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ABSTRACT. We provide a short proof of that case of the Gilbert-Pearson the- 
orem that is most often used: That all eigenfunctions bounded implies purely 
a.c. spectrum. Two appendices illuminate Weidmann's result that potentials 
of bounded variation have strictly a.c. spectrum on a half-axis. 

51. INTRODUCTIONAND REDUCTION TO m-FUNCTIONS 

In this note, I want to consider Schrodinger operators and Jacobi matrices 
on a half-line. Specifically, we'll consider the operator h on e2(Z+) (with Z+ = 
{1,2,. . . )) given by 

(1.la) (hu) (n) = u(n + 1) +u(n - 1) + v(n)u(n), 

( l . lb)  u(0) = 0, 

and the self-adjoint operator on L2(0, m) 

(1.2a) (Hu)(x) = -ul1(x) +V(x)u(x), 

(1.2b) u(0) = 0, 

where we suppose 

For any E E @, define two solutions u l ,  uz of the formal difference (resp. differ- 
ential) equation hu = E u  (resp. H u  = Eu)  with boundary conditions: 

u1(0, E )  = 0, u1( l ,E)  = 1, 

u2(O,E? = 1, .2(11 E?= 0, 

in the discrete case and 

ul(0, E )  = 0, ui(0, E )  = 1, 

u2(01E?= 1, uL(0, E )  = 0, 
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in the continuous case. 
Let S = {E E R I ul and uz are bounded on [0, cm)).Then our purpose here is 

to prove 

Theorem 1. On S ,  the spectral measure p for h (resp. H) is purely absolutely 
continuous in the sense that 

(i) pa,(T) > 0 for any T c S with IT1 > 0 (where I . I = Lebesgue measure). 
(ii) psing(S) = 0. 

This theorem is not new. In [9], [a], [ll],[14], Gilbert, Kahn, and Pearson 
proved a complete characterization of the essential support of pa, in terms of mu- 
tually subordinate solutions. Their approach has the advantage of not requiring 
(1.3). Behncke [2] and Stolz [17] have noted that V uniformly L:,, with bounded 
eigenfunctions allows one to use the Gilbert-Pearson theory. Virtually all appli- 
cations of [9], [ll]use the weaker Theorem 1. There seems to be some point in 
the short proof I'll present here which avoids some of their tricky calculations and 
which makes the result transparent. In addition, we'll obtain explicit bounds on 
m-functions. 

I should mention earlier work of Carmona [4] (which is weaker than Theorem 1) 
and related work of Briet-Mourre [3]. 

As with Gilbert-Pearson, our proof uses the theory of Weyl m-functions. For 
E E cG+ = {z I Im z > 0), we can find a unique solution u+(n, E )  (resp. u+(x, E ) )  
of (l.la)/(1.2a) with u+ E C2 (resp. L2) at infinity. normalized by 

Then one defines the m function by 

(1.5) m+(E) = u + ( l , E )  

in the discrete case and 

in the continuous case. 
By looking at the Wronskian of u+ and ii+, one gets the well-known formula: 

in the discrete case and 

in the continuous case. 
It is known (see [5], [16]) that 

(1.9) dp(E) = -
1 

lim Im m+ ( E  + if) dE. 
n- € L O  

It follows [I], [7] by the de la Vallke-Poussin theorem that 

psi,, is supported on Imm+(E  + if) = m 
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and 

Thus, Theorem 1 is an immediate consequence of 

Theorem 2. If E E S ,  then 

(1.10) (i) lim Im m4(E + 20) > 0, 

(1.11) (ii) lim Im+(E+iO)I < oa. 
Remark. While the results are stated for the half-line with Dirichlet boundary con- 
ditions, Theorem 2 immediately implies the result for any fixed boundary condition 
and for the whole line. For it is known [I], [16] that the essential support dp,,,s for 
0 boundary conditions (given by sin(0)uf(0) +cos(O)u(O)= 0) is 0 independent and 
that dp,,,,,~ is supported on the set where m + ( E  + iO) = - cot(8), which cannot 
happen if (1.10)/(1.11) holds. For the whole line, we can define S via the right 
half-line condition from which (1.10)/(1.11) and the formulas (for the continuous 
case; the discrete case is similar) 

1 
dpl (E)  = - lim 

m + ( E + i ~ ) + m - ( E + i c )  

It is a pleasure to thank F. Gesztesy, A. Kiselev, and G. Stolz for useful discus- 
sions. 

52. THEJACOBIMATRIX CASE 

In this section, we'll prove Theorem 2 in the discrete case. Define the fundamen- 
tal or transfer matrix by 

and then 

(2.1) T (E ,n.,m)= T ( E ,  n,O)T(E,m, 0)-l. 

T is defined so that if u obeys hu = Eu,  then @(n) = obeys 

Constancy of the Wronskian implies det T = 1so IIT-I 1 1  = IlTll and thus by (2.1) 

is finite if and only if E E S .  ?Ve'll prove Theorem 2 in the following explicit form: 

Theorem 25. If E E S,  then 

(2.3) lim Im m+ ( E  + lie) 2 -
4 
1c - ~ ,  

(2.4) lim jm+(E + i€)l < 4c3 ,  

where C ( E )  is given by (2.2). 
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Proof. Let 

so T(E,n,  0) = A(E,n)T(E,  n - 1,O). It follows (asa telescoping sum) that 

n-1 

T ( E  + is, n ,  0) = T ( E ,n,  0) + z ( i r ) ~ ( ~ ,n,  j + 1) (i :) T ( E  + is, j ,  0) 
j=O 

so by iteration, we get 

T ( E  + is, n ,  O)Il 5 2 ( ; ) ~ ~ + ' r ~= C ( 1 +  Cs)" 5 ceecn .  
k=O 

By (IT-'(1= ( (T( ( ,we see that 

u+(E  + ir, n + 1)) 1 1  2 ~ - ' e - ' ~ " ( l m + ( ~+ ir) 1' + l)li2
u+ ( E  + is, n) 

u+(ES-ie,l) m+(E+it)
since (u+(E+ic.O))= ( 1 1' 

Squaring and summing over n = 1 ,3 , .. . we see that 
cc 

4€C -1~ u + ( ~ + i r , n ) I ~ > ~ - ~ e - " ' " ( l - e -) ( I m + ( ~ + i r ) 1 ~ + 1 ) .  
n=l 

Thus by (1.7) 

1 3 - 2 e ~Im m+ ( E  + ir) 2 - C- e (4sC)(1- eC4")-l [l+ Im+(E+ ir) 1'1
4 

Noting that (1+ lm+12)-1 5 1,we see that (2.6) immediately implies (2.3). And 
since (1 + lm+ 1')lIrn m+ 2 Im+ 1 ,  it also implies (2.4). 

With only minor changes, the theorem extends to the general Jacobi matrix 
(tridiagonal self-adjoint) matrix: 

(2.7) (hu)(n)= an+lu(n + 1) + anu(n - 1)+ bnu(n) 

so long as there is a finite with 

for all n. If dp is the spectral measure for u(n) = dl,, then 

where m+ (2) is defined to be a;lu+(l) (if u+ is normalized by u+(O) = 1). (1.7) 
becomes 

CX, 

Imm+(E)  = U ; ~ ( I ~E) (u+(n,E ) ( ~ .  
n= 1 
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It is no longer true that IIT(E, n,  0)-'/1 = IIT(E,n ,  0) I /  since det(T(E,n ,  0)) may 
not be 1. Rather det(T(E,n,O)) = aSO using (2.8), (2.2) becomes C ( E )  < 
a2sup I I T ( E , ~ , O ) ~ / ~ .(2.5) becomes 

n 

IIT(E + ic, n, O)II < C ( l  + C ~ E ) ~ICeecn" 

and (2.6) becomes 

$3. THESCHRODINGERCASE 

To carry the proof through from the discrete case, we must use (1.3) to bound u' 
locally by u. This is a standard Sobolev-type estimate; we haven't tried to optimize 
constants. 

Lemma 3.1. If u obeys -uf' + Vu = Eu,  then 

x+l 

(3.1) I U ' ( X ) I ~5 + ~ ( I V- E I ) ]  J I U ( Y ) I ~dy 
x-1 

where r is given by (1.3). 

Proof. By Taylor's theorem with remainder, 

Integrate this from to 1 to get 

Let f(y) = u(y + x) and use u'' = (V - E ) u  and the Schwarz inequality to get 
(3.1). 

By (3.1), if E E S ,  u' is also bounded and thus the transfer matrix T(E ,x, y) 
defined by 

is bounded. Let 

Theorem 2s. Let E E S and define A(E) = $ C ( E ) - ~ / ( ~+ ; ~ ( I E- VI)). Then 
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Proof. By mimicking the proof of (2.5)' using integrals in place of sums, 

so if ,6' = 1/(9 + :I?), then 

Im m+ > 1 
~ - ~ I 3 e - ' ~(1+ Im+ 1') 

and the result follows as in the discrete case. 

One of the more interesting applications of Theorem 2 is the result of Weidmann 
[18], [19], 1201 that if V = Vl +V2, where Vl E L1 and Vz is of bounded variation with 
V ~ ( X )+ 0 at infinity, then -&+v(x) has purely a.c. spectrum on (0, oc).A key to 
his argument is a proof that for any E > 0, solutions are bounded. He does this by 
noting one can suppose V2 is C1 with V,/ E L1 (by adjusting the breakup) and that 
if K(x)  = ( u ' ) ~+ ( E  - V2)u2, then K1(x) = 2Vlu'u - 2V,/u2 5 C(IVl 1 + IV,/j)K(x) 
for x large. Here we'll prove a result of MAt6 and Nevai [13] using a discrete analog 
of Weidmann's approach: 

Theorem A.1. Let vn be a sequence on {1,2,. . . ) so that u, + 0 and 

Then, the operator h of (1.1)has purely absolutely continuous spectrum on (-2,2). 

Remarks. 1. (A.l) implies lim vn exists so by adding a constant, it is no loss to 
suppose vn -+ 0. 

2. If u, E 11,then (A.l) holds so we don't need to consider sums as Weidmann 
does in the continuous case. 

Proof. Given a solution of hu = Eu,  let 

Kn  = u2+l + u; + (u, - E)unun+l 

Then 
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SO 

( A 4  IKn+l - KnI I 1un - un+l I I~nun+lI. 

Suppose now E E (-2'2).  Then for n 2 some No, 2 - Iv, - El > 6 > 0. For 
such n ,  

so (A.2)becomes 

and for all n 2 No: 

The product is convergent by ( A . l ) .  

By using the remark at the end of Section 1, Theorem A.l extends to the operator 
(2.7)so long as (2.8)holds and 

We merely define Kn by 

Kn = a ,+l~;+~+anuE + (b, - E)enun+l. 

This is related to results of [6]. 

APPENDIX2: EIGENFUNCTIONSFOR W E I D M A N N ' ST H E O R E M  

We want to further elucidate Weidmann's theorem by showing how to actually 
find the asymptotics of the eigenfunctions. We'll suppose V ( x )= V l ( x )+ V2(x)  
with Vl E L1 and V2 a C 1  function with V2/E L1 and & 4 0 at infinity. We claim: 

Theorem B.1. Fix E = k2 > 0 with k > 0. Then every solution of 

is bounded; indeed, there exist a,b so that 

lu(x)- au+(x)- bu(x)I -+ 0, 

lul(x)- iaku+(x)+ ibku- (x)I -+ 0, 

where 

u* ( x )= exp (*i / d-1 dx)  

and xo is chosen so large that V2(x)< k2 for x > xo. 
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Remarks. 1. Since (k2- v ~ ( x ) ) - ' / ~+ kP1I2,we could use the WKB form instead 
of (B.l),  but the form (B.l) is what enters naturally. 

2. This theorem and proof can be regarded as specializations of arguments in 
Hinton-Shaw [lo]. 

Proof. Define u* by (B.l).  Note that u* are C2  and 

(B.2a) -uz + (V(x) - E)u* = F*u*, 

where 

(B.2b) 
i

F*(x) = Vl (x) iz5V; (x)(k2-&(x) ) -"~  

is in L1 near infinity. 
Let W(x) be the Wronskian of u+ and u-. Clearly, W(x) = 2ik + o(1). Define 

a(x),b(x) by the equations (variation of parameters) 

u'(x) = a(x)u: (x) + b(x)uL (x). 

A straightforward and standard calculation (see prob. 98 on pg. 395 of [15])shows 
that a ,  b obey the equations 

where 

Since this is in L', standard arguments show that lim (;::;) = (A) exists. 
k-m 

If, moreover, V obeys (1.3) (a mild restriction), this and Theorem 1 imply that 
gac(H) = [O,m), gsing n (0,oo) = 0. 

NOTE ADDED IN PROOF 

Subsequent to our work, S. Jitomirskaya and Y. Last [Phys. Rev. Lett. 76 
(1996), 1765-1769 and papers in preparation] have shown how to get explicit m-
function bounds in the general situation covered by Gilbert-Pearson theory. 
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