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1. Introduct ion  

Although concrete operators with singular continuous spectrum have prolifer- 
ated recently [7, 11, 13, 17, 34, 35, 37, 39], we still don't really understand much 

about singular continuous spectrum. In part, this is because it is normally defined 
by what it i s n ' t - -  neither pure point nor absolutely continuous. An important point 

of  view, going back in part to Rogers and Taylor [27, 28], and studied recently 
within spectral theory by Last [22] (also see references therein), is the idea of using 
Hausdorff measures and dimensions to classify measures. Our main goal in this 

paper is to look at the singular spectrum produced by rank one perturbations (and 

discussed in [7, 11, 33]) from this point of  view. 
A Borel measure # is said to have exact dimension a E [0, 1] if and only if 

#(S) = 0 if S has dimension/3 < a and if/~ is supported by a set of dimension a. If 

0 < a < 1, such a measure is, of necessity, singular continuous. But, there are also 
singular continuous measures of exact dimension 0 and 1 which are "particularly 

close" to point and a.c. measures, respectively. Indeed, as we explain, we know 
of "explicit" Schrtidinger operators with exact dimension 0 and 1, but, while they 

presumably exist, we don't know of any with dimension a E (0, 1). 
While we are interested in the abstract theory of  rank one perturbations, we are 

especially interested in those rank one perturbations obtained by taking a random 

Jacobi matrix and making a Baire generic perturbation of the potential at a single 

point. It is a disturbing fact that the strict localization (dense point spectrum with 
[]xe-itn6oll2 = (e-itn6o ' x2e-itn~o ) bounded in t), that holds a.e. for the random case, 

can be destroyed by arbitrarily small local perturbations [7, 11]. We ameliorate 

this discovery in the present paper in three ways: First, we shall see that, in this 
case, the spectrum is always of dimension zero, albeit sometimes pure point and 

sometimes singular continuous. Second, we show that not only does the set of  
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couplings with singular continuous spectrum have Lebesgue measure zero, it has 

Hausdorff  dimension zero. Third, we shall also see that while ]]xe-#l-l~5oI[ may be 

unbounded after the local perturbation, it never grows faster than C ln(t). 

Appendix 2 contains an example of  a Jacobi matrix which sheds light on the 

proper  definition of  localization: It has a complete set of  exponentially decaying 

eigenfunctions, but, nevertheless, l i m t _ + ~  ]lxeitH6o ]12/t ~ = oo for any a < 2. Section 

7 discusses further the connection between eigenfunction localization and transport. 

In Section 2, we review some basic facts about Hausdorff  measures that we use 

later. In Section 3, we relate these to boundary behavior of  Borel transforms. In 

Section 4, we use these ideas to present relations between spectra produced by 

rank one perturbations and the behavior of  the spectral measure of  the unperturbed 

operator. In Section 5, we relate Hausdorff  dimensions of  some energy sets to the 

dimensions of  some coupling constant sets. In Section 6, we use the results of  

Sections 4 and 5 to present examples (some related to those in [40]) that show that 

the Hausdorff  dimension under perturbation can be anything. 

In Section 7, we turn to systems with exponentially localized eigenfunctions, and 

show that under local perturbations the spectrum remains of  Hausdorff  dimension 

zero. Some of  the lemmas in this section on the nature of  localization are of  

independent  interest. Finally, in Section 8, we prove that "physical" localization 

is "almost  stable," that is, suitable decay of  (~Sn, e-itH~m) in In - m] uniform in t 

implies that Ilxexp(-it(H + ;~0))~011 grows at worst logarithmically. 

Appendix 1 provides a proof  of  a variant of  a theorem of  Aizenman relat- 

ing Green 's  function estimates to dynamics and Appendix 2 is an example with 

interesting pathologies. Appendix 3 shows that our notion of  "semi-uniform" 

localization introduced in Section 7 cannot be replaced by uniform localization 

for the Anderson model. Appendix 4 extends a lemma of  Howland to allow 

consideration of  dimension and Appendix 5 provides the technical details of  one 

class of  examples in Section 6. 

R.d.R. would like to thank M. Aschbacher and C. Peck for the hospitality of  

Caltech where some of  this work was completed. We thank M. Aizenman, J. Avron, 

A. Klein, and G. Stolz for useful discussions. 

2. H a u s d o r f f  m e a s u r e s  a n d  spec tra  

Given a Borel set S in IR and a E [0, 1], we define 

{s 0/ Q~,6(S) = inf b~l ~ Ib~l < ~; S C b~ , 
g = l  u = l  
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the inf over  all 6-covers by  intervals by of  size at most  6. Obviously,  as 6 decreases, 

Q increases since the set of  covers becomes  fewer, and 

ha(S) = l im Q~,~(S) 
~$0 

is called a-dimensional Hausdorffmeasure. It is a non-sigma-finite measure  on the 

Borel sets. Note that h ~ coincides with the counting measure (i.e., assigns to each 

set the number  of  points in it), and h 1 coincides with Lebesgue measure.  Clearly, 

i f / 3 < a < 7 ,  

6~-'~QT,,(S) < Q~,,(S) <_ 6~-~Q~,,(S), 

so if ha(S) < oo, then hT(S) = 0 for 7 > a and if ha(S) > 0, then h~(S) = 
for/3 < a. Thus, for any S, there is a unique a0, called its Hausdorffdimension, 
dim(S), so h a (S) = 0 if a > a0 and h a (S) = cc if  a < a0. h ~~ (S) can be zero, finite, 

infinite, or so infinite S isn ' t  even h~~ 

In what follows, we shall use Hausdorf f  measures  and dimensions to classify 

measures.  Unless pointed otherwise, by "a measure"  (equivalently, "a  measure  on 

~"; usually denoted by #) we mean a positive sigma-finite Borel measure  on IK 

Note, however, that some parts o f  the paper  only discuss more  restricted classes of  

measures,  such as finite measures.  

D e f i n i t i o n  A measure  # on 1~ is said to be of  exact dimension a for a E [0, 1] 

if  and only if 

(1) For any/3 E [0, 1] with/3 < a and S a set o f  dimension/3,  #(S) = 0. 

(2) There is a set So of  dimension a which supports # in the sense that 

~(~\So)  = O. 

R e m a r k s  1. One might  think that the proper  condition (2) is that for any/3 > a,  

there is a set S;~ of  dimension/3 so #(~\S;~) = 0. But if so, then So = Nn%l Sa+l/n 
is of  dimension a and supports #. 

2. Of  special interest are the end points a = 0 where only (2) is required, and 

a -- 1 where only (1) is required. Obviously,  a = 0 includes point measures  and 

a = 1 includes a.c. measures.  

3. The definition is due to Rogers -Tay lor  [27]. 

Not  every measure  is o f  some exact dimension; indeed, the sum of  measures  of  

exact distinct dimensions is not of  any exact  dimension. But in this paper, most  of  

our examples  will involve measures  of  some exact  dimension. Last  [22], following 

Rogers -Taylor  [27, 28], discusses many  different decomposi t ions of  any measure  

into a part of  dimension less than a,  equal to a,  and larger than a. The piece of  

exact dimension a can be further decomposed  in terms of  its relation to h a. 
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D e f i n i t i o n  Given any measure It and any a _> O, we define 

(2.1) c~ D~ (x) = lim #(x - 6, x + 6) 
6+o 6 a 

o~ o Not e that if D ,  (xo) < ~ for some x, then D~(xo) = 0 for all/3 < ao and if 
a 0  D u (xo) > 0 for some xo, then D~(xo) -- oo for all/3 > ao. In particular, for  each 

xo, there is an a(xo) so D~(xo) -- 0 if a < a(xo) and = oo if a > a(xo). Indeed, 

(2.2) a(xo) = lim In #(xo - 6,xo + 6) 
~,o In 6 

We sometimes write au(x0) if we want to be explicit about the # involved; and if 

we have a one-parameter family #~, we write a~ for a ,~ .  

The following is a result of  Rogers-Taylor  [27, 28] (also see [26]): 

T h e o r e m  2.1 Let # be any measure and a E [0, 1]. Let T~ = {x ] D~(x) = ~ }  

and let Xa be its characteristic function. Let d#as = Xa dit and d#~c = ( 1 - X~ ) d#. 

Then d#~s is singular with respect to h ~ (i.e., supported on a set o f  h~-measure 

zero) and d#~c is continuous with respect to h a (i.e., gives zero weight to any set 

o f  h ~-measure zero). 

R e m a r k  The following is also true: # r {x I D~ (x) > 0} is supported on an 

ha-sigma finite set, and It r {x I D~ (x) = 0} gives zero weight to ha-sigma-finite 

sets. Moreover,  # r {x ] 0 < D~(x) < oo} is absolutely continuous with respect to 

h% in the sense that it is given b y f ( x )  dh~(x) for s o m e f  E L 1 (IlL dh ~ ). 

C o r o l l a r y  2.2 A measure # is o f  exact dimension a0 E [0, 1] i f  and only i f  

(1) For any /3 > ao, D~(x) = ~ a.e. x w.r.t. #. 

(2) For any/3 < ao, D~(x) = 0 a.e. x w.r.t. #. 

(Equivalently, i f  a(x) = ao a.e. x w. r.t. #). More generally, i f(1) holds (equivalently, 

a(x) < ao a.e. w.r.t. #), then # is supported on a set  o f  dimension a and i f (2)  holds 

(equivalently, a(x) > ao a.e. w.r.t. #), then # gives zero weight to any set S o f  

dimension/3 < ao. 

C o r o l l a r y  2.3 Let # be a measure on I~ let S C ~ be a Borel set with #(S) > O, 

and suppose that a0 E [0, 1] and 

D~~ < 

f o r  #-a.e. x in S. Then dim(S) > a0. 

R e m a r k  In fact, h ~~ (S) > 0. 
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P r o o f  c~0 = 0 is trivial, so suppose s0 > 0. Let  u be the measure #(S n �9 ). 

Then, since u _< #, the hypothesis implies that 

D~ ~ (x) < oo 

for a.e. x w.r . t .u.  Thus, by Theorem 2.1, u gives zero weight to sets of  h ~~ 

measure zero, and so, since u(S) # O, we must have h~o(S) > 0, which implies 

dim(S) _> s0. [] 

It is often easier  to deal with power integrals, so we note: 

P r o p o s i t i o n  2.4 Let  # be a finite measure, and let 

f d#(y) ~(x0)  = Ixo-yl ~ "  

Then 

(i) G~(x0) < ~ implies D~(xo) < ~ .  
(ii) D~(xo) < c~ implies G~(xo) < c~ f o r  anyO < ~ < s.  

P r o o f  (i) Looking at the contribution to the integral of  the set where Ix0 -Yl < 6, 

we see that 

~(xo - 6,xo + 6) _< 6'~&~(xo) 

SO 

D~(xo) < G~(xo). 

(ii) Let  M~(xo) = #(xo - 6,xo + 6). Then (with A = Lebesgue measure) 

G~(x0) = (# | A)((y, t) I 0 < t < Ix0 - yl -~) 
oo 
/~ / . -1 / /3 /  , 

= J M~ txo) dt 
0 

= /3 X0)6 - ~ - 1  d6. 

The integral always converges for 6 large since M~ is bounded; and if  3 < a,  and 

D~(xo) < oo, then it converges for small ~. 

Consider the set 

(2.3) W~ = { x  1T-m#(X-~'x+6)~$o 6 ~ 

[] 

lim #(x - 6,x + 6) # 
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For a = 0, W~ is empty; and for a = 1, the theorem of  de la Vall6e-Poussin (see 

[30] or Theorem 7.15 of  [29]) says that/z(W1) = 0. For 0 < a < 1, however, 

the situation is quite different: A result going back to Besicovitch [5] (also see 

Theorem 5.2 of  [10]) is that if  # is the restriction of  h a to a set of  finite positive 

h a-measure,  then # is supported on W~. Moreover ,  there are even examples of  # 's  

where for a.e. x w.r.t. #, 

li-m l n # ( x - 6 ' x + b )  = 1  and lim l n # ( x - b ' x + b )  = 0 .  
**o In(b) **o In(b) 

Appendix 5 in this paper has such examples. 

3. Bore l  t r a n s f o r m s  a n d  H a u s d o r f f  spec tra  

Given a measure # with f([x I + 1) -1 d#(x) < c~, we define its Borel t ransform 

by 
d#(x) 

F (z) = [ 
J x - - Z  

for  Im z > 0. These play a crucial role in the theory of  rank one perturbations 

as originally noticed by Aronsza jn-Donoghue  [3, 9]; see [33] for their properties 

and this theory. In this section, we translate Theorem 2.1 into Borel  t ransform 

language. 

Def in i t ion  Fix 7 _< 1 and x. Let  

m 

Q~(x) = l i m (  ~ ImF~,(x + ie) 
e$0 

R~(x) = l ime "r IF~(x + ie)[. 
e$0 

Our goal in this section is to prove: 

T h e o r e m  3.1 Fix # andxo. Fix a E [0, 1) and let 7 = 1 - ~. Then D~(xo), 
Q~(xo), and R~(xo) are either all infinite, all zero, or all in (0, c~). 

R e m a r k s  1. In particular, Q~(xo) = R~(xo) = oo if 7 < 1 - ao(xo) and 
Q~(xo) = R~(xo) = 0 i f 7  > 1 - a~(xo) for any a,(xo) E [0, 1]. 

2. In particular, 

lim In ( Im F~, (x + ie ) ) / In ( e -  1 ) = lim In [F~, (x + ie ) l / I n  ( e -  1 ) : 1 --  Ot/~ (X), 
~$0 e~0 

so long as a~,(x) < 1. 

3. The relation between D~(xo) and Q~(xo) also extends to the range 1 < a < 2. 

This follows from Lemma 3.2 below along with Lem m a  5.4 of  Section 5. 
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4. J. Beliissard informed us that he, R. Mosseri, and J. Zhong also have related 

results. 

L e m m a  3.2 For any 3' < 1, 

Dl-'r(xo) <_ 2Q~(x0) _< 2R~(x0). 

P r o o f  Let M~(xo) = #(xo - 6,xo + 6). Then looking at the contribution of  

(x0 - e,x0 + e) to ImFu(x0 + ie), we see that 

(3.1) d#(y) > 1 M'  
ImFu(x0 + ie) = e (y --  X0) 2 q- e 2 --  2e u(x~ 

--oo 

so 1 1 
_ - - -  M ~ ( x o ) ,  dr lmF, (xo  + ie) > 2 e 1-7 

so the first inequality in the lemma holds. Q~(xo) <_ R~(xo) is, of  course, trivial. [] 

L e m m a  3.3 Let a < 1. IfD~(xo) < o~ (resp. = 0), R~-~(xo) < o~ (resp. = 0). 

P r o o f  Suppose first that D~(xo) < co. Let  M~(xo) = tz(xo - 6,xo + 6). The case 

a -- 0 is trivial so we suppose a > 0. By hypothesis, 

(3.2) M~(xo) <_ C6 ~, 

so with -y = 1 - a: 

lim C IF.(x0 + ie)[ < l ime "y f d#(y) 
~+o - ~ ,o  [ (xo  - y ) 2  + e2]1/2 

--OO 
1 

= lim C / 1 ,,0 (e 2 + 62)1/2 [d~M~(xo)] 
0 

1 

= l ime "y f 6 ,+0 (e 2 + 62)3/2 Meu(xo) d6 
0 

1 

_< lim Ce "Y f 6~+1 e$0 @2 + 62)3 /2  d6 
0 

g--1 

f 6~..k 1 = lim C d6 
~+o (6 2 + 1)3/2 

0 

<oo .  
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The first equality comes from noting that since " />  0, 

f dlz(y)/lxo - y - / e l  = lim 0. 
E$0 d 

ly-xol>l 

The second equality is an integration by parts. The boundary term at zero vanishes 

since c~ > 0. The term at 1 has a zero limit since -y > 0. The final equality comes 

by noting that since a < 1, the integral is finite as c-1 ~ c~. 

If  D~ (x0) = 0, then (3.2) holds for 6 < 60 where C can be taken arbitrarily small 

(by taking 60 small). The above calculation (with 1 as the upper integrand replaced 

by 60) shows that 
OO 

1--c~ / 6~+1 
R~ (xo) < C (62 + 1)3/2 d6. 

0 

Since C is arbitrarily small, R is zero. [] 

P r o o f  Theorem 3.1 is a direct consequence of  Lemmas 3.2 and 3.3. [] 

C o r o l l a r y  3.4 Let 7 E [0, 1]. Let S C I~ be a Borel set with #(S) > O. Suppose 

Q~(x) < ~ for  #-a.e. x E S. Then, dim(S) > 1 - -y. 

R e m a r k  In fact, hl-'y(S) > 0. 

P r o o f  An immediate consequence of Corollary 2.3 and Lemma 3.2. [] 

The following criterion will not be used in this paper but is an interesting result 
on its own. 

T h e o r e m  3.5 Suppose that 

b 

sup e s f IImFu(x + ie)l 2 dx < e~ 
~>0 a 

for  some s < 1. Then # r (a, b) gives zero weight to sets of  dimension less than 
1 - - s .  

R e m a r k  The s = 0 result is stronger [36]; in that case # is purely absolutely 
continuous on (a, b). 

P r o o f  We prove that for any/3 < 1 - s and any closed interval I C (a, b), we 
have 

(3.3) : d#(x) d#(y) 
J T-x--~ < ~  
xEl 
yEl 
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This implies 

f d#(y______~) < c~ for # -a . e .  x E I, G;~(x) = Ix - yl ~ 

and the theorem thus follows from Proposition 2.4 and Corollary 2.3. 

Replacing # by # t I and noting that 

Im(/~)<_ImF~,(z), 
xEl 

we can suppose # is supported in I. Since I c (a, b) and 

we can suppose that 

(3.4) 

IImF~rz(z)l < 
ClImzl 

dist(z,I) 2' 

supe s / I I m F t , ( x  + ie)12 dx < ce. 

By a straightforward calculation, 

IImF~,(x + ie)l 2 dx = 27re ( x _ y ) 2  +4e2  
-oo  xEl 

yEI 

so (3.4) says that 

(3.5) f (X -- y)2 + e2 ~ 
xEl 
yEI 

Let 
= 

Then (3.5) with e = 6 says that 

d#(x)d#(y). 
I*-yl<8 

xEl 
yEl 

/1,/(2)(6) < 2 C 6 1 - s .  
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Thus, if/3 < 1 - s, 

f d#(x)dlz(y)  < EM(2) (2_n)2(n+l )  fl < oo 
Ix - yl ~ - 

Ix-yl_< l n--0 
xEl 
yEl 

and (3.3) is proven. [] 

4. R a n k  one  perturbat ions:  a general  cr i ter ion 

Let # be a normalized finite measure. Let A be the operator of  multiplication by 
x on Lz(K d#). Let ~ be the unit vector ~(x) - 1. Let A~ = A + A(~, �9 )~, and let 
d#~ be the spectral measure for ~ and the operator A~. Let 

F~,(z) = / d~;~(X),x_z 

and denote F(z) for Fo(z). Then [33] 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

F(z) 
F~(z) - 1 + AF(z)' 

ImF~ (z) - ImF(z)  
I1 + AF(z)I 2' 

d#~(x) = lim 1 ImF~(x  + iE) dx, 
e$0 7r 

/Z),,sing is supported by {x l F(x  + iO) = - 1 / A } .  

T h e o r e m  4.1 L e t a  E [0,1]. Le tSa  = {x [ l ime -(1-~) I m F ( x + i e )  > 0}. I f  

/z~ ([a, b] \Sa) = O for  some A ~ O, then #x gives zero weight to any subset  o f  [a, b] 
o f  dimension/3 < c~. 

R e m a r k s  1. The proof  actually shows that #~ I S~ is continuous w.r.t, h a (i.e., 
gives zero weight to sets of  zero h a-measure). 

2. By  a simple variant o f  the proof  below and the remark to Theorem 2.1, one 
can also show that if S~ = {x [ l ime - ( l -a )  I m F ( x  + ic) = c~}, then #~ r S~ gives 
zero weight to ha-sigma-finite sets. 

T h e o r e m  4.2 Let 0 <_ a < 1. Suppose # is purely singular. Let S~ = 

{x [ 1Tme-0 -a ) ImF(x  + ie) < oo}. I f  #~(R\S~)  = O for  some A # O, then #~ is 
supported on a set o f  dimension ~. 

R e m a r k s  1. By the remark to Theorem 2.1, the proof  below actually shows 
that #~ I Sa is supported on an ha-sigma-finite set. 
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2. By a simple variant of  the proof below, one can also show that if S~ = 
{x I l i m ' - ( l - ~ ) I m F (  x + i,) = 0}, then #~ I S~ is singular w.r.t, h a (i.e., supported 
on a set of  zero h a-measure). 

P r o o f  o f  T h e o r e m  4.1 Suppose l ime -( l -~)  ImF(x0 + i,) > 0 (i.e., x0 E S~). 
By (4.2), 

1 
ImF~(x0 + i,) < )~2 ImF(x0 + i,) 

SO 

Qux (xo) = 1-~ ,  0-~)  ImFx(xo + i,) < oe. 

Thus, the result follows from Corollary 3.4. [] 

P r o o f  o f  T h e o r e m  4.2 Suppose lim e -(1-~) ImF(xo + i,) < ~ (i.e., x0 E S~) 

and that F(xo + i0) = - 1/)~. By (3.1), 

m~(xo) < Ce 2-'~ 

and 

I1 + A Re F(x0 + ie)l = IAI IRe F(x0 + ie) - ReF(x0 + i0)1 

= I A [ f [  (__y-go) ( y -  xo) 
L(y - x0) 2 (y _ x0)2 + ,2] d#(y) 

-- IAI (y - xo ) [ (y -  xo) 2 + ,2] dU(y) 

f ,2 --- I:q 6(~2 + , 2 )  [daM~(xo)]. 

We can integrate by parts, use the bound on M~, and integrate by parts again to 
bound this last integral by 

OO OO 

IAI(2 - ~) J 6--(-~ T e-~) - IAI(2 - c~)d -~ y,~(y2 + 1) 
0 0 

and note the integrand is finite. 
Thus, I 1 + AF(xo + ie)l < c ' l - ~  and so l ime l -~ l l  + )~F(xo + ie)l -x > 0. Thus, 

by (4.1), if x0 E S~ n {x I F(xo + ie) = -1/,~}, lim e(1-~)lF~(x0 + ie)[ > 0. Since #~ 
is supported on {x I F(xo + ie) = -1/)~}, if #~(1I~\S~) = 0, then by Theorem 3.1, 
a),(x) < a a.e. and so by Corollary 2.2, # is supported on a set of  dimension a. [] 
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5. R a n k  one perturbat ions:  coupl ing  constant  d imens ions  

In addition to the functions F~ (z), F(z) of (4.1), an important role is played by 

G(x) = [ d#(y)  
(X - -  y)2 J 

in that 

(5.2) {x [ G(x) < oo, F(x  + i0) = -A -I } = set of  eigenvalues of A~. 

Note that G(x) = lime - j  I m F ( x  + ie), so (5.2) follows from (4.4) and the c~ = 0 

case of  the second remark to Theorem 4.1 and the first remark to Theorem 4.2. 

Moreover, if A < o0 (see [33]): 

1 
(5.3) d/zPP(Y) = Z )~2G(x ) d~Sx(y). 

{x I G(x)  < oo ,F(x+iO)  = - -  A -  ' } 

Note that G(x) < oo implies F(x  + ie) has a real limit so 

m = {x I G(x) < oo} = ~.J {eigenvalues o fa~} .  
o<lxl_<~ 

In [7] del Rio, Makarov, and Simon prove that 

M = O M n  
n=l 

where Mn is such that there exists C~ with 

(5.4) Cn I (x - y) < F(x + iO) - F(y  + iO) < Cn(x - y) 

for all x < y both in M,. Let L, = {A I - A - I  E F[Mn]}. It follows from (5.4) that 

dim(Mn) = dim(L,). Thus, since dim(U,~l An) = supdim(An), we see that 

T h e o r e m  5.1 Fix a Borel set I. Then the Hausdor f f  dimension o f  the set o f  A ' s 

where A~ has some eigenvalues in I is the same as the Hausdorf f  dimension o f  the 

set o f  x E I where G(x) < oo. 

R e m a r k s  1. (5.4) actually implies the following stronger result: If, for some 

a E [0, 1], {x I G(x) < co} n I has zero ha-measure, or positive ha-measure, or is 

ha-sigma-finite, or is not ha-sigma-finite, then the set of  (nonzero) A's where A~ 

has some eigenvalues in I has the same property. 
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2. Examples in the next section show that {x [ G(x) < c~} can have any 

dimension and illustrate the difference between some point spectrum and only 

point spectrum. 

There is also a result on the other side: 

T h e o r e m  5.2 Suppose # is purely singular. Let 

S = {A [A~ has some continuous spectrum}. 

Let T = {x I G(x) = c~}. Then 

dim(S) _< dim(T). 

In particular, i f  T has Hausdorff  dimension zero, so does S. 

R e m a r k s  1. The proof actually shows that for any a E [0, 1], ha(S) > 0 implies 

ha(T) > 0. In particular, this generalizes the known fact [33,40] that if G(x) < c~ 

a.e. then for a.e. )~, A~ has only pure point spectrum. Moreover, for 0 < a < 1 we 

get the stronger result: h a (S) > 0 implies that T is not h a-sigma finite. This shows 
that the inequality in Theorem 5.2 is, in some sense, strict. Note that for a = 0 it 

becomes the obvious fact: S ~ 0 implies T is uncountable. 
2. While we have formulated Theorem 5.2 in a global way, the result is actually 

local. That is, fix a Borel set I and let S(1) = {~ I #~c(I) > 0}, where #~c is the 
singular continuous part of #~, then h~(S(I)) > 0 implies h~(T n I) > 0, and, in 
particular, dim(S(/)) < dim(T n 1). To prove this, just replace S by S(I) and Tl by 

T1 N I in the proof below. 
3. Appendix 4 explores the relation between dim{x I G(x) = c~} and the 

dimension of supports of  #. 

We require a lemma which could have many other applications to the theory of 

rank one perturbations: 

L e m m a  5.3 Let ~7 be a finite measure on ~ and define a measure u on ~ by 

(5.5) u(a) = / #~(A) d~/(A). 

Let F~(z) = f dn(x ) /x  - z be the Borel transform of  the measure n. Then 

(5.6) F,(z)  = Fn( -1 /Fu(z ) ) .  

Proof  By the definition (5.5): 

F~(z) = f drl(,k) Fu~ (z). 
d 
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Equation (4.1) implies the result. [] 

We also need the following lemma: 

L e m m a  5.4 Let 0 <__ a < 2 and let It be a measure obeying #(x  - 6, x + 6) < C6 ~ 

for  some C and x and all 6 > O. Then there exists C1 so that ImF/~(x + ic) < 

Cle-(1-~) for  all e > O. Moreover, i f  #(x  - 6,x + 6) < C6 ~ holds fo r  some f ixed C 
and all x and 6 > O, then there exists C1 so that I m F u ( x  + ie) < Cle-O-~)  f o r  all 

x a n d e  > O. 

Proof  

ed#(y)  
ImF~,(x + ie) = (x - y)2 q_ e2 

= f e dtz(Y) ~ f ( x - y ) 2 + e  2 (X -- - -~  7am ~2 + ~. dlz(y) 
Ix-yl<E n=~ 

< Ce~ + ec(2n+lr  a 
--  e - -  ( 2ne )  2 + e 2 

n=O 

_< 1 + 2 '~ 2 n(c~-2) 

n=0 / 

so we see that the claim holds. [] 

P r o o f  o f  T h e o r e m  5.2 The a = 0 case is trivial, so suppose 0 < c~ < 1 and 

h a (S) > 0. Let 

T1 = {x I G(x) = c~, lira F(x + ie) exists and is finite and nonzero}. 
e~,0 

We shall show h~(T1) > 0, so we can conclude that ha(T)  > 0. For each )~ E $1 -~ 

S\{0 ,+c~},  #~c is supported on T1 so #~(T1) > 0. Since h'~(S1) > 0, it is well 

known ([ 10], Proposition 4.11 and Corollary 4.12) that we can find a measure ~ so 

that ~7 is supported by Sl, ~7(S1) > 0, and 

(5.7) ,7(x-6 ,x+6)  <_ c6 

for all x and 6 > 0. Let  u be given by (5.5). Then u(T1 ) > O. 

By (5.7) and Lemma 5.4 there exists C1 so that 

ImF,7(x + ie) < C1~ -( l -=) 

for all x and e > 0. It follows from (5.6) that for x E T1, 

(5.8) H-me(1-'~)ImF~,(x + ie) <_ C1Y-~eO-'~)[Im(-1/Fu(x + ie))] -(1-'~). 
~4.0 ~$0 
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Since G(x) = oo, we have 

lim ImF~,(x + ie) 
e$O e 

- G ( x )  = o o  

and since +ce • S1, Fu(x+ ie) ~ _)~-1 • 0 SO e [Im(-1/F~(x+ ie))] -1 --+ 0. Thus, 

we see from (5.8) that for all x C T1, 

Ql-'~(x) < oo 

and if c~ < 1, then Q~-'~(x) = 0. Since U(Tl) > 0, Corollary 3.4 (along with its 

remark) implies that h a (T1) > 0. The fact that in the a < 1 case T1 is not h a-sigma 

finite follows from Lemma 3.2 and the remark to Theorem 2.1. [] 

R e m a r k  To apply Proposition 4.11 and Corollary 4.12 of [10], we need that 

S is a Borel set. This follows, for example, by picking {ggn}nCXa=l an  orthonormal 

basis for L2(It~,d/Z), letting F(n >_ N) be the projection onto the span of {~n}~-N 

and noting that by the RAGE theorem [25]: 

K 

I R \ S : { A  V m l i m  lim I f  } N--+~ K--+oo K [[F(n > N ) e  isAx qOm [I 2 d s  = 0 . 

0 

6. Rank  one  perturbat ions:  s o m e  e x a mpl e s  

Rank one perturbations can be described by a measure # given by 

d#(x) 
- z ) - l gg )  = x 7  z 

where A + A(~, �9 )~ is the rank one perturbation, so we phrase our examples in this 

section in terms of  d#. To make things operator theoretic, one can always take 

= L2(IL d/z), A = multiplication by x, and ~ the function ~(x) = 1 (as in the last 

two sections). 

We discuss four classes of examples in this section: 

(i) Point measures with rapidly decreasing weights for which we show that the 

perturbed spectrum is supported by a set of  Hausdorff dimension zero. This class 

is relevant for our study of  localization in the next section. 

(ii) Point measures where for a.e. A, d/zx has exact dimension a0. These are 

variants of  the measures in [40]. 

(iii) A family of  singular continuous measures where one can calculate many 

distinct dimensions. Details of  the calculations are pushed to Appendix 5. 
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(iv) A set of examples that show {x I G(x) < cr can have any dimension and 

that have point spectrum embedded in singular continuous spectrum. 

E x a m p l e  1 Point spectrum with decaying weights 

o~ A Given a sequence of  sets A,,  we call Ao~ = N,=l Um----n m, the l imsup(A,)  

consisting of points in infinitely many A,'s.  

L e m m a  6.1 Suppose that for  a family of  intervals An, we have for each j > 0 

(6.1) [An[ < Cjn -j. 

Then A ~  = lim sup(An) is a set of  Hausdorff dimension zero. 

P r o o f  By (6.1), IA.] --+ 0 so given 6, choose No so IA.[ _< 6 for n > No. Then 

for m > No, Un~=mAn is a t%cover of  A~.  Thus, 

o o  

Q~,6(A~) < C 7 E n-J% 
n = m  

For a fixed a > 0, p ick j  soja  > 1. Then the sum is finite and clearly, 

o o  

Q~:(A~)  < C7 inf ~ n -j~ = O. 
- -  m>__No 

n = r t l  

Thus, h a (A~) = 0 if  a > 0 and so A ~  has dimension zero as claimed, r3 

T h e o r e m  6.2 Suppose d#(E) = ~,~=1 an d6e, (E) where an obeys the condition 
that for  all j, there is a Cj with 

(6.2) [an[ < Cjn -j. 

Then for  every A, d# x is supported on a set of  Hausdorff dimension zero. Moreover, 
d#a is pure point except for  a set o f  A's of  Hausdorff dimension zero. 

R e m a r k  Equivalently, let A have a complete orthonormal set of  eigenvectors 

A~bn = En~bn 

and let ~ = ~ ,  a,~b,, where a,, obeys (6.2), andA~ = A + )~(~v, �9 )~. Then for every 
)~, the spectral measures of  Aa are all supported on a set of  Hausdorff  dimension 

zero. Moreover, Aa has pure point spectrum except for a set of  A's of  Hausdorff  

dimension zero. 
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P r o o f  Let G(x) be defined by (5.1) and let S = {x [ G(x) = ec ,x  q~ {Ei}~I}. 
Then the Aronszajn-Donoghue theory [33] says that for any A ~ 0, d#~ c, the 
singular continuous measure for Ax is supported by S. Thus, the spectral measure 

d/z~ is supported by S u {eigenvalues of  A~ }. Since the set of  eigenvalues is a 

zero-dimensional set, it suffices to prove that S is zero-dimensional. The final 
assertion then follows from Theorem 5.2. 

Let b,  = ~ and let An = [En - bn, En + bn]. Then 

Ianl _< 2C) ~3n-j~3 

for any j ,  so An obeys  (6.1). Thus, Aoo -- lim sup(An) has dimension zero. 

We claim S C Ao~. To prove this, we need only show i fx  ~ Ao~ and x r {Ei}~=I, 
o~ A then G(x) < c~. But if x r A~,  then for some No, x ~ Un=N0 n so 

an an 1/3 
~--~. ix ..7 7E,,12 < _ = ~--~ an < c ~  

n=No n=No -~n n=No 

by (6.2). Since x q~ {Ei}i~ 

so G(x) < c~ as required. 

N0-1 
an 

Ix-7 .l 2 < 
n=l  

[] 

R e m a r k s  1. In the next section, we apply this result to random Hamiltonians. 
2. One natural way  that (6.2) can hold is if [an[ < Ce-'lnl for some e > 0. 

E x a n z p l e  2 Perturbed measures of  prescribed exact dimension 

Our second class of  examples is intended to show that it can happen that for any 

a0 E [0, 1], there is a rank one perturbation situation where #x r [0, 1] is a measure 
of  exact dimension a0 for a.e. A (w.r.t. Lebesgue measure). All our unperturbed 

measures in this example will live on [0, 1] and be point measures. The third set 

of  examples will be similar but the unperturbed measures will be continuous. For 
each n = 0, 1 ,2 , . . .  let 

(6.3a) 

and for a E (0, 1) define 

1 2n 

j=O 

oo 

(6.3b) du~ = ~ 2-n('- '~)d#n. 
n = O  
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For any xo E [0, 1] and n, there is j~2 n within 2 - n - I  of  x0, so 

u,~ ([xo 1 1 2 _ n ( 2 _ a )  
2n+l ,Xo + ~ - ' ] - ] ) >  

Thus for any c < 1, u~(x0 - e,x0 + ~) > ~2-~ so by (3.1), forx0 E [0, 1] and ~ > 0, 
I m F ~  (x0 + ie) > 1~1-~. So the set S~ of  Theorem 4.1 is all of  [0, 1], and so (by 

Theorem 4.1): 

T h e o r e m  6.3 Fix 0 < a < 1. Let du~ be the measure (6.3) and let du~;~ be 

its rank one perturbations. Then for  any A r O, du~;~ gives zero weight to any 

S C [0, 1] of  dimension/3 < a. 

On the other hand, suppose (for j / 2  ~ closest to x0) 

(6.4) xo -- ~n > En 2--n(l+n)~0 

for some ~/, 60 > 0. Pick 1 < 7 < (2 - a) / (1  + 7). Then 

f dlzn(y) dy / < e - - y 2 - . +  
I~ - -~7  a Ix-  yl ~ 

2-~-l_<lx-y[_<l 

< C[cn-"r2 -n "b 2n(~/--1)]. 

Thus, by (6.3) 

S du.(y)< ~(~2_n(._o~_.,/) 
Ix0 - y r  ~ - - , , = o  

+ Z ~0-72-n[-"/( l+~7)+l+l-a < (30 

n=0 

L e m m a  6.4 For any ~i < 2 - a and a.e. xo E [0, 1], 

S du,~(y) < cx~. 
Ix0  - y l  "I 

Since 7 can be taken arbitrarily close to 2 - a, we see by Proposition 2.4 and 
Lemma 5.4 that the set S;~ of  Theorem 4.2 has Lebesgue measure 1 if [7 > a. Thus, 

[[0, 1]\ A;~>~ Sn] = 0. By the result of  S imon-Wolff  [40], #~([0, 1]\ (']n>~ Sn) = 0 
for a.e.A. Thus, by Theorem 4.2: 

by the choice of  3' and a + "7 < 2. 

The measure of  the set of  x0 E [0, 1] where (6.4) fails is ~=0~176 2_nn(50 and is 
arbitrarily small if/~0 gets small. Thus, 
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T h e o r e m  6.5 Fix 0 < a < 1. Then for  a.e. )~, u~;~ is supported on a set of  

dimension c~. In particular, u~;~ r[0, 1] is of  exact dimension a. 

If we take dul = ~n~=l n -2 d#~, it is not hard to see that for all ~ # 0, vl;x r [0, 1] 
is of  exact dimension one. Thus, we see that for any a E [0, 1] there are examples 
with singular spectrum of  exact dimension a (in [0, 1]) for a.e. A (and for a = 0, 
for all ,~). 

E x a m p l e  3 Some number theoretic examples 

Our third class of  examples illustrates change of  dimension from singular con- 

tinuous to singular continuous spectrum. Details will be presented in Appendix 
5. 

These examples will depend critically on the binary expansion of  a number x in 
[0, 1]. Given such an x, we can expand it, viz. 

-~ an(X) ( 5],6._, x = 
2 n 

n----1 

We deal with the non-uniqueness for binary expansions (e.g., numbers of  the form 

~ )  by requiring am(x) = 0 for m large for such x (except for x = 1). Thus, (6.5) 

defines a map of {0, 1} N F [0, 1], and x --* {an(x)} defines a left inverse. 

Any measure ~ on {0, 1} N defines a measure # on [0, 1] by #(A) = )ffF-l[A]). 
For any p with 0 < p < l, let Ap be the product measure on {0, 1 }N with each 

factor giving weights p to 0 and (1 - p )  to 1, that is, the an'S are i.i.d.'s with density 

pd6o + (1 -p )d61 .  Let #p be the corresponding measure on [0, 1]. 
Two dimensions will arise below: 

p l n p  + (1 - p )  ln(1 - p )  
(6.6) H(p) - In 2 ' 

lnp(1 - p )  _ 2 -  7(P). 
(6.7) L(p) - 2 + 2 In 2 

We note that 
1 

a(p) < < 1, p # 

(but in fact H(p) - L(p) ~ O((p - �89 f o r p  near �89 so they are very close for most 
p's). Notice also that H(p) > 0 and that 

p E ( 2 4  -v~, 2 4 - x / ~ ) = 1 0 r  

(10 is about (0.07, 0.93)). 

T h e o r e m  6.6 (1) d#p has exact dimension H(p). 
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(2) Suppose p E Io. Then for a.e. A w.r.t. Lebesgue measure, the restriction to 
[0, 1] of the rank one perturbation of  d#p has exact dimension L(p). 

(3) If  p ~ i0, then for a.e. A, the rank one perturbation of  d#p is pure point. 
(4) If  p E (1  3), p # �89 then for all A, the restriction to [0, 1] of the rank one 

perturbation of d#p is purely singular continuous (so we have an example with 
singular continuous spectrum for  all A). 

I 3 Remarks  1. (4) says fo rp  E (~, ~), G(x) = co for a l lx  E [0, 1]. 
2. We prove this theorem in Appendix 5. 

E x a m p l e  4 Examples with pure point spectrum 

Our last class of examples will show {x I G(x) < ~ }  can have any Hausdorff  
dimension, and also provide examples where d#~ has a singular continuous com- 
ponent for all ~ # 0 but sometimes mixed with embedded point spectrum. In this 
example, d# will be a measure fixed once and for all with supp(#) = [0, 1] and 

d#(y) 
Gu (x) ~ ( x -  y)2 - co 

on [0, 1]. Three possibilities to keep in mind are: 

(1) X[0,1] (x)dx which is absolutely continuous. 

(2) dlzp, the measure of Example 3, wi thp E (�88 �89 where G(x) = c~ by Theorem 
6.6(4). 

(3) Any of the point measures du~ of  Example 2 having 

G(xo) = lim e- l ImF, . (xo  + ie) = oo for allx0 E [0, 1]. 
E$0 

These show there are such # with any spectral type. 

T h e o r e m  6.7 Let C be an arbitrary closed nowhere dense set in [0, 1]. Let # 
be a Borel measure on [0, 1] with Gu(x ) = co on [0, 1] and f d#(x) = 1. Let 

du(x) --- dist(x, C) 2 d#(x). 

Then, supp(u) = [0, 1], G~(x) = oo on [0, 1]\C and G,(x) <_ 1 on C. 

P r o o f  I fx  ~ C, dist(x, C) -- 6 > 0 since C is closed. Thus, 

d#(y) 
G~(x) > ( ~ )  2 f ( x _ y ) 2  

Ix-yl<_6/2 

- - 0 0  
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since G u (x) : oo. On the other hand, if x E C, 

G~(x) = f dist(y' C)2 f 
dist(x,y)2 d#(y) <_ d#(y) : 1 

since dist(x,y) _> dist(C,y).  Finally, since [0, 1]\C is dense, supp(du) = [0, 1]. [] 

Now l e t P b e  u / [ f  du]. Then for e v e r y x  E C, Gv(x) < 1/N for N = f du. 
Consider now the rank one perturbation dP~ of dO. From (5.3), we see each pure 

point has weight at least N/A 2 so there are at most A2/N pure points (since dP~ is 

normalized in (5.3)). Thus, 

P r o p o s i t i o n  6.8 I f  N = f du(x) for  the measure u o f  Theorem 6.7, then 
A~ - A + A(~, �9 )qo has at most A2/N eigenvalues in [0, 1]. In particular, ira 2 < N, 
A ~ has purely singular continuous spectrum in [0, 1]; and for  any A, asc (A ~ ) = [0, 1]. 

R e m a r k s  1. This shows the set in Theorem 5.1 can have any Hausdorff  

dimension since there are closed sets of  any dimension. In addition, unlike the 

Simon-Wolff  scenario, the s.c. spectrum need not ever be empty. 
2. There exist nowhere dense C's of  measure arbitrarily close to 1. So, to 

conclude asc is empty for some A, it is not enough that G(x) < oo on a set of 

positive Lebesgue measure. 

7. L o c a l i z a t i o n  

One of  our goals in this section is to prove that local perturbations of random 

Hamiltonians in the Anderson localization regime, while they may produce singular 

continuous spectrum, always produce zero-dimensional spectrum, in the sense that 

the spectral measures are all supported on a set of  Hausdorff  dimension zero. We 

use Theorem 6.2. Naively, one might confuse exponential decay of  eigenfunctions 

in Z ~ (as in I~n(m)[ _< Cne -A[ml) with exponential decay in eigenfunction label 

(as in I~n(0)[ _< Ce -BInl) which allows one to apply Theorem 6.2. In fact, they 

are distinct - -  indeed, if  u _> 2, we will not prove that I~n(0)l _< Ce -BInl but only 

I .(0)l _ Cexp(-B[nll/~); also see Appendix 2. 

Throughout this section, n is an eigenvalue label and m is a Z ~ point. It will be 

convenient to take the norm Im[ = maxj=l ...... Imjl on Z ~. 

De f in i t i on  Let H be a self-adjoint operator on gZ(z~). We say that H has 

semi-uniformly localized eigenfunctions (SULE), pronounced "operators with a 

soul," if and only if  H has a complete set {~n},%1 of orthonormal eigenfunctions, 

there is c~ > 0 and mn E Z ~, n = 1, . . . ,  and for each ~ > 0, a C~ so that 

(7.1) I~n(m)l ___~ C6e 61mnl-~ 
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foral lm E Z ~ andn = 1 ,2 , . . . .  

Thus, eigenfunctions are "localized about" points m~. We use the "semi" in 

SULE because one can define ULE by requiring the bound with 8 -- 0. The 

theory below extends to this case, but we restrict ourselves to the SULE case. In 

Appendix 3, we show that large classes of  models, including the Anderson model  

in any dimension and the almost Mathieu operator, do not have ULE. 

Below we first prove a result about the number of  mn in a box of  side L, 

essentially proving that the number grows like L v as L --0 ~ .  This will show that 

local perturbations of SULE operators have zero-dimensional spectrum. Then, we 

relate SULE to dynamics and to Green's  function localization; essentially, SULE 

always implies dynamical localization, and if the spectrum is simple, dynamical  

localization implies SULE. This will imply that Anderson-model Hamiltonians 

have SULE. 

Appendix 2 has an example to show that a Jacobi matrix can have localized 

eigenfunctions which are not (semi) uniformly localized. 

Theorem 7.1 Suppose H has SULE. For each L, # { n  [ Imnl < L} is finite and 

1 
lim # { n  l lmn I < L} = 1. 

L-~oo (2L + 1) v 

R e m a r k s  1. This says the density of  centers of  eigenfunctions is 1. 

2. This will be a simple consequence of  normalization and completeness, viz. 

(7.2a) ~--~ I~,(m)l 2 : 1, n :  1 , 2 , . . . ,  
m 

(7.2b) Z I ~~ = 1, each m E Z ~. 
n 

L e m m a  7.2 For each ~ > O, there is a D, so that for  each n and L: 

Iq~n(m)l 2 < D,e-~'Le-~'lm, I/2 " 

Im-m,l>e(Im, l+L) 

Proof By hypothesis, we can find C! 1) so 

I~.(m)l ~ c ! l ) e  aHm"l/2-lm-m"P] �9 

If [m - m,I > e(Im, I +L),  then Im - m,I > �89 - ran[ + ~tmnl + ~L so in that regime 

I~.(m)l _< c~l) e-cC*L/2e -aIm-re"l~2 
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SO 

ICpn(m)[2 < [C!I)]2e-'~L Z e-~lkl < Dee-~'~Le-'~lm"l/2 

Im-m,,l>e(Im,d+t) Ikl>_elm. I 

as claimed. [] 

P r o o f  o f  T h e o r e m  7.1 To get the upper bound, we use the fact that functions 
localized in a box of  side 2L contribute most  of  their norm to a box of  side 2(1 + e)L. 

By the lemma, if Iron1 _< L, then 

I:n(m)12 ~ Z I:n(m)12 < D'e -~"L  
Iml_>(l+2.)t  Im-m,,l>_e(t+lm,,I) 

and so by (7.2a), 

Thus by (7.2b), 

Z 
Iml~(l+2e)L 

I~n(m)] 2 ~ 1 - D , e  -'~`t . 

[2(1 + 2e)L + 1] ~ > I~n(m)l 2 
all n 

Iml_<(l+2e)L 

> Z [~n(m)12 
n so thatlm.l<L 
Im,[<(l+2e)Z 

_> # {n  [ [mn[ < L}(1 - D,e- '~'L).  

Thus, #{n  I lmnl ~ L} is finite and 

(7.3) ]im(2L+ 1)-'#{n I Im.I ~ L} ~ 1. 

In particular, 

(7.4) #{nllm.I <_L} < coL" 

for some co and all L _> 1. 
To get the lower bound, we use the fact that wave functions localized far outside 

a box of  side 2L cannot contribute much to the wave function sum inside that box. 
Explicitly, suppose that 

1 + e L and Im[ < L. Imnl > 1 - 
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I m -  mn[ >_ e(lmn[ +L)  

( 1 - ~ )  ( l - e )  
Im - m"l > [mn[ - L >>- [mn[ 1 1 T  =~ l + - i - ~ e  [mnl > e(lmn[ + L)" 

Thus by Lemma 7.2, if 

then 

l + e  
Im.I 1 - L ,  

Z 

SO 

I~~ 2 < DEe-=eLe-~dm.I/2 
Iml<_L 

n so that Im.l>~L 
Iml<L 

by (7.4). 
Thus by (7.2b), 

(2L+ 1)" = 

O O  

[~o,(m)l 2 ~ ~ #{n  I lm, I ~ (k-F1)t}OEe-='Le -='kL/2 <_ D~e -~'L/2 
k=0 

]~,(m)[ 2 ~ # { n  
all n 

Iml<L 

from which one immediately sees that 

1 +eL} [toni < 1 - e + D~e-~'L/2' 

l im(2L + 1)-~#{n [ [m,I < L} > 1. 

Combining this with (7.3) yields the theorem. [] 

C o r o l l a r y  7.3 Suppose that H has SULE. Then there are C and D and a 

labeling of  eigenfunctions so that 

(7.5) I~n(0)[ < Cexp( -Dnl /~ ) .  

P r o o f  Reorder the eigenfunctions so [mnl is increasing. By Theorem 7.1, 
[mnl/ln 1/~ ~ 1 as n ~ ee so Imnl > lnl /~ - Co for some constant Co. By (7.1), 
we get (7.5); indeed, we see D can be taken arbitrarily close to la .  [] 

Combining this corollary with Theorem 6.2, we see: 
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T h e o r e m  7.4 Suppose that H has SULE. Let HA = H + A(60, �9 )60. Then 

for  every A, the spectral measures for  HA are supported on a set o f  Hausdorff 

dimension zero. Moreover, Hx has pure point spectrum except for  a set o f  A's of  

Hausdorff dimension zero. 

Next, we relate SULE to other conditions. We suppose H has simple spectrum, 
although one can easily extend this to examples with spectrum having a uniform 

finite upper bound on multiplicity. 

D e f i n i t i o n  Let H be a self-adjoint operator on g2(Z~). We say that H has 

semi-uniform dynamical localization (SUDL) if and only if there is a > 0 and for 
each 6 > 0, a C6 so that for all q, m E Z": 

(7.6) sup [(6q, e-itH 6m)l ~ C6e 6lml-=lq-ml . 
t 

We say that H has semi-uniformly localized projections (SULP) if and only if H 
has a complete set of  normalized eigenfunctions and there is a > 0 and for each 
6 > 0, a C6 so that for all q ,m E Z~: 

l(6q,P<e)6m)l <_ C~e 8lml-c~lq-ml 

for all spectral projections P{E) onto a single point (uniformly in E). 

T h e o r e m  7.5 Let H be a self-adjoint operator on g2(Z~) with simple spectrum. 
Then the following are equivalent: 

(i) H has SUDL. 

(ii) H has SULP. 
(iii) H has SULE. 

R e m a r k s  1. The fact that dynamical localization implies point spectrum has a 

long history, going back at least to Kunz-Souil lard [20]. Martinell i-Scoppola [23] 
used a variant of  SULE, which they proved by analysis of  eigenfunctions, to prove 

a restricted form of  dynamical localization in the multi-dimensional Anderson 
model. 

2. (iii) ~ (i) ~ (ii) does not require simplicity of  the spectrum. It is 

an interesting open problem whether (ii) ~ (iii) can be extended to cases with 
unbounded multiplicity. 

3. It is not claimed that the c~'s are the same in the three statements. While 
(iii) =~ (i) ~ (ii) doesn ' t  change a (by more than e), our proof  of  (ii) ~ (iii) 
decreases a by a factor of  2. 
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(ii): Follows immediately from 

T 

= s- lim 1 f eiEse -ills ds. 
P{e) r-~o~ 2T J 

- T  

(ii) ~ (iii): Label the eigenvalues of H: E l ,E2 , . . . .  For each En E 
pick an eigenfunction ~n(" ), unique up to phase. Then by (ii): 

(7.7a) [qOn(q)qOn(m)[ <_ CEe6lmle -c~lq-ml . 

Since ~n E g2, it takes its maximum value so choose mn so that 

(7.7b) [~n(mn)] = sup I~n(m)[. 
m 

Then by (7.7), 

I~n(q)[ 2 -- [~n(q)[ sup I~,(m)l _ [~,(q)l I~,(m,)l 
m 

C6e61m, le -~lq-mnl 

so H has SULE by taking square roots. 
(iii) ::> (i): Let ~n be the eigenfunctions and En eigenvalues. Then 

(6q' e-itH t~m) = Z qOn( q) e-itEn~n(m), 
n 

so, assuming SULE, 

(7.8) 

Now, 

and 

Thus, 

So, by (7.8) 

spec (H), 

sup I(~q,e-itn6m)[ <_ Z I~n(q)~n(m)l < C~ Z e261m"le-c~(Iq-m"l+lm-m"l)" 
t 

n n 

Iq -- mn[ + [m -- mn[ > Iq -- m[ 

Iq -- mnl -b Irn -- mnl >_ [mnl -- Im[. 

e-C~(Iq-rn.l+lm-m.I) < e-361m, le361mle-(C~-36)lm-ql. 

sup I(tSq, e-itHeSm)[ < C2e361mle-(C~-36)lm-qlAo 
t 
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where 
Ao = Z e-~lm~[ " 

n 

By (7.4) which follows from SULE, A0 is finite. [] 

One can prove by the above means a result that shows that i f  H has simple 
spectrum and suPt I(q0, e-itn6n)[ <_ Ce -~tnl, then the spectral measure for ~ can be 

�9 (3o written as ~n=l  a~d6en where la~l < De -~nl/~ if the E~'s are properly labeled. 

That is, one can prove a result that requires less uniformity than the full-blown 

theory assumes. 
Finally, we turn to when any, and hence all, of the conditions of  Theorem 7.5 

hold in the context of the Anderson model. We are dealing here with models 

depending on a random parameter so we first reduce SUDL to a requirement on 

expectations. General considerations [32] imply that the spectrum is simple in the 

localized regime. 

T h e o r e m  7.6 Let (fl, #) be a probability measure space and E( .  ) its expecta- 

tion. Let ~ --~ H~ be a strongly measurable map f rom f~ to the self-adjoint operators 

on s which is translation invariant in the sense that f o r  each m E Z ~, there is a 

measure preserving T~ : f~ ~ ~ SO nTmo; = UmH~Um 1 where ( U m ~ ) ( q )  = qD(q-m). 

Suppose that 

(7.9) E ( s u p  l(t~q,e-itn~ 6o)[) <_ f i e  -~lql 

for  some a > 0 and that H~ has simple spectrum for  a.e. a;. Then f o r  each/3 < a, 

f o r  a.e. w, there is a C~ < cxD so that f o r  all 0 < e < 1 

sup 1(6q, e-itH~6m)[ < e~+le'lmle -~(m-q). 
t 

In particular, a.e. H~ has SULE. 

P r o o f  Let 

Q(~) -- ~--~(1 + [ml)-(~+Ue ~lm-ql sup l(6q, e-itH~6m)[. 
t m,q 

Then by (7.9), 
E(Q(~;)) < co 

so Q(a;) < co for a.e. a;. But for such a), 

sup [(tSq,e-itH~ ~m)l < C~(1 + Iml)~+l e -~lm-ql . 
t 
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The result now follows from the trivial bound (1 + x) ~ <_ u~e'Xe -~ for e < 1. [] 

So when does (7.9) hold? Delyon-Kunz-Souil lard [8] have proven this bound 

for a general class of one-dimensional random potentials. In general, we have the 

following beautiful bound of  Aizenman: 

T h e o r e m  7.7 (Aizenman's theorem) Let V~(n) be a family of  independent 
identically distributed random variables (indexed by n E Z~ ; w E 12 is the probabil- 
ity parameter). Suppose Ho is an operator on e2(Z ~) commuting with translations 
and H~ = Ho + V~ with V~ viewed as a diagonal matrix. Suppose V~ (n) has a 
distribution g(A) dA with g E L ~176 and has compact support. Suppose 

b 

(7.10) E (  f i (an,(H~-A-iO)-16o)lSdA)<_Ce -~'lnl 
a 

for some s E (0, 1). Then 

(7.11) E(sup](6n,e-itH~p[a,bJ(H~)6o)') < Ce -~lnl/(2-s) 

where C only depends on s and the distribution g. 

R e m a r k s  1. In fact, as we'l l  see, one can take C = As/(2-sl][gli~(2-SlcU(2-~) 

where A is the diameter of  the support of  g. 

2. The result as stated differs from [ 1 ] in several aspects. Most significantly, it 

hasn't a requirement of approximation by operators with discrete spectrum in (a, b). 

Moreover, we have a proof which, while following Aizenman [1] in the essentials, 

avoids a priori estimates on the distribution function of  1(60, (H - E -  i0)-160)]. 

For this reason, we provide this proof in Appendix 1. 

3. We have stated a local (with P[a,b]) result but one can take [a, b] to be so big 

spec (H~) C [a, b] to get the global result (7.9). Alternatively, we could localize 

the result earlier in this section. 

4. Aizenman has neither a Ilgll~ < ~ condition nor that g has compact support. 

We could mimic his technique to replace [Igll~ < e~ by IIgllp < oo for somep  > 1. 

Moreover, we could replace the compact support assumption by the finiteness of 

some moment f [A[~g(A) dA for some a > 0. 

Combining this result with those of  Aizenman-Molchanov [2], we see that the 

strongly coupled multi-dimensional Anderson model has SULE. 

8. Semi-stabil i ty o f  dynamica l  local izat ion 

Anderson localization (at least as proven in [ 1 ]) implies that if ~ is the operator 

(xir = mir i = 1, . . . ,  ,, 
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then in the localized regime, 

(8.1) sup( e-itH 60, x2 e-itH 60 ) < cx~. 
t 

It follows from the RAGE theorem (see, e.g., [22]) that (8.1) implies that H has 

pure point spectrum. 

For operators H with dense pure point spectrum, it is proven in [7,11 ] that for a 

Baire generic set of A, H~ = H + A(60, �9 )60 has only singular continuous spectrum 

and so for such H~'s, (8.1) must fail. Our purpose in this section is to show that 
the failure is only very mild. (x 2) (t) = (e-itH60, x2e-itH60) is unbounded but grows 

at worst logarithmically! 

T h e o r e m  8.1 Suppose that H is a self-adjoint operator on g2(Zu) with SULE. 

Let Ha = H + A(60, �9 )60. Then 

(x2n)(t) ~ (e-itHx6o,(x2)ne-itHx6o) 

obeys 
(x2")(t) < C~(lnlt[) 2n 

for Itl large. 

R e m a r k s  1. The result is actually stronger since we only need dynamical 

localization in the sense that sup [(6m, e-itH6o)l < Ce -~lml. If this estimate holds, 

then so does the upper bound on (x2n)(t), regardless of whether H has SULE, or 

even whether H has only pure point spectrum or not. 

2. By a result of Last [22], which extends an idea originaly due to Guarneri 

[12], it follows that if the spectral measure of 60 (for Ha) is not supported on a set 

of Hausdorff dimension zero, then for some/3 > 0, lim t-2nr > 0. Thus, 

we get an alternative proof to the fact that SULE (for H) implies zero-dimensional 

spectrum for H~ (for all A's). 

P r o o f  Write a DuHamel expansion: 

(8.2) 

t 

(6m, e-itHx 60 ) : ( 6m, e-itH 60 ) -- iA / ( 6m, e-isH 60 )( 60, e -i(t-s)Hx 60) ds. 

o 

Since H has SULE, by Theorem 7.5, 

sup 1( 6m, e-itH 60 ) l <_ Ce -c~lml 
t 
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for suitable C and a. Plugging this into (8.2) and using 1(60, e-itHx60)[ <_ 1, we see 

that 

(8.3) I(~m,e-;tH~0)l < Ce-~lml[ 1 + I~11tl]. 

This would seem to give linear growth in t for (x2m) 1/2m but we combine it with 

the trivial bound 

(8.4) 1(6m, e-itH~O)12 = 1 .  

m 

Use (8.3) only if Iml > 21n(1 + IAI Itl)/c~ ~ G(t). In that regime (8.3) says that 

l(6m, e-itHx6o)l <_ Ce-C~lml/2. 

Thus, 
Z (m2)nl(6m'e-itHx6~ < Cn 

Iml>G(t) 

and obviously by (8.4), 

(m2)"l(6m,e-itI~x6o)12 < (G(t)) z", 
Iml<G(t) 

SO (x2n)(t) <_ (G(t)) 2n q- Cn, as  claimed. 

In fact, the proof shows that 

lim (lnltl)-Zn(x2n)(t) < ( 2 ) -2n. 

[] 

Appendix  1: Aizenman's  theorem 

Our goal here is to prove Theorem 7.7. We begin with a general fact about 

rank one perturbations. Let A be a self-adjoint operator on a Hilbert space 7-/and 

P = (~, �9 )~ a rank one projection onto a unit vector ~ assumed cyclic for A. Let 

A~ = A + AP. Then ~ is cyclic forAy.  Let d#~ be the spectral measure of  the pair 

~,A~, so for example, 

f d__~_(x_) _ (~p, (A:~ - z) - l~)  - F~(Z). 
X - - Z  
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By the spectral theorem, there is a natural map U~ : 7-/ --+ L2(Kd#a)  so that 

Ua~ -= 1 and U~,AU~ 1 is multiplication by x. The point is that in the localized 
regime, there is an explicit formula for Ux. 

Recall that the function 
d#o(y) 

G(x) = (x - y)2 

plays a critical role in situations where A~ has point spectrum. Explicitly [33,40], 

(1) A ~ has only pure point spectrum in [a, b] for a.e. )~ E IR if and only if G(E) < e~ 

for a.e. E 6 (a, b). 

(2) If  G(E) < ee, then F(E + i0) = a exists, is real, and E is an eigenvalue of  Ax 
if and only if  ,~ = - a  -1 . 

Our main preliminary is 

L e m m a  A.1 Suppose G(E) < c~ for  a.e. E C [a, b]. Then for  any such E, 

(A.1) lim0 (A - E - i~)-l~ = ~e 

exists. Moreover, i f  A is such that #~ I [a,b] is supported on 

t h e n  

(A.2) 

{E E [a, b]l G(E) < c~}, 

(U),•)(E) = --A(~E, 4). 

P r o o f  The general theory of rank one perturbations (see [33]) implies 

(A.3) 
(A~ - z ) - l~  (A --  z ) - l q 0  

(~, (A~ - z ) - l q o )  (qo, (A - z)-lg)) 

for any z with Imz > 0 and any )~. Given E with G(E) < oc, F(E + iO) exists and 

equals some _~-1.  Pick that value of  )~ in (A.3). Then E is an eigenvalue of  A~ 

and the projection onto the corresponding eigenvector is 

PE = s-lim [(-ie)(A), - E - ie)-l]. 
~$0 

Thus, multiplying the numerator and denominator of the left side of  (A.3) by (- ie)  

and taking e to zero, we see that the limit in (A. 1) exists, and by the fact that 

F(E + i0) = _,~-1, that 

(A.4) (~p,-)~e)  = 1 
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and that 99E is a multiple of  the eigenfunction forA~ a.e.E.  

Since (U~b)(E) is precisely an inner product of  ~b with that multiple of  the 

eigenfunction that obeys (99, �9 ) = 1, (A.4) implies (A.2). t3 

L e m m a  A.2 Suppose G(E) < oo for a.e. E E [a, b], that I1r = 1, and that A is 
a random variable with distribution g(A) dA where g E L ~, with compact support. 
Thenforany Ao E supp(g) ands E (0, 1)." 

(A.5) 

E(  supl(~,P[a,b](A~ )e-ita~99)l ) < 

b 

AS/(2-S)llglllo~/(2-s, ( f I(~d, (A~ o - E - i0)  -I 99)1 s dE),/(Z-s) 
a 

where A = diam (suppg) = max(IA - A' I [ A, A' E suppg). 

P r o o f  By the spectral theorem, 

b 

(9 9, P[a,b] (A ~ )e -itA~ ~b ) = f e-itE ( U;~ ~/))(E) d#A (E) 
a 

and by the unitarity of  U, 

(A.6) f I(U~r 2 d#~(E) = 1. 

H61der's inequality says that for 0 < s < 1, 

(A.7) f lg, d# < ( f  lgl2 d#) O-s)/(2-s) ( f  [glS dlz) a/(z-s) 

SO 

(A.8) 

b 

suPt l(99'e[a'b](Ax)e-iaa~b)l <_G f I(Ux~p)(E)[ du~(E) 
a 

b 

a 

by (A.6) and (A.7). Since we can think of  A~ as a perturbation of  Aa o, we can use 
Lemma A. 1 to say that 

(U~b)(E) = -(A - A0)((A~ 0 - E - i0)'199, ~b). 
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Thus, (A.8) implies 

b 

(f / supl(qo, P[a,b](Aa)e-ita~b)l <_ Asl(2-s) I(~,(Axo-E-iO)-lqa)lSd#x(E) 
t 

a 

Now take E's. Since 1/(2 - s) < 1, H61der's inequality implies E([f[ l/(2-s) ) _< 
(E([f[)) 1/(2-s) and E(d#~(E)) _< []g[[~ fdA(d#~(E)) = [[gl[o~dE where the last 

equality is a result explicitly in S imon-Wolf f  [40] but obtained in related forms 

earlier by Javrjan [15] and Kotani [19]. [] 

P r o o f  o f  A i z e n m a n ' s  t h e o r e m  (Theorem 7.7) The hypothesis (7.10) implies 

that for a.e. pairs ~, A E [a, b] 

[(6n, (n~ - A - i0)--l~m)[ < Cw,~,me -~ln-ml/2 

so for a.e. such pairs, 

I I ( n ~  - A - i 0 ) - 2 ~ m l l  < 

and thus by the S imon-Wolf f  criterion [33, 40], H~: has pure point spectrum in 

[a, b]. Thus, for such cr Lemma A.2 applies and we get (7.11) after averaging over 

A0 and then over ~. [] 

R e m a r k s  1. Independence of  {V} is not needed. It suffices that the conditional 

distribution of  V(0), conditioned on {V(n)}n~0 has a density gv(A) dA with [[gv[[oo 
bounded uniformly in V and with a uniform bound on diam(suppgv) .  

2. Relative to Aizenman's proof, we get a simplification by using 

(~, (A - E - i0)-1~) = -A  -1 and therefore not needing Boole 's  equality. We 
can turn this around and actually use the theory of  rank one perturbations to prove 

Boole 's  equality in its natural setting. 

P r o p o s i t i o n  A .3  Let # be a finite purely singular measure and let 

f dlz(X) 
F(E + iO) = I 

x - (E + iO)" J 

Then for t > O, 

1{ E I F(E + i0) > t}l = I{E I F(E + i0) < - t}[  = t-l#(ll~). 

P r o o f  Without loss, we can suppose #(I~) = 1. Let A0 be the operator of  

multiplication by x on L2(l~,d#) and (P~b) = (1,~b)l. Let d#~ be the spectral 

measure for A0 + AP. As noted above: 

f dA[d#~, (E)] = dE 
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in the sense that for any measurable set S, 

(A.9) / = ISI. 

On the other hand, by the Aronszajn-Donoghue theory [33], 

(A.IO) #x is supported on { E I F ( E  + iO) = -A- l} .  

Let S t = {E [ F(E + i0) < - t} .  Then (A.10) says that 

1, 0 < A < t  -1 

#~(St) = 0, A < 0 or A > t -1  

so (A.9) implies [St[ = t - 1 .  [] 

R e m a r k s  1. Boole's equality for #, a measure with a finite number of  pure 

points, was found in 1857 [6]. See [1, 24] for more recent history. 

2. Using this result in this form, it is not hard to show for any measure #, 

lim tl{x [ IF(x + i0)1 > t}l = 2#sing(~), 
t - - + ~  

the mass of  the singular part of  #. Boole's equality applies explicitly only to # 

purely singular. 

3. This proof of Boole's equality was found independently by Poltoratski [24]. 

A p p e n d i x  2: A pathological  example  

Our goal in this appendix is to present a one-dimensional Jacobi matrix (i.e., 

potential v(n) on Z+ and operator (hu)(n) = u(n + 1) + u(n - 1) + v(n)u(n) on 

g2(Z+) with Z+ = {n E Z , n  > 0} and a Dirichlet boundary condition at n = - 1 )  

so that 

(0) v is bounded. 

(1) h has a complete set of  normalized eigenfunctions. 

(2) Each eigenfunction is exponentially decaying, that is, 

I~n(m)l _< Cn e-alml 

for some fixed a > 0. 

(3) Let F(t) = t 2 / I n ( t ) .  Then 
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(B. 1) lim [[xe-ith60 II 2/F( t )  = oo. 
t - - + o o  

Thus, in spite of exponentially localized eigenfunctions, h doesn't have dynamical 
localization. This shoves that proofs of  "localization" that only show (1),(2) are 

only part of the story and that the SUDL shown by Aizenman in [1] and the SULE 

consideration in this paper are a significant desideratum. One can modify the proof 
to replace F(t) by t2/ f ( t )  for any monotone f with l i m t _ ~ f ( t )  = c~. Thus, this 
example also shows that the result of [3 1] that point spectrum implies 

lim Ilxe-ith6ol[a /t2 = 0 
t - - + ~  

cannot be improved. 

Our v(n) will have the form 

(B.2) v(n) = 3 cos(wan + O) + A~no 

with a irrational. We prove that a can be constructed so that (B.1) holds for all 
0 and A e [0, 1]. It is well known (e.g., [4]) that the Lyapunov exponent, which 

characterizes solutions of (h - E)u = 0 for a.e. E, 0, is everywhere larger than or 
equal to ln(23-). Thus, by the Simon-Wolff criterion [33, 40], (1) and (2) hold for 

a.e. 0, A and we only need to choose a so that (B.1) holds. 

Let Pn>a denote the projection onto those functions supported by {n I n > a} 
and similarly for Pn<_a, etc. Letf( t )  be a monotone increasing function of t with 

f ( t )  ~ e~ at ~ (we takef(t)  = [ln(lt[ + 2)]1/5). 

L e m m a  B.1 Suppose there exists Tm ~ oo so that 

(s.3) 
2T~ 

1 f p e-ish~ ,2 > ! n>_rm/f(T,) 0 ds _ f (Tm)2.  
T,, 

Then 
lim IIxe-i*h6oll2f(t)5 / t  2 = 00. 

t - - ) .oo 

Proof  Under the hypothesis, there must be some sme [Tin, 2Tin] so 

( Tm ,~2 p e-is~,hr ,,2 
Ilxe-iS"h~~ > \ f ( T m ) /  II n>Tm/f(Tm) 011 

>__ T2mf(Tm) -4 . 
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Thus, 
5 f ( Sm)  -ismhc 112 __ ( T m ) 2 t e f ( S m ) ~ 4 ~ e  ) 
llXe o011 > 

~m k S m /  L f ~ m )  ) 

1 
>_ =f(Sm) --~ oc 

4 - - - -  

as claimed. [] 

We obtain get the lower bound in (B.3) from the following: 

L e m m a  B.2  Let 6 be a unit vector, P a projection, and h a self-adjoint operator. 
Suppose ~ = ~ + ~ with (4, ~ ) = O. Then 

(B.4) 
2T 2T 

1 
f [1(1- P)e-ishcsH 2 ds>_ ,1~1, 2 -  3 (  1 f HPe-ish~[12 ds) 1/2 

T T 

P r o o f  Since  IIPoll 2 + I1(1 - P)~I[ 2 = 1 for  an y  unit  v e c t o r  7, IlWll e + I1~112 = 1 
and  ][e-iSh6][ 2 = 1, we  see that  

LHS of  (B.4) _> A + B  

where 

A = I1~112 - (~ ,~ )~  a n d  B= I1~112 -(~,e , )_ -2Re(~,~)~ 

with 
2T 

1 / e_iSh~ ) (z/,~)~ = ~ (pe-i'hq, ds. 

T 

Clearly, (~, ~)~ < 1 and (~, ~)~ < 1, so A _> 0 and B > II~ll 2 - 3 ( ~ ,  ~ ) L / 2 ,  w h i c h  

is the stated result. [] 

We need to make a break-up so (~, ~)~ is small. This is what we turn to next. 

Recall the notion of  III �9 III introduced by Kato (see (X.4.17) of  [18]). Let A be 
a self-adjoint operator. A vector ~ is said to have finite triple norm if its spectral 

measure # has the form d#~ = F(E) dE with F E L ~ .  We set III ~ III - Ill ~]][A ~ I[FII ~2.  

Given a,  0, A, we set h(a, 0, A) to the Jacobi matrix with potential (B.2). 

L e m m a  B .3  Fix ~ rational. Then there exist Cl > 0 and C2 < ~ and for  each 
0 E [0, 27r] and A E [0, 1], a breakdown 

6o = ~o,~ + ~o,~ 
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SO 

03.5) (~, ~) = o, 

(B.6) I1~0,~11 ~ G ,  
(B.7) II1~0,~ IIIh<~,0,~ ~ C2 

P r o o f  Consider first A = 0 and consider the periodic Jacobi matrix on g2(Z) 

which corresponds to the potential (B.2) (on Z). It is a periodic Hamiltonian with 

a fixed Bloch Hamiltonian decomposition. If  & = p/q,  the period is q and we can 

use a quasimomentum label that runs from 0 to 7r/q. Consider the lowest band and 

the quasimomenta range between 7r/3q and 2rr/3q. 
Let Eo (k) denote the band function for the lowest band. Eo is strictly monotone 

in k; indeed, OEo/Ok > 0, and jointly continuous in 0 E [0, Tr], k E [Tr/3q, 27r/3q]. 
Thus, the width of  the energy range, Eo(27r/3q) - Eo(Tr/3q) - go is uniformly 

bounded away from zero. 

Let ~~ denote the 2 x 2 transfer matrix from 0 to n for the potential (B.2). 
o o ..- T~ where That is, ~~ _-__ T~n(E)TT,_1(E) 

E -  v(n) - 1  ) 
T~ = 1 0 

and v(n) is given by (B.2) with A = 0. By, for example, Lemma 3.1 of  [21], we 

have the bound II~~ < 2q IOEo/Ok1-1 for any integer m > 0. (Remark: 

Lemma 3.1 of [21] is formulated for the transfer matrix over one period, but 

it is easy to see from its proof that the bound holds for any integer number 

of  periods.) Thus, 0 Iiibmq_l(E)lt is uniformly bounded for all O's, m > 0, and 

E E [Eo(27r/3q),Eo(rr/3q)] =- Io. 
Let ~n ~ (E) denote the transfer matrix for the potential (B.2) with A E [0, 1]. Then 

we see that II~~ must also be uniformly bounded. That is, II~~ < C 
for all n > 0, A E [0, 1], 0 E [0, 27r], and E E Io. By, for example, Theorem 2 of  

[38], this implies that the imaginary part of  the m-function for h(a,  0, A), which is 

identical to the Borel transform Fo,a of the spectral measure of 60 (for h(a, 0, A)), 

is uniformly bounded. Namely, Ci -1 < ImFo,x(E + i0) < C1 for some constant C1 

and for all A E [0, 1], 0 E [0, 27r], and E E Io. 
o,:~ pO,~ is the spectral projection (for h(a, O, A)) on Io. Let ~b0,a = Pro 6o, where 10 

Then the spectral measure of Zb0,~ is purely absolutely continuous and has the form 

7r-almFo,:~(E + iO) dE. Thus, we see that the claim holds. [] 

As a final lemma, we need to control changes in the dynamics as we change a: 
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L e m m a  B.4 

(B.8) II(e -ish(a'O';Q -- e-ish(a"o';~))6011 < 37rs21a - a' I. 

P r o o f  h(/9, a, )~) - h(a',/9, ,k) = 3[cos(aTrx +/9) - cos(a'Trx +/9)] so 

II [h(/9, a ,  A) - h(a' , /9, A)]~/[ I < 3~la - a ' l  IIx~ll 

and so by  a D u H a m e l  formula ,  

$ 

LHS of  (B.8) < f3 la - a'l Ilxe-ith(~"~ dt. 

0 

t 
But  x(t) = x + foP(U) du where  p(u)  = eiuhpe -iuh and p = Ix, h] has no rm at mos t  

2. Since  x6o = O, 

S 

LHS of  (B.8) < f3 la - a'[2tdt  = 3~-s21 a - a ' l  

0 

as c la imed.  [] 

T h e o r e m  B . 5  a can be chosen irrational so that (B.1) holds fo r  h(a, O, ~) and 

all 0 E [0, 27r], A E [0, 1]. 

P r o o f  L e t f ( t )  = (ln(2 + I t l ) )~/5 .  We pick am, Tm, Am induct ively starting with 

a 1 = l s o  

(i) am+l - am = 2 -k '!  for  some km. 

(ii) 1/Tmf2rf m [Ien>T,/f(r~)e-ish(~'~'O)6Oll2ds > 1/f(Tm) 2 for  all/9 E [0, Tr], A E 

[0, 1] and a with la - am] ~ Am. 

(iii) lam+l -- akl < Ak f o r k  = 1 , 2 , . . . , m .  

By  (i), aoo = l im am is irrational,  and by  (ii), (iii), the hound  holds for  a ~ ,  and 

(B. 1) holds  by L e m m a  B. 1. 

Start  with a l  = 1. We explain  how to p ick  Tin, Am, am+1 given a l ,  �9 �9 �9 am, T l , . . . ,  

Tin-l, A t , . . .  ,Am-1.  Given  am, let 60 = qo + ~b be the decompos i t ion  given by  

Le rnma  B.3 and let C1, C2 be the cor responding  constants .  Choose  Tm >_ 2Tin-1 
(and T1 _> 2 SO Tm _> 2 m) SO that 

(B.9) C~ - 3v/-~C2(f(Tm) -1 + Tml) 1/2 ~ 2 f ( Z m )  -1  . 
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Since C1 and C2 are fixed (given am) andf(Tm) --+ oc, it is certainly possible. 
Notice that 

(B.lO) 

2T 1/ 
(~,~,)~ = -~ IIP.<r/f(r)e-i'h~lLa ds 

T 

<- 2~ #{  n I n < T/f(T)} IIIVdl z 

since for any unit vector 7, 

(B.11) 

O o  

f [(~/, e-ish~)12 ds ~ 2frillY>Ill 2 117112 
- - O O  

by the Plancherel theorem. Thus, by (B.9) and Lemma B.2, 

2Tm 

.,ol f p e-ish(ce.. ). 0)6 ,,2 2 ,, .>_rm/f(r.) ' ' 011 ds >_ f(T------~" 
T~ 

By Lemma B.4, we can pick Am so [a - am[ < Am implies 

2T~ 

1 f p e- i sh(a  A 0)6 12ds 1 
"~m n>T,.If(Tm) ' ' 0 >- f(Tm--"'-)" 

r., 

Finally, pick am+l so lan - am+ll < An for n = 1 , . . . ,  m. [] 

R e m a r k s  1. (B.11) is the standard estimate for which I[1 �9 [1[ was introduced 

(see (X.4.18) of [18]). It is used here as the Strichartz estimate [41] is used in the 

proof of Theorem 6.1 of [22]. Indeed, the above proof is essentially a variant of 

the proof of a similar result in [22] (Theorem 7.2 of [22]). 

2. One can similarly prove an analogous result for a corresponding operator on 

g2(Z). The main difference in this case is that 60 might not be cyclic, and thus, 

to assure pure point spectrum, we need to perturb the potential at two consecutive 

points. The proof is essentially unchanged except for Lemma B.3, the analog of 

which can be obtained by uniformly bounding the m-functions for the two "half- 

line" operators, from which one can construct the Borel transform of the spectral 

measure for the "line" problem. 
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A p p e n d i x  3: U L E  fails for  many  m o de l s  

In analogy with SULE, we say that H on g2(Z~) has ULE if there are C, a > 0 

with 

I~n(m)l _< Ce-alm-m,I 

for all eigenfunctions ~.9 n and suitable mn. 
Motivated by J i tomirskaya [ 16], we present a s imple argument  that many  models  

do not have ULE: Let  f~ be a topological space, Ti : f~ ~ ~2, i = 1 , . . . ,  u commut ing  

homeomorph isms ,  and let # be an ergodic Borel measure  on fL L e t f  : f~ ~ R be 

continuous and define V~(n) = f ( T ~ )  for n E Z ~ where T n = T~' . . .  T~ ~. Let  H~ 

be the operator on g2(Z"), 

(H~u)(n) = Z u(m) + V~(n)u(n). 
I m - n l = l  

T h e o r e m  C.1  I f  H~ has ULE for ~v in a set of  positive #-measure, then H~ has 
pure point spectrum for any ~ E supp(#), where supp(#) is the complement of  the 
largest open set S C f~ for  which #(S) = O. 

P r o o f  Define the function F : f~ --. [0, ~ ]  by 

F(~) = sup 
tEQ 

n,mEZ ~" 

[l(/Sn, e--itn~6m)l(1 + In -- m[)~]. 

When  ULE holds, the p roof  of  Theorem 7.5 shows that 

1(r e-itn~ 6m)l <_ C~e-C~ln-ml 

and it follows that F(~v) < c~. F is clearly measurable  and translation invariant so 

F(~v) < ~ on a set of  positive measure  shows that F(~v) = C < ~ for a.e. ~. Thus 

on a dense set in supp(#): 

(c.2) l(6,,e-i'H~6m)l <_ C(1 § I n -  ml) -~ 

with C independent of  w. By continuity, (C.2) holds on all of  supp(#) and so the 

R A G E  theorem [25] implies that H~ has pure point spectrum for any ~v E supp(#).  
[] 

E x a m p l e  1 Let  dA be a probabil i ty measure  on R and let S = supp(A). Let  

~'~ = S Z~, d #  = (~nEZ~ d)~(OJn) , (TncM)m = O3m_n, a n d f ( 0 3 )  = 03 0. Then {H~} is the 
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Anderson model. If  7 E S, the constant potential 0 3  n = 7 lies in supp(#) and the 
corresponding H~ has purely a.c. spectrum. Thus, ULE cannot hold. 

E x a m p l e  2 Let  f~ = S 1, the circle, a irrational, d# = dO/27r and T8 = 0 + 7roe. 

L e t f  be an even function (e.g., 7 cos( .  )). Then [17] shows there are O's for which 

Ho has no point spectrum and so again ULE  cannot hold. 

A p p e n d i x  4: T h e  d i m e n s i o n  o f  t h e  se t  w h e r e  G (x) = eo 

In this appendix we consider a probability measure d# on [0, 1] and the function 

G(x) given by (5.1), and relate the dimension of  supports of  # to the dimension of  
the set where G(x) is infinite. 

T h e o r e m  D.1  I f  A = {x [ G(x) = oo} is a set o f  dimension a, then # is 

supported on a set o f  dimension a. 

P r o o f  # is obviously supported on A. 

There is no inequality in the other direction for all #, since there are point 
measures (obviously supported on a set of  dimension 0) with G(x) = oo on [0, 1]. 

However,  if we are willing to replace # by an equivalent measure, there is a 

complementary result: 

T h e o r e m  D.2  Let lz be a probability measure on [0, 1] and suppose # is 

supported on a set o f  dimension a. Then, there is a measure v equivalent to # so 

that A = {x [ G~(x) = oo} has dimension at most ~. 

R e m a r k  The proof  follows the strategy in Howland [14]; more precisely, it 
follows the strategy in [14] with some errors corrected. 

P r o o f  Let S be a set of  dimension a which supports #. By  inner regularity, we 

can find {Cn}n~l closed sets so C1 c C2 C " ' "  C S ,  and/z is supported o n  U~'Z=l Cn. 
oo (n) Since C. C S has dimension at most a,  we can find a 6-cover Um=l Bm of Cn so 

that 

(i) [B(n)[ < 2 -n, B (n) is an open interval, 

(ii) Cn c U B(m n), 
(D. 1 ) m=l  

OO 

(iii) Z IB~)I~+2-" < 2 - " .  
m=l 

Let On = [.Jm~176 B(m n) and Kn = [0, 1]\O,,. Since On is open, Kn is closed and so 
d~ = dist(Kn, C~) > 0. Let 

(X) OO 

-n 2 Z n(/ v( .  ) = E 2 d~#(.  n Cn) =- 
n=l  n=l  
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Then, u(A) = 0 r162 #(An Cn) -- 0 for all n r162 #(A) --- 0 so u is equivalent to/z. Let  

Koo = l imK. = N 
m~-~l nm.~m 

We claim that G~ (x) < ~ for x E Koo and that 

Ooo = [0, 1]\Koo = [0, 1] n l i m O n  
OO OO 

: I0,11N[ N UOn] 
m ~  l n ~ - m  

has dimension at most a which proves the desired result. 

I f  x C Ko~, then eventually x C Kn and so x ~ Un~__ t C,. Thus, 
dun(y) 

(i) f i x T ~ -  2 < oo for all n (since x ~ C,). 

du,(y)  < 2 -"  for large n (since x E K,  for n large). (ii) f Ix - yl 2 - 

It follows that G~ (x) < oo as promised. 

Given ~ > a, pick no so a + 2 -n~ _< c~. Then for each n _> no, Uk~, Um%l B~ ) is 

a 2 -n-cover  of  Ooo and by (D. 1), its I ' I a power sum is at most 2 - (n-  1). Thus, O ~  

has h a measure zero and so O ~  has dimension at most  a. 

A p p e n d i x  5: Analys is  o f  the measures  #p 

Here we analyze Example 3 from Section 6. 

We require information on the weight that #p gives to intervals. For any x, let 

(E.1) A(~l)(x) = { Y i a j ( y )  = aj(x) f o r j  = 1 , . . .  ,n}. 

A O) (x) is a dyadic interval o f  length 2 - "  containing x uniquely determined by that 

except  for certain dyadic rationals. Clearly, 

(E.2) 

and so, if/~ > 2 -n, 

(E.3a) 

where 

6 > 2 - "  => AO)(X) C (X -- 6,x + 6) 

#p(X - ~5,x + 5) >_ pU"(x)(1 -- p),,-U.(x) 

(E.3b) N, (x )  = # {j <_ n l aj(x) = 0}. 
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In particular, i f p  < �89 (lim occurs because log 6 < 0) 

(E.4) lim ln[#p(X - 6,x + 6)] < _ f ( x ) l n p  + (1 - f ( x ) ) l n ( 1  - p )  
~0 ln(26) - In 2 

where 

(E.5) f ( x )  = lim N'(x) /n .  
n---~ o o  

I fp  > �89 we replacef  by ! imN' (x ) /n .  
In particular, for any x,p: 

(E.6a) lira ln[#p(X - 6, x + 6)] ln(min(p, 1 - p)) 
6.1.o ln(26) < In 2 

and 

195 

6 < 2 - ' - 1  ~ (x - 6 , x +  6) C A(,,2)(x). 

Normally, #p(~X0)(x)) and #p(m(1)(X)) are of the same magnitude; the exception 
whenp < �89 (resp.p > �89 is when a long string of0 's  (resp. l 's)  starts before position 
n and includes position n + 1. For then subtracting ~. from x changes many O's 
into l's. Explicitly, if an-e(x) = . . .  = a,,(x) = an+l(X) = 0 but a,,-e-l(x) = 1, then 

(E.8b) #p(,~(1) (x)) = ~p(A(O (x)). 

Then 

(E.8a) 

(E.6b) f d#p(y_____)) i x_y l=  - ~  f o r a l l x E  [0,1] i f2~min(p,  1 - p )  > 1. 

To get an upper bound let 

/~ln(X) = { A(I)( x +  ~)2 if a'+l(X) = 1 (E.7) 
A(1)(x_ 1 )  ifan+l(X) = 0 

SO ~Xl(x) is the next nearest dyadic interval (with the convention that we take 
A0)(x + ~)  i fx  is at the midpoint of A0)(x)). Define 

= a(1)(x)  u 
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For example, if x0 is defined by 

1 N ! _ < n < ( N + I ) ! ,  Neven,  
a, ,(xo)= 0, N! _< n < ( N +  I)!, N o d d  

then 
lim ln[#p(XO - 6,xo + 6)] = ln(min(p, 1 - p ) )  

ln(26) In 2 ' 

lim ln[#p(XO - &xo + 6)] = In(max(p, 1 - p ) )  
ln[26] In 2 

Fortunately, as we shall see, this behavior is very atypical of  any of  the #p'S. For 

p < �89 let C~ (x) be defined by 

Cn(x) = sup{g I a,(x) = a , - i  (x) . . . . .  an_g(x) = 0}  

where we set Cn(x) = 0 if  an(X) = 1. Then (E.3a,b) imply 

(E.9a) lim ln#e(x - 6,x + 6) > g(x) lnp + (1 - g(x)) In(1 - p )  
6+0 1n(26) - In 2 

where 

(E.9b) g ( x ) = l i m [ N n ( x ) - C " ( x ) ]  " n - - + o o  n 

Both Nn and Cn are functions of  the sequence {ai} and so their behavior is well 

known. The law of  large numbers says that a.e.w.r.t. #p, 

lim Nn (x) - p  
n 

and a standard Borel-Cantelli  argument shows that a.e.w.r.t. #p, 

limCn(x) _ 1 
Inn lnp 

SO 

Thus: 

lim C.(x)  _ 0. 
n 

P r o p o s i t i o n  E.1 Fix p, q E (0, 1). Then a.e. x w.r.t, d#q, we have 

lim ln#p(X - 6,x + ~5) = - q l n p  - (1 - q) ln(1 - p )  
6+0 In (26) In 2 
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Recall the definition of  H(p),  L(p) in (6.6)/(6.7) and of  I0. 

T h e o r e m  E .2  (= Theorem 6.6) (1) d#p has exact dimension H(p). 
(2) Suppose p E Io. Then for a.e. A w.r.t. Lebesgue measure, the restriction to 

[0, 1] of the rank one perturbation of d#p has exact dimension L(p). 
(3) If p q~ io, then for a.e. A, the rank one perturbation of d#p is pure point. 
(4) If p E (1, 3), p r �89 then for all A, the restriction to [0, 1] of the rank one 

perturbation of d#p is purely singular continuous (so we have an example with 
singular continuous spectrum for all A). 

P r o o f  (1) By the last proposition, the quantity a(x) given by (2.2) is H(p) for 

a.e. x w.r.t, d#p so by Corollary 2.2, d#p has dimension H(p).  

(2) By the last proposition with q = �89 (recall dlZl/2 is Lebesgue measure) and 
Lemma 5.4 for a.e. x w.r.t. Lebesgue measure 

lim e - (a -~) ImF(x  + ie) = 0 (resp. c~) 
c$0 

if a > L(p) (resp. a < L(p)). By  S imon-Wolf f  [33,40], (d#p)~ is supported on 
this Lebesgue typical set for a.e.A. Thus by Theorems 4.1 and 4.2, the rank one 

perturbation has dimension L(p) for a.e.A. 
(3) By the last proposition and Proposition 2.4, for a.e. x w.r.t. Lebesgue measure 

d#p(y! < 
f lx---Y-r 

if a < 7(/9) (and is infinite a.e. if a > 7(P)). (2 + v/3)/4 are precisely the points 

where 7(P) = 2 and s o p  ~ 10 means 

/ d#p(y______~) 
[x - y[e < oe for a.e. x 

so S imon-Wolf f  [33, 40] implies the rank one perturbations are pure point for 

a.e.A. 
1 3 (4) By (E.6), i f p  E (~, ~), then 

f d~p(y_____)) [0, 1] ix _ y12 - oe for all x E 

and so by the Aronsza jn-Donoghue theory [33], there is no point spectrum for 

any A. [] 
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R e m a r k  By using Theorem 5.1, one can show if (2 - x/~)/4 < p < 1, then the 

dimension of  the set of  )~ for which (#p)~ has some pure point spectrum is 

D ( p ) =  q l n q + ( 1 - q ) l n ( 1 - q )  
In 2 

where 

q = 
- 2  In 2 - ln(1 - p) 

lnp  - In(1 - p) 

As a final variant in this class of  examples, we give an example of  a measure 

supported by the set W~ defined in (2.3) (examples o f  this kind go back to Besicov- 

itch [5]). Fix 0 < pl  < p2 < �89 Define a measure d#plm on [0, l] as follows: The 

variables an (x) will be independent  for different n but not identically distributed. 

Rather 
= 0 ) =  ~ pl  N ! < n < ( N + I ) !  N o d d  

Prob( an ( x ) 
L P2 N ! < n < ( N + I ) !  Neven .  

Then by the law of  large numbers,  one easily sees that for a.e. x w.r.t, d#plp 2, 

lim Nn(x) 
- -  P 2 ,  

n-+oo n 

lim Nn(x) 
= P l ,  

n-+oo n 

< 

so that by analogs of  (E.4), (E.5), and (E.9): 

li---m In #p,p2 (x - 6, x + 6) = _ P2 lnp2 + (1 - P2) In(1 - P2) = H(p2), 
~,o In 26 In 2 

lim In #p,m (x  - 6, x + 6)  = _ Pl lnpl  + (1 - P l  ) In (1  - P l )  = H(pl  ). 
~ o  In 26 In 2 

It follows that 

H(p l )  < a < H(p2) =~ for #p, m a.e .x,  

lim # ( x  - 6 , x  + 6)  # ( x  - 6 , x  + 6) 
83.0 /5 ~ = oo; lim 6~ = 0. 

850 

R e m a r k s  1. One can modify  this example to find a measure dv so that a.e. 

l imln v(x - 6,x + 6) = 1, l imln v(x - 6,x + 6) = 0 
, ,o ln(26) ~,o ln(26) 
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so that only if c~ = O, 1 does 

u(x I lim u(x - 6,x + 6) 6+0 6 ~ exists) = 1. 

2. One can further analyze d#p~p 2 t o  prove that for a.e. A, the rank one perturbed 

m e a s u r e  (d#plp 2)~ has dimension L(pl ). 

Note added inproof. At the time this paper was written, we knew of  no "explicit" 

Schr6dinger operators with strictly fractional Hausdorffdimension. Subsequently, 
however, first Jitomirskaya-Last and then Kiselev-Last-Simon have found such 
examples (papers in preparation). 
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