
1, λ ∈ (E2n−1, µn(x0)), n ∈ N,
0, λ ∈ (−∞, E0), (µn(x0), E2n), n ∈ N,

in connection with the periodic case (3.41), (3.42). This result extends to algebro-
geometric quasi-periodic finite-gap potentials and certain classes of almost-periodic
potentials; we omit further details at this point.

After this warm-up we turn to a new uniqueness result for operators with purely
discrete spectra. Assume

(3.45) σess(H) = ∅ and denote σ(H) = {en}n∈J0

such that

(3.46) σ(H∞x0
) = {µn(x0)}n∈J , en−1 ≤ µn(x0) ≤ en, n ∈ J,

where J0 = N0 or Z and J = N or Z are appropriate index sets depending on
whether or not H is bounded from below.

Next we divide the spectrum of H∞x0
into simple and (twice) degenerate Dirichlet

eigenvalues, that is, those which are disjoint from σ(H) and those which coincide
with an element of σ(H),

(3.47)
J = I(x0) ∪ I ′(x0), I(x0) ∩ I ′(x0) = ∅,

{µj(x0)}j∈I(x0) ∩ σ(H) = ∅, {µj′(x0)}j′∈I′(x0) ⊂ σ(H)

(i.e., µj′(x0) ∈ {ej′−1, ej′} for j′ ∈ I ′(x0)). As a last ingredient we need the
norming constants associated with the (twice) degenerate Dirichlet eigenvalues
{µj′(x0)}j′∈I′(x0) denoted by

(3.48) c±,j′(x0) > 0, j′ ∈ I ′(x0).

Quite generally, the norming constant c+,n(x0) > 0 (respectively c−,n(x0) > 0) as-
sociated with µn(x0) ∈ σ(H∞+,x0

) (respectively µn(x0) ∈ σ(H∞−,x0
)) is given by mi-

nus (respectively plus) the residue of the corresponding Weyl m-function m+,0,x0(z)
(respectively m−,0,x0(z)) at z = µn(x0). Equivalently, one has

(3.49) c±,n(x0) = ‖φ0,x0(µn(x0), · )‖−2
L2(R±)

(cf. (A.37)).
Given these preparations we can state the following result.
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Theorem 3.6. Let x0 ∈ R and suppose H has purely discrete spectrum, that is,
σess(H) = ∅, σ(H) = {en}n∈J0 . Then ξ∞(λ, x0) for a.e. λ ∈ R, σj(x0), j ∈ I(x0),
and c+,j′(x0), c−,j′(x0), j′ ∈ I ′(x0), uniquely determine V for a.e. x ∈ R.

Proof. The step function ξ∞(λ, x0) determines the Green’s function G(z, x0, x0) of
H by (3.12), and hence

(3.50) [m−,0,x0(z)−m+,0,x0(z)] = G(z, x0, x0)−1

is determined. Since σess(H) = ∅, both m±,0,x0(z) are meromorphic (on C) with
first-order poles (and zeros) on R. Since by hypothesis we know the left/right
distribution of all simple Dirichlet eigenvalues {µj(x0)}j∈I(x0), we can infer the
corresponding residue of m−,0,x0(z) (respectively m+,0,x0(z)) from the knowledge
of G(z, x0, x0)−1 = [m−,0,x0(z) − m+,0,x0(z)]. But for the remaining (twice) de-
generate Dirichlet eigenvalues {µj′(x0)}j′∈I′(x0) of H∞x0

, the residue of m±,−,x0(z)
at z = µj′(x0), j′ ∈ I ′(x0), equals ∓c±,j′(x0) and hence is known as well. Thus,
the principal parts of m±,0,x0(z) are determined. Since the corresponding half-line
spectral measures dρ±,0,x0(λ) associated with H∞±,x0

= H±,0,x0 are pure point mea-
sures supported on σ(H±,0,x0) of corresponding mass c±,n(x0), they are completely
determined under our hypothesis. But dρ±,0,x0(λ) uniquely determines V a.e. on
[x0,±∞) by Theorem 2.1. �

If in addition V is symmetric with respect to x0 and τ is in the limit point case
at +∞ and −∞, then I(x0) = ∅, I ′(x0) = J , m+,0,x0(z) = −m−,0,x0(z), and hence
ξ∞(λ, x0) alone uniquely determines V a.e., recovering again the result of Borg [5]
and Marchenko [32] recorded in Corollary 3.4(iii).

The reader might want to compare our method of proof of Theorem 3.6 with the
inverse spectral approach to confining potentials on the half-line R+ as presented
in [21].
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Appendix A. Herglotz functions and Weyl-Titchmarsh theory

We briefly summarize a few basic facts on Herglotz functions and then recall some
of the essential elements of the Weyl-Titchmarsh theory for Schrödinger operators
on the half-line [0,∞) as well as on R relevant in Sections 2 and 3.

We start with Herglotz functions (also called Pick or Nevanlinna-Pick functions).
Denoting C± := {z ∈ C | ±Im(z) > 0}, any analytic map m : C+ → C+ is called

Herglotz. One conveniently defines m on C− by m(z̄) = m(z) for z ∈ C+. Herglotz
functions admit particular representations (Borel transforms) in terms of certain
measures on R. Since this aspect is of fundamental importance in the context of
inverse spectral theory of Schrödinger operators, we recall the following classical
results of Aronszajn and Donoghue [2].
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Theorem A.1 [2]. Let m be a Herglotz function. Then,
(i) There exist a measure dρ on R and a real-valued ξ ∈ L1

loc(R) such that

m(z) = a+ bz +

∫
R

[
1

λ− z −
λ

1 + λ2

]
dρ(λ)(A.1)

= exp

{
c+

∫
R

[
1

λ− z −
λ

1 + λ2

]
ξ(λ) dλ

}
,(A.2)

where

(A.3)

∫
R

dρ(λ)

1 + λ2
<∞, a = Re[m(i)], b ≥ 0

and

(A.4) 0 ≤ ξ ≤ 1 a.e., c = Re{ln[m(i)]}.

(ii) (Fatou’s lemma)

ρ((λ, µ]) = lim
δ↓0

lim
ε↓0

π−1

µ+δ∫
λ+δ

dν Im[m(ν + iε)],(A.5)

ξ(λ) = lim
ε↓0

π−1Im{ln[m(λ+ iε)]} a.e.(A.6)

(iii) Let m,n ∈ N and b = 0. Then

(A.7)

0∫
−∞

(1 + λ2)−1|λ|m|ξ(λ)| dλ +

∞∫
0

(1 + λ2)−1|λ|n|ξ(λ)| dλ <∞

if and only if

(A.8)

0∫
−∞

(1 + λ2)−1|λ|m dρ(λ) +

∞∫
0

(1 + λ2)−1|λ|n dρ(λ) <∞

and lim
z→i∞

m(z) = a−
∫
R

(1 + λ2)−1λdρ(λ) > 0.

(iv)

(A.9) m(z) = 1 +

∫
R

(λ− z)−1 dρ(λ) with

∫
R

dρ(λ) <∞

if and only if

(A.10) m(z) = exp

[∫
R

(λ− z)−1ξ(λ) dλ

]
with 0 ≤ ξ ≤ 1 a.e. and ξ ∈ L1(R).
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In this case

(A.11)

∫
R

dρ(λ) =

∫
R

ξ(λ) dλ.

(v) Any poles and zeros of m are simple and located on the real axis, the residues
at poles being negative.

The link between Herglotz functions and rank-one perturbations of self-adjoint
operators is developed in detail in [38]. In particular, its universal applicability
and unifying aspects in connection with the spectral theory of ordinary differential
operators and finite-difference operators are amply illustrated in [16],[25],[38].

Next we turn to Schrödinger operators on the half-line R+ := [0,∞). The
following material can be found, for example, in [6],[31], and [36]. Suppose

(A.12) V ∈ L1([0, R]) for all R > 0, V real-valued

and introduce the differential expression

(A.13) τ+ = − d2

dx2
+ V (x), x ≥ 0.

Associated with τ+ we introduce the following self-adjoint operatorH+,α in L2(R+).
Pick a z+ ∈ C\R and a solution f+(z+, · ) ∈ L2(R+) of τ+ψ = z+ψ (the existence
of such an f+(z+, x) is a fundamental result of Weyl’s theory), and define
(A.14)

H+,αf = τ+f, α ∈ [0, π),

f ∈ D(H+,α) = {g ∈ L2(R+) | g, g′ ∈ AC([0, R]) for all R > 0;

sin(α)g′(0+) + cos(α)g(0+) = 0; lim
R→∞

W (f+(z+), g)(R) = 0; τ+g ∈ L2(R+)}.

Here W (f, g)(x) = f(x)g′(x) − f ′(x)g(x) denotes the Wronskian of f and g and
the boundary condition lim

R→∞
W (f+(z+), g) = 0 at x = +∞ can be omitted if and

only if τ+ is in the limit point (l.p.) case at +∞, that is, if and only if f+(z+, x)
is unique (up to constant multiples). If τ+ is in the limit circle (l.c.) case at
+∞, H+,α depends on the choice of f+(z+, x) and for definiteness we shall “fix
the boundary condition at +∞,” that is, always employ the same f+(z+, · ) in
the definition (A.14) of H+,α for all values of α ∈ [0, π). Due to our choice of
(symmetric) separated boundary conditions in (A.14), H+,α is a real operator (i.e.,

g ∈ D(H+,α) implies ḡ ∈ D(H+,α) and H+,αḡ = (H+,αg)), see, for example, [36],
Section 6.4, with uniform spectral multiplicity one, cf. [10], Corollary XIII.5.5.

Next we introduce the fundamental system φα(z, x), θα(z, x), z ∈ C, of solutions
of

(A.15) τ+ψ(z, x) = zψ(z, x), x ≥ 0,

satisfying

(A.16) φα(z, 0) = −θ′α(z, 0) = − sin(α), φ′α(x, 0) = θα(z, 0) = cos(α)
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such that W (θα(z), φα(z)) = 1. Furthermore, let ψ+,α(z, x), z ∈ C\R, be the
unique solution of (A.15) which satisfies

(A.17)
ψ+,α(z, · ) ∈ L2(R+), sin(α)ψ′+,α(z, 0+) + cos(α)ψ+,α(z, 0+) = 1,

lim
R→∞

W (f+(z+), ψ+,α(z))(R) = 0, z ∈ C\R

(the latter condition being superfluous, i.e., automatically fulfilled, if τ+ is l.p. at
+∞). Uniqueness of ψ+,α(z, x) is a consequence of Weyl’s theory and the fact that
we are imposing conditions separately at 0 and ∞ in (A.17); see, for example, [10],
Theorem XIII.2.32. ψ+,α(z, x) is of the form

(A.18) ψ+,α(z, x) = θα(z, x) +m+,α(z)φα(z, x)

with m+,α(z) being Weyl’s m-function. m+,α(z) is well known to be a Herglotz
function (cf. also the comment following (A.27)). To avoid repetitions, we list
properties of m+,α(z) a bit later (together with those of m−,α(z)). Here we just
note that the Herglotz property of m+,α(z) together with the asymptotic behavior
(A.39), (A.40) yields the existence of a measure dρ+,α such that

m+,α = a+,α +

∫
R

[
1

λ− z −
λ

1 + λ2

]
dρ+,α(λ), α ∈ [0, π),(A.19)

= cot(α) +

∫
R

(λ− z)−1dρ+,α(λ), α ∈ (0, π),(A.20)

with

(A.21)

∫
R

dρ+,α(λ)

1 + |λ|

{
<∞, α ∈ (0, π),

=∞, α = 0.

The Green’s function G+,α(z, x, x′) of H+,α finally reads

(A.22)
((H+,α − z)−1f)(x) =

∞∫
0

dx′G+,α(z, x, x′)f(x′),

z ∈ C\σ(H+,α), f ∈ L2(R+),

G+,α(z, x, x′) =

{
φα(z, x)ψ+,α(z, x′), 0 ≤ x ≤ x′,
φα(z, x′)ψ+,α(z, x), 0 ≤ x′ ≤ x,

(A.23)

=

∫
R

(λ− z)−1φα(λ, x)φα(λ, x′) dρ+,α(λ),(A.24)

where σ( · ) denotes the spectrum. In particular, (A.18), (A.23), and (A.24) yield

G+,α(z, 0, 0) = − sin(α)[cos(α)−m+,α(z) sin(α)], α ∈ [0, π),(A.25)

= sin2(α)

∫
R

(λ− z)−1 dρ+,α(λ), α ∈ (0, π),(A.26)
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and for each x ≥ 0,

(A.27) G+,α(z, x, x) is Herglotz.

While the latter result is obvious from (A.24) (note we have φα(λ, x) =
|λ|→∞

O(1) for

α ∈ (0, π) and φ0(λ, x) =
|λ|→∞

O(|λ|−1/2) for fixed x ∈ R), the fact (A.27) is easily

proved directly using the first resolvent equation and self-adjointness ofH+,α. (This
statement holds quite generally for the diagonal integral kernel of resolvents of self-
adjoint operators in connection with general measure spaces as long as the diagonal
kernel is well-defined. In particular, it holds for the diagonal Green’s function of
finite difference operators.) Together with (A.25) this yields a direct proof that
m+,α(z) is Herglotz too.

Finally, we recall a few facts in connection with Schrödinger operators on R.
Assuming

(A.28) V ∈ L1
loc(R), V real-valued,

one introduces the differential expression

(A.29) τ = − d2

dx2
+ V (x), x ∈ R,

and picks z± ∈ C\R and solutions f±(z±, · ) ∈ L2(R±) (R− := (−∞, 0]) of τψ(z) =
zψ(z) for z = z+, respectively z−. One then defines a self-adjoint operator H in
L2(R) by

(A.30)

Hf = τf,

f ∈ D(H) = {g ∈ L2(R) | g, g′ ∈ ACloc(R);

lim
R→±∞

W (f±(z±), g)(R) = 0; τg ∈ L2(R)},

where again, the boundary condition at +∞ (or −∞) can be omitted if and only if
τ is l.p. at +∞ (or −∞), that is, if and only if f+(z+, · ) (or f−(z−, · )) is unique up
to constant multiples. Again, when considering restrictions of τ to R±, we shall fix
the boundary condition at +∞ and/or −∞ if τ is l.c. at +∞ and/or −∞. As in the
half-line case (A.14), the separated boundary conditions in (A.30) imply that H is
a real operator (see, e.g., [36], Section 6.4). Moreover, the point spectrum σp(H)
of H (the set of eigenvalues of H) is simple (this follows, e.g., from [10], Theorem
XIII.2.32).

Next we define φα(z, x), θα(z, x) as in (A.15), (A.16) (replacing τ+ by τ) and
introduce the uniquely determined solutions ψ±,α(z, x) of

(A.31) τψ(z, x) = zψ(z, x), x ∈ R,

satisfying

(A.32)
ψ±,α(z, · ) ∈ L2(R±), sin(α)ψ′±,α(z, 0) + cos(α)ψ±,α(z, 0) = 1,

lim
R→±∞

W (f±(z±), ψ±,α(z))(R) = 0, z ∈ C\R
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(the latter condition being superfluous at +∞ and/or −∞, i.e., automatically ful-
filled if τ is l.p. at +∞ and/or −∞). Existence and uniqueness of ψ±,α(z, x) follows
from Theorem XIII.2.32 in [10]; they admit the representation

(A.33) ψ±,α(z, x) = θα(z, x) +m±,α(z)φα(z, x)

in terms of the Weyl m-functions m±,α(z). With our conventions

±m±,α(z) is Herglotz, ±Im[m±,α(z)] > 0, ±z ∈ C+,(A.34)

m±,α(z) = m±,α(z̄), z ∈ C\R,(A.35)

W (ψ+,α(z), ψ−,α(z)) = m−,α(z)−m+,α(z).(A.36)

Moreover, we recall the following facts:

(A.37) ± lim
ε↓0

iεm±,α(λ+ iε) =

{
0, φα(λ, · ) /∈ L2(R±),

−‖φα(λ, · )‖−2
2 , φα(λ, · ) ∈ L2(R±), λ ∈ R,

(A.38) m±,α1(z) =
− sin(α1 − α2) + cos(α1 − α2)m±,α2(z)

cos(α1 − α2) + sin(α1 − α2)m±,α2(z)
,

(A.39) m±,α(z) =
z→i∞

cot(α)± i

sin2(α)
z−1/2− cos(α)

sin3(α)
z−1 + o(z−1), α ∈ (0, π),

(A.40) m±,0(z) =
z→i∞

±iz1/2 + o(1),

m±,α(z) = a±,α ±
∫
R

[
1

λ− z −
λ

1 + λ2

]
dρ±,α(λ), α ∈ [0, π),(A.41)

= cot(α) ±
∫
R

(λ− z)−1 dρ±,α(λ), α ∈ (0, π),(A.42)

with

(A.43)

∫
R

dρ±,α(λ)

1 + |λ|

{
<∞, α ∈ (0, π),

=∞, α = 0,

(A.44)

±
±∞∫
0

dxψ±,α(z1, x)ψ±,α(z2, x) = ±m±,α(z1)−m±,α(z2)

z1 − z2

=

∫
R

(λ− z1)−1(λ− z2)−1 dρ±,α(λ).
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While the meaning of (A.38) is clear whenever τ is l.p. at ±∞, its interpretation
in the l.c. case is as follows: Pick an m+,α2(z) (respectively m−,α2(z)) on the corre-
sponding limit circle of τ at +∞ (respectively −∞) for α2. Then the left-hand-side
of (A.38) defines a point m+,α1(z) (respectively m−,α1(z)) on the corresponding
limit circle of τ at +∞ (respectively −∞) for α1. As a consequence, a more so-
phisticated notation for ψ±,α(z, x), m±,α(z), dρ±,α(λ), etc. would have to include
an additional subscript ϕ±(α) ∈ [0, π) parametrizing points on the limit circle at
±∞ for α. For simplicity, we decided to omit this additional subscript in the limit
circle case.

Perhaps the asymptotic expansions (A.39) and (A.40) also warrant a comment.
Under our general hypothesis (A.12), the standard literature usually provides some-
what weaker asymptotic formulas. The actual results (A.39), (A.40) appear to be
due to Everitt [11] (see also [3]).

The Green’s function G(z, x, x′) of H is then characterized by

((H − z)−1f)(x) =

∫
R

dx′G(z, x, x′)f(x′), z ∈ C\σ(H), f ∈ L2(R),

(A.45)

G(z, x, x′) =
1

m−,α(z)−m+,α(z)

{
ψ−,α(z, x)ψ+,α(z, x′), x ≤ x′,
ψ−,α(z, x′)ψ+,α(z, x), x′ ≤ x.

(A.46)

Again (cf. the paragraph following (A.27)), for each x ∈ R, the diagonal Green’s
function

(A.47) G(z, x, x) is Herglotz.

We emphasize that our choice of reference point x = 0 in (A.16) was purely a
matter of convenience. In Section 3 it turns out to be advantageous to introduce
a (variable) reference point x = y instead. Without going into further details at
this point, we agree to add the subscript y in this case and hence use the notation
θα,y(z, x), φα,y(z, x), ψ±,α,y(z, x), m±,α,y(z), dρ±,α,y(λ), etc. The Weyl M -matrix
for H is then defined by
(A.48)
Mα,y(z) = (Mα,y,p,q(z))1≤p,q≤2

= [m−,α,y(z)−m+,α,y(z)]−1

×
(

m−α,y(z)m+,α,y(z) [m−,α,y(z) +m+,α,y(z)]/2
[m−,α,y(z) +m+,α,y(z)]/2 1

)
.

By inspection,

(A.49) det[Mα,y(z)] = −1

4

and

(A.50) Mα,y,p,p(z) are Herglotz, p = 1, 2.
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