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ABSTRACT. We study the eigenvalue spectrum of Dirichlet Laplacians which 
model quantum waveguides associated with tubular regions outside of a 
bounded domain. Intuitively, our principal new result in two dimensions as- 
serts that any domain R obtained by adding an arbitrarily small "bump" 
to  the tube a0 = R x ( 0 , l )  (i.e., 2 no, R C W2 open and connected, 
R = Ro outside a bounded region) produces a t  least one positive eigen- 
value below the essential spectrum [7r2, m) of the Dirichlet Laplacian -A:. 
For /R\Ro/ sufficiently small ( 1 .  / abbreviating Lebesgue measure), we prove 
uniqueness of the ground state En of -A: and derive the "weak coupling" 
result En = 7r2 - + 0(/R\C20/3) using a Birman-Schwinger-typeT ~ / Q \ R O / ~  
analysis. As a corollary of these results we obtain the following surprising 
fact: Starting from the tube flo with Dirichlet boundary conditions at aRo, 
replace the Dirichlet condition by a Neumann boundary condition on an ar- 
bitrarily small segment (a,  b) x (1). a < b, of aRo. If H(a ,  b) denotes the 
resulting Laplace operator in L ' (R~) ,  then H(a ,  b) has a discrete eigenvalue in 
[7r2/4,7r2) no matter how small lb - a1 > 0 is. 

Our goal in this paper is to study the bound state spectra of the Dirichlet Lapla- 
cian -A: for open regions R c Rn which are tubes outside of a bounded region 
(quantum waveguides). (Following the traditional notation in quantum physics, we 
denote the Laplacian by -A as opposed to A in the following.) In particular, let 
RocR2 be defined by 

Ro=R x (0 , l ) .  

Consider open connected sets R such that: 
(i) For some R > 0, R n{x E R2 I 1x1 > R)  =Ron{x E R2 I 1x1 > R). 

(ii) R, cR, R, #a. 
Because of condition (i), 

(1) aess(-~:) = fless(-Ag,) = [.ir2, 00). 

Then one of our main goals will be to prove 
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Theorem 1.1. If R obeys (i), (ii), then -A: has at least one eigenvalue in (0, 7r2). 

Actually, the eigenvalue lies in [&,n2) since 0 C B x (-R, R) implies 

D = B.7r2inf spec(-a:) > inf ~pec(-A,,(-~,R,) 

We will focus especially on the particular case 

where 

(2) Rx = {(x, y) E IK2 I 0 < y < 1+ Xf (x)) 

and f is a Cm(B) function of compact support with f > 0. Since inf spec(-A:) 
decreases as R increases and every R obeying (i), (ii) has Ro c Rx c R for some f ,  
it suffices to prove Theorem 1.1 for Rx of the form (2). Indeed, it suffices to prove 
the result for X sufficiently small. 

We will prove a much more detailed result in these Rx regions for X small enough. 
Actually, we can replace f > 0 by the weaker requirement that SRf (x) dx > 0. 

Theorem 1.2. Let Rx be given by (2) where f is a C r ( R )  function with S, f (x) dx 
> 0. Then for all small positive A, -A% has a unique eigenvalue E(X) in (0, n2) ,  
it is simple, E(X) is analytic at X = 0, and 

This is the main result of this paper, which we'll prove in Section 2 using a 
calculation in the appendix. The technique used in our proof is closely patterned 
after the theory of bound states of -&+XV(x) for X small as developed in [2], [ lo],  

1111,[l4]. The key idea there is that (- &+k2))-I has a well-behaved limit as k I 0 
except for a divergent rank one piece. In exactly the same way, (-Ago -7r2 +k2)-I 
has a nice limit as k I 0 except for a rank one piece. 

Theorem 1.1 (or 1.2) leads to the following remarkable result which, roughly 
speaking, asserts that if on an arbitrarily small segment in the boundary dRo of 
Ro the original Dirichlet boundary condition is replaced by a Neumann boundary 
condition, at least one additional eigenvalue is instantly created in the interval 
(0, r 2 ) .  

Corollary 1.3. Let Ro = R x (0 , l )  and denote by H(a ,  b) in ~ ~ ( 0 0 )the Laplacian 
on Ro with a Neumann boundary condition on the segment (a, b) x {I),  -cm < a < 
b < cm, and Dirichlet boundary conditions on dRo\{(a, b) x {I)). Then H(a ,  b) has 
a discrete eigenvalue in [$,n2)  no matter how small b - a > 0 is. 

Proof. Clearly H(a ,  b) 2 0 and a,,, (H(a ,b)) = [7r2, cm). Enlarge Ro to Rx of the 
type (2) with X > 0 sufficiently small and some 0 I f E Cm(B) with supp(f) = 
[a,b], f > 0 on (a, b). By Theorem 1.1, -A% has at least one eigenvalue Ex E 
(0,7r2). Next, decouple Ro and Rx\Ro by a Neumann boundary condition along 
the segment (a, b) x {I). Denoting the resulting Laplace operator by HR,, we 
obtain the direct sum decomposition HR, = H(a ,  b) @ -E(a,  b) with respect to 
L2(Rx) = L2(Ro)@ L2(Rx\Ro), where -L(a,  b) has Dirichlet (resp. Neumann) 
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boundary conditions on dRx\dRo (resp. (a,b) x (1)). By Neumann decoupling 
(see, e.g., [12],p.270) 

0 5 inf ~ ~ e c ( ~ ~ , )5 inf spec(-a:,) 5 Ex < a 2 .  

Choosing f appropriately such that inf spec(-A(a, b)) > a2 (e.g., choose f such 
that Rx\Ro is a smoothed out rectangle of the type (a,b) x (1 ,1+ c) with 0 < c << 

I b - al), one obtains 

0 < inf spec(H(a,b)) < inf spec(-a:,) 5 Ex < a2 

That actually inf spec(H(a,b)) 2 $ follows as in the proof of Corollary 1.4. 

We note that the analogous result containing two such segments (a,b) with 
Neumann boundary conditions placed symmetrically with respect to the axis R x 
{1/2) can be inferred from Lemma 3.2 in [5]. That paper also contains a variety of 
spectral results on acoustical waveguides (i.e., Neumann Laplacians as opposed to 
our Dirichlet Laplacians) using trial function techniques. 

We have a number of remarks concerning Theorem 1.2: 
(1) X JR f (x) dx is exactly the area of Rx\Ro. 
(2) In thinking about the higher-dimensional analogs, one needs to realize there 

are two independent dimensions in the above examples: the dimension of the cross 
section and the number of unbounded dimensions. In general, one can consider 
K c Rn, a bounded connected open set, and Ro = IRe x K. With minor changes, 
our analysis extends to general (n,K )  so long as 1= 1,that is, for Ro a long tube. 

(3) In the notation of point (2), the results are e dependent. For e = 2, that 
is, Ro a long slab, there are still weakly coupled states, but as in [14],the binding 
is only ~ ( e - ~ / ~ ) .For 1 2 3, there will be no bound state if too small a bump is 
added. 

(4) If one uses the one-dimensional Schrodinger operator [14] as a guide, one 
might guess that if J, f (x) dx = 0, then -AgA has a bound state for all sufficiently 
small A; but since -A:, has second-order terms not found in the one-dimensional 
case, that is not totally clear. 

(5) However, if J, f (x)dx < 0, then by our analysis, -A& has no spectrum in 
[O, r 2 )  if X is too small. 

(6) Since Rx isn't monotone if f isn't positive, we cannot be sure that if f is 
somewhere negative then has bound states even if Jpgf (x)dx > 0. Indeed, if 
f is very close to -1 on a long region, we expect that -A&=1 has no bound states. 

(7) We owe to Mark Ashbaugh the following observation: 

Corollary 1.4. Let fi = {R x (0,2))\{R x (1))U {(a,b) x {I)), -cc < a < b < cc-
(i.e., fi consists of two copies of Ro with the boundary between them removed in 
(a,b) x (1)) and denote by -A: the associated Dirichlet Laplacian in ~ ~ ( f i ) .Then 

-A: has a discrete eigenvalue in [$,a 2 )  independently of the size b - a > 0 of 
the slit (a,b) x (1). 

Proof. fi has reflection symmetry under y -+ 2 - y. Thus, -A: is a direct sum 
of operators even and odd under this symmetry, and so -AX r H(a,  b) @ -Ago, 
where H(a ,  b) is the operator in Corollary 1.3 (since even is equivalent to Neumann 
and odd to Dirichlet boundary conditions) and r abbreviates unitary equivalence. 
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Since aess(H(a,b)) = aess(-A:o) = [n2,co)= u~,,(-A;), it suffices to prove that 

-A; has spectrum in [$,n2). 

Let 6 = Ro LJ {(x,y) E R2 / a < a: < b, 0 < y < 2). Then 6 c fi, so 
inf spec(-AD) 5 inf spec(-A;) < r2by Theorem 1.1. The lower bound then 

Q-

follows from R c R x (0,2). 

Remark 1.5. An alternative proof of Theorem 1.1 can be based on the following 
trial function argument. Without loss of generality assume that R contains a small 
neighbourhood of the point (0,l).  Thus there are a,  b > 0 such that the triangle 
spanned by the points (-a, I ) ,  (a, 1) and (0 ,1+ b) is in R. Define on R 

1x1 > a, 0 < y < 1, 

(4) Gp,a(x,Y) = 1 x / < a ,  o < y i l + P ( l - ! ) ,  
otherwise 

where 0 < p < b and S > 0. This trial function certainly vanishes on 80 and at co, 
and it is in the form domain Q(-A:). By a straightforward calculation we obtain 

If we first choose p and then 6 sniall enough, we get 

E(Gp,6)< n2 = inf aess(-A:). 

Since inf spec(-A:) < ~ ( 4 ~ , 6 )and -A: > 0, this proves Theorem 1.1. Note that 
sin(ny) in (4) represents the function u(x,y) in (7) used prominently in Lemma 2.2 
and in the proof of Theorem 1.2. 

Spectral properties of quantum waveguides have received considerable attention 
recently. While a complete bibliography is beyond the scope of this paper, the 
interested reader is referred to [I], [3], [4], [5], [6], [7], [8], [13] and the literature 
cited therein. In particular, a weak coupling mechanism different from the one 
discussed in the present paper, based on a1;bitrarily small bending of tubes, has 
been studied in detail in [4] and [13]. 

Without entering into further details, we remark that Theorem 1.1 admits a 
variety of extensions. For instance, R and R0 need not coincide outside a sphere of 
radius R as assumed in our condition (i); R only needs to approach Ro asymptot-
ically (still assuming condition (ii)) since equality of the essential spectra of -A$ 
and -A& as recorded in (1) is the crucial property in question. In addition, R 
could have various further branches running off to infinity as long as the asymptotic 
width of these branches is less than or equal to one in order to guarantee the valid-
ity of (1). Moreover, combining our results with the ones in [4] and [13] produces 
the same ground state effect for a bent tube of constant width one (and again ad-
ditional bent branches running off to infinity of asymptotic widths not larger than 
one can be accommodated). 

$2. WEAKCOUPLING ANALYSIS 

We'll study -A& by a perturbation method. Since L2(Rx)is X dependent, it 
is difficult to use perturbation theory directly, so we'll map all the operators onto 
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the same space. Let Ux : L2(Ox) -+ ~ ~ ( S l o )be given by 

(Ux$)(x, Y)= . J ~ $ ( x '(1 + Xf (x))Y). 

Then Ux is unitary and 

acts in L2(00).We subtract r2so that ce,,(Hx) = [0,m). 
A straightforward calculation found in the appendix (cf. (A.6)) proves that 

where each Ai and Bi is a first-order differential operator with coefficients which 
have compact support and (g is a CW function chosen such that g E 1on supp f )  

d
(i) AT=2f(x)-,

dy 

(ii) A; = f "(x), 

(we'll see below that to leading order only ATBl matters). 
Rewrite (5) as follows. Define C(X), D : L2(00) -+ L2(00)8 @' by 

(Dp)i = Bip, i = 1 ,  . . . ,8. 

Then (5) becomes 

H~= H~+ XC*(1)D. 

At this point we can apply Birman-Schwinger-type techniques (see, e.g., [12], 
Sect. XIII.3). 

Lemma 2.1. Let k E C, Re k > 0 and X E R. Then -k2 i s  an eigenvalue of HAzf 
and only if 

XD(Ho + k2)- lc*  EQA 

has -1 as an ezgenvalue. 

Proof. If Qx$ - -$, then -X(Ho+k2)-'C*$ E p is seen to satisfy H x p  = -k2p. 
Conversely, if H x p  = -k2p, then p E Q(Hx) cD(D), so @ = D p  is in L2(00)and 
Qx$ = -$. 

Lemma 2.2. Let h be a Cmfunction of compact support i n  R. Then 

where u is the function 
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and A ( k )  is a bounded operator-valued function of k ,  which can be analytically 
continued from { k  E C I Re k > 0 )  to a region that includes k = 0 .  Indeed, even 
(Ho + I ) ~ / ~ A ( ~ ) ( H ~+ 1)' j2 has an analytic continuation into such a region. 

Moreover, (HO+ I )  l I 2 ~ ( k )( H O+1)  is bounded uniformly i n  { k  E C I 1 Arg kl < 
7r/3) U { a  small disk about k = 0 )  ($  can be replaced by any number strictly less 
than 5). 
Proof. Let 7-lo c L~( 0 0 )  be the space of L' (ao)functions of the form p ( x )  sin(7ry), 
sin(7ry) being chosen as the lowest eigenfunction of ( - $ ) D  Let Po be the pro-
jection onto KO. Then ( H o+ k2)- ' (1  - Po) has an analytic continuation into the 
region { k  E C I -k2 E C\[37r2, c o ) ) ,  since the lowest point in the spectrum of 
H o ( l  - Po) j' ( 1  - P o ) ~ 2 ( f l o )is 37r2. 

On the other hand, h ( H o+ k 2 )-'Poh has the explicit integral kernel 

(2k)-1h(x)h(x1)u(y)u(y1)e-k~x~x'~= a1 ( k )  +a z ( k ) ,  

where a l ( k )  is obtained by replacing e-l"Ix-"'l by 1and a 2 ( k )by using e-klx-x'i - 1 
in its place. The first term is the explicit rank one piece in (6) and the second term 
is analytic as a Hilbert-Schmidt kernel at k = 0.  

It is easy to modify this argument to accommodate the extra factors of ( ~ ~ + l ) l / ~  
and prove the boundedness. 

Proof of Theorem 1.2. Consider first the operator on L2(f10)8 C8: 

Lo = (C(X = O ) U ,  . )Du, 

where u is given by (7). Then Lo is a rank one operator, so it has a single eigenvalue 
at 

(8) eo = T r ( L o ) .  

But Ci(0)  = 0 for i = 4 , .  . . , 8 ,  B3u = 0 ,  and ( A 2 u ,B ~ u )= 0 since JR f l ' ( x )  d x  = 0.  
It  follows that 

= -27r2 f ( x )dx .  

Let k = XC.  Then by Lemma 2.2, 

has the form 

where 
(i) L A  is rank one and L A  = Lo +X i .  

(ii) M (A,!) = D A (  A, C)C*,where A is given by Lemma 2.2 and h is chosen such 
that h - 1in a neighborhood of supp f .  

By Lemma 2.2, we are interested in when Q(X,!) has -1 as an eigenvalue for 
A > 0 and e > 0.  Since M is uniformly bounded in X on a sector about (0 ,co ) ,  
this can happen where X is small if is near -1, that is, 1is near > 0 since 
JPSf ( x )d x  > 0 by hypothesis. 
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For such C and X small, Q(X,C) has exactly one eigenvalue near -1, call it E(X,C), 
which by eigenvalue perturbation theory (191, Ch.2, 1121, Ch.XI.1) is jointly analytic 
in A. C. Let 

Since 2CQ(X,C)Ix=ois independent of C, 

= 0 and so - = 2 # O .  

It follows by the implicit function theorem that for X sufficiently small, there is 
an analytic function C(X) = - + O(X) so that for X > 0 and C in the sector 
lArg Cl < 5,-1 is an eigenvalue of Q(X,C) if and only if C = C(X). Since HAfor X 
real has only real eigenvalues, C(X) must be real for X > 0. Thus HAhas a unique 
eigenvalue, e(X), in (-co,0), given by e(X) = -A2 (- %)2+ O(X3),as claimed. 

It is a pleasure to thank Mark Ashbaugh and Thomas Hoffmann-Ostenhof for 
numerous discussions on this subject. We also thank Brian Davies for making us 
aware of reference [ 5 ] .  W. B. is indebted to the Department of Mathematics of 
the University of Missouri, Columbia for the hospitality extended to him during a 
stay in the spring of 1994. Furthermore, he gratefully acknowledges the financial 
support for this stay by the Technische Universitat Graz, Austria. 

We use coordinates (x,y) on R0 and (s,u) on Rx. Thus Ux becomes 

ux : L ~ ( R ~ )-+L ~ ( R ~ )  

(A.1) 4 ( s , ~ )  ++ $(x, Y) = J G 3 7 G 3 4 ( x ,  (1+ ~f(x))Y), 

The coordinate transformation is 

The form associated with -Ag, is given by 

where Q(-AEA) = H ~ ' ~ ( R ~ )is the usual Sobolev space (i.e., the completion of Cp 
under the norm 11. / l o  = (IlV. 1 1 2  + 11.112)1/2).By unitary equivalence, the quadratic 
form associated with HAis 

UAQ(-AE,) x uxQ(-A,g\)q g A  ' 
-+ c 

(A.4) (v,$1 ++ q:, ( ~ ~ l v ,uyl$) .  

The form domain of & is u ~ H ~ ' ~ ( R ~ )= UxC,"O(Rx),where the bar denotes com-
pletion under the norm 1 1  . / ,= (qEA(., . )  + 1 1  . l12)1/2. 
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Next we calculate the quadratic form qg ((P,+) for (P, + E CT(flO). We use the 
shorthand c(x) = 1+ Xf (x) and use subscripts to denote partial derivatives. 

qa (P, $1 = (UY'(P, u ~ ' + )  

= J(asc(s)-l'2p(s. 3)) ( % ~ ( s ) - l / ~ + ( s .  dsdu 

nx 

+ J(&'c(s)-ll2 (P(%$J) &I)) ( d t ' ~ ( ~ ) - ~ I ~ $ ( s ,  dsdu 

nx 
1 c' (x) ---- yc'(.) ---

= J{[-2 V(X,Y)+ V ~ ~ ( X . Y )  vy(xIy)]
4x1  

no 

By partial integration we get the operator 

Since we assumed f E CT(R) ,  clearly C ~ ( R o )  c =D ( ~ A )WAD(-A&). 
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Actually, UxC," ( ax )= C,"(a0). From (A.5) we infer  that the norm 1 1  . 1 1 ,  is 
equivalent to the norm 1 1  . I j o ,  i .e . ,  
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