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By studying the integrated density of states, we prove the existence of Lyapunov
exponents and the Thouless formula for the Schro� dinger operator &d 2�dx2+cos x&

with 0<&<1 on L2[0, �). This yields an explicit formula for these Lyapunov
exponents. By applying rank one perturbation theory, we also obtain some spectral
consequences. � 1996 Academic Press, Inc.

1. INTRODUCTION

Our goal in this paper is to prove Lyapunov behavior and compute a
Lyapunov exponent for the one-dimensional half-line Schro� dinger operator

H&=&
d 2

dx2+cos x& x # [0, �) (1.1)

with 0<&<1.
It is clear that H& is regular at 0 and is limit point at infinity. (For the

definition of limit point, see [8, 15].) Therefore, for each % # [0, ?), H& has
a unique self-adjoint realization on L2[0, �) with boundary condition at
0 given by

u(0) cos %+u$(0) sin %=0

which will be denoted by H %
& .

In the spectral theory of Schro� dinger operators, most work has concen-
trated on the potential V(x), either V(x) � 0 as |x| � � or V(x) is periodic
or almost periodic. Such models have been investigated particularly well.
Comparatively new are the models with oscillating but not periodic or
almost periodic potentials. Due to recent discoveries of Behncke [2],
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Kirsch et al. [6], and Stolz [12, 13], it is clear that some such models may
yield very interesting spectra. As one of his particular examples, Stolz has
studied the spectral properties for (1.1) in [13]. Let _(H), _ac(H), _sing(H),
_sc(H), and _pp(H) denote the spectrum, absolutely continuous spectrum,
singular spectrum, singular continuous spectrum, and pure point spectrum
resp. for H. Then from Stolz's paper, we know that _(H&)=[&1, �),
_ac(H&)=[1, �), and _sing(H&)=[&1, 1]. In fact, from an unpublished
result of Kirsch and Stolz (see [6]), we also know that H %

& has pure point
spectrum in [&1, 1] for almost all boundary conditions %.

We already see that this model has some subtle and fascinating spectral
properties, especially for E # (&1, 1). We will continue working on this
model. In particular, we will prove Lyapunov behavior and compute a
Lyapunov exponent formula.

We know that the Lyapunov exponent is an important tool in the spec-
tral theory for one-dimensional Schro� dinger operators with almost periodic
or random potentials. In [10, 11], the rank one perturbation theory shows
that Lyapunov behavior can also be used to study Schro� dinger operators
with deterministic potentials. For almost periodic or random potentials, we
have the subadditive ergodic theorem to guarantee the existence of the
Lyapunov exponent; but for deterministic potentials, it's often difficult to
prove Lyapunov behavior. In this paper, we first study the integrated den-
sity of states in detail, then we directly study the existence of the Lyapunov
exponent and prove the Thouless formula for a.e. E (with Lebesgue
measure).

Now, our formula for #(E), E # (&1, 1), which we prove as an explicitly
given set of measure 0, is strictly positive. It is known (see [3]) that since
(&1, 1)/_(H&), the complement of [E | #(E) exists and is >0] is a dense
G$ in [&1, 1]. By our construction, this dense G$ has measure zero;
indeed, it has Hausdorff dimension zero.

We are unaware of any other explicit (nonrandom) Schro� dinger operators
with a computable positive Lyapunov exponent. The explicit formula (3.22)
is quasiclassical.

2. THE INTEGRATED DENSITY OF STATES

To prove the Thouless formula, we need to study the integrated density
of states, k(E), and the existence of the Lyapunov exponent. Also, we need
information on how rapidly k(l )(E) converges to k(E) to establish the
existence of the Lyapunov exponent. So, we first study the main technical
object, the integrated density of states for equation (1.1). We will prove a
formula for the integrated density states, and more importantly, we will
estimate how fast k(l )(E) converges to k(E).
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The basic idea to compute the integrated density of states uses the standard
Dirichlet�Neumann bracketing technique. Since the potentials in our problem
are slowly oscillating, Dirichlet�Neumann bracketing works perfectly.

First, let us introduce some notation and definitions. In the following,
when we write H& , we always mean the Schro� dinger operator given by
(1.1). Define

L=S&(l )=(2?l )1�&, 0l=[S&(l&1), S&(l )], for l=1, 2, ... .

0l is the l th potential well for the potential V(x)=cos x& (0<&<1). Let
HD(0) (resp. HN(0)) denote the self-adjoint operator H0+V(x) on L2(0)
with Dirichlet (resp. Neumann) boundary conditions, where H0=&2.
When 0=(0, L), we use HD(L) (resp. HN(L)) to denote HD(0), (resp.
HN(0)). In this case, we use HDN(L) (resp. HND(L)) to denote the self-
adjoint operator H0+V(x) on L2(0, L) with Dirichlet (resp. Neumann)
boundary condition at 0 and Neumann (resp. Dirichlet) boundary condi-
tion at L.

Definition. For any self-adjoint operator A, define

N(E, A)=dim P(&�, E)(A)= :
Ek<E

1,

where P0(A) is the spectral projection for the operator A, and [Ek] are the
eigenvalues of A with E1�E2�E3� } } } .

Now, let Hbc(S&(l )) be any self-adjoint realization of H& on L2(0, S(l ))
with some given boundary conditions at 0 and S&(l). Let Nbc(E, l )=N(E,
Hbc(S&(l ))).

Definition. Let Nbc(E, l ) be as above, then we define

k(l )(E)=
1

S&(l )
Nbc(E, l ) and k(E)= lim

l � �
k(l )(E).

k(E) is called the integrated density of states for (1.1).

We will show that in the above definition, the limit k(E) exists and is
independent of the choice of boundary conditions.

By standard Dirichlet�Neumann bracketing (see [9]),

:
l

j=1

N(E, HD(0j))�N(E, HD(L))�N(E, HN(L))

� :
l

j=1

N(E, HN(0j)). (2.1)
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By explicit construction and counting in boxes, we have

Lemma 2.1. If we let ND(E; a, b) (resp. NN(E; a, b)) denote the dimen-
sion of the spectral projection P(&�, E] for &2D (resp. &2N) on L2(a, b).
Then for E<0, we have

ND(E; a, b)=NN(E; a, b)=0 (2.2)

and for E�0, we have

}ND(E; a, b)&
- E

?
(b&a) }�1 (2.3)

}NN(E; a, b)&
- E

?
(b&a) }�1. (2.4)

First, let us estimate N(E, HD(0j)) and N(E, HN(0j)). Let ak # 0j and
bk=ak+1 such that �k [ak , bk]=0j and bk&ak= j :, where :>0
(depending on &) will be determined later. Let I ( j)

k =(ak , bk) and

VD
k =sup[V(x) | x # [ak , bk]], V N

k =inf[V(x) | x # [ak , bk]].

Define BD(I ( j)
k )= &2D(I ( j)

k )+V D
k and BN(I ( j)

k )=&2N(I ( j)
k )+V N

k , then

0�HD(I ( j)
k )#&2D(I ( j)

k )+V(x)�BD(I ( j)
k )

and

0�BN(I ( j)
k )�&2N(I ( j)

k )+V(x)#HN(I ( j)
k ).

Obviously,

N(E, BD(I ( j)
k ))�N(E, HD(I ( j)

k )), N(E, HN(I ( j)
k ))�N(E, BN(I ( j)

k ))

and by Dirichlet�Neumann bracketing,

N(E, HD(0j))�N \E, HD \. I ( j)
k ++=:

k

N(E, HD(I ( j)
k ))

�:
k

N(E, BD(I ( j)
k )) (2.5)

and

N(E, HN(0j))�N \E, HN \. I ( j)
k ++=:

k

N(E, HN(I ( j)
k ))

�:
k

N(E, BN(I ( j)
k )). (2.6)
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So, we only need to estimate N(E, BN(I ( j)
k )) and N(E, BD(I ( j)

k )). But by
(2.2) and (2.4),

N(E, BN(I ( j)
k ))=NN(E&V N

k ; ak , bk)

={
- E&V N

k

?
(bk&ak)+C0(k), if E�V N

k ,

0, if E<V N
k

where |C0(k)|�1.
Thus, if we use the notation that [ f (x)]+=max[0, f (x)], then we have

}N(E, BN(I ( j)
k ))&

[E&V N
k ]1�2

+

?
(bk&ak) }�1. (2.7)

But

1
?

[E&V N
k ]1�2

+ (bk&ak)&
1
? |

bk

ak

[E&V(x)]1�2
+ dx

=
1
? |

bk

ak

[[E&V N
k ]1�2

+ &[E&V(x)]1�2
+ ] dx =

def J. (2.8)

Since

[[E&V N
k ]1�2

+ &[E&V(x)]1�2
+ ]2

�|[E&V N
k ]1�2

+ &[E&V(x)]1�2
+ | [[E&V N

k ]1�2
+ &[E&V(x)]1�2

+ ]

�
&

a1&&
k

(bk&ak) for x # I ( j)
k

by Schwartz inequality, we have,

|J|�
1
?

(bk&ak)1�2 _|
bk

ak

[[E&V(x)]1�2
+ &[E&V N

k ]1�2
+ ]2 dx&

1�2

�
- &
?

a&1�2(1&&)
k (bk&ak)3�2

� j (3�2) :&(1�2)((1&&)�&). (2.9)

Therefore, by (2.7)�(2.9), we have

}N(E, BN(I ( j)
k ))&

1
? |

bk

ak

[E&V(x)]1�2
+ dx }� j (3�2) :&(1�2)((1&&)�&)+1.
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Thus, by summing over k and using (2.6), we have

N(E, HN(0j))�
1
? |

S&(l )

S&(l&1)
[E&V(x)]1�2

+ dx

+C1 j (1�2)(:+((1&&)�&))+C2 j ((1&&)�&)&: (2.10)

where C1 and C2 are independent of j.
Similarly, if we use (2.3) and (2.5) instead of (2.4) and (2.6), then we have

N(E, HD(0j))�
1
? |

S&(l )

S&(l&1)
[E&V(x)]1�2

+ dx

&C1 j (1�2)(:+((1&&)�&))&C2 j ((1&&)�&)&: (2.11)

Now, by summing over j in (2.10), (2.11) and using (2.1), we have

1
? |

S&(l)

0
[E&V(x)]1�2

+ dx&C1 j (1�2)(:+((1&&)�&))+1&C2 j ((1&&)�&)&:+1

�N(E, HD(L))�N(E, HN(L))

�
1
? |

S&(l )

0
[E&V(x)]1�2

+ dx+C1 j (1�2)(:+((1&&)�&))+1+C2 j ((1&&)�&)&:+1.

So, if we take := 1
3 (1&&)�&, then we have

1
? |

S(l )

0
[E&V(x)]1�2

+ dx&Cl (2�3)((1&&)�&)+1

�N(E, HD(L))�N(E, HN(L))

�
1
? |

S(l )

0
[E&V(x)]1�2

+ dx+Cl (2�3)((1&&)�&)+1 (2.12)

where C=C1+C2 .
Also, we have the following estimate:

1
S&(l ) |

S&(l )

0
[E&V(x)]1�2

+ dx

=
1

&(2?l )1�& |
2?l

0
y(1&&)�&[E&cos y]1�2

+ dy (x&= y)

=
1

&(2?l )2 :
l

k=1
|

0

&2?
(z+2k?)(1&&)�& [E&cos z]1�2

+ dz ( y=z+2k?)

=
1

2? |
?

&?
[E&cos x]1�2

+ dx+O(l&1).
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Thus, if we denote

k (l )
N (E)#

1
S(l )

N(E, HN(L)),

then by the above estimate and (2.12), we have

}k (l)
N (E)&

1
2?2 |

?

&?
[E&cos x]1�2

+ dx }=O(l&(1�3)((1&&)�&))+O(l&1). (2.13)

Since variations of boundary condition are rank one perturbation (see
[10]),

|N(E, HN (L))&N(E, Hbc(L))|�2, (2.14)

where Hbc(L) is defined by any other self-adjoint boundary condition.
Thus by (2.13) and (2.14), we have proved the following:

Theorem 2.2. The integrated density of states for the Schro� dinger
operator (2.1) exists, which is independent of the boundary conditions, and is
given by

k(E)=
1

2?2 |
?

&?
[E&cos x]1�2

+ dx.

Moreover, we have the following estimate:

|k(l )(E)&k(E)|=O(l&}(&)) (2.15)

where

}(&)=min {1
3

(1&&)
&

, 1= . (2.16)

3. THE THOULESS FORMULA AND LYAPUNOV EXPONENT

Now, we begin to study the Lyapunov exponent by first proving the
Thouless formula which relates the Lyapunov exponent to the integrated
density of states. In [1], the Thouless formula is proved for almost periodic
potentials and random potentials. To prove the Thouless formula in our
case, we can closely follow the proof given in [1] for Schro� dinger
operators. However, we will prove the existence of the Lyapunov exponent
by using the information on how fast kl(E) converges to k(E) which is
given in Theorem 2.1.
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First, we define the transfer matrix for the Schro� dinger operator (1.1) as
follows. Let u(x, a, E), v(x, a, E) (x�0, a�0) solve the equation &,"+
(V(x)&E) ,=0 with the boundary conditions given by u(a)=0, u$(a)=1;
v(a)=1, v$(a)=0. Then the transfer matrix is defined by

Ta, x(E)=\
v(x, a, E) u(x, a, E)

+ . (3.1)�v(x, a, E)
�x

�u(x, a, E)
�x

In particular, when a=0, we use Tx(E) to denote T0, x(E).

Definition. For a given E, if #(E)=limx � � x&1 ln &Tx(E)& exists,
then we say that for the energy E, H has Lyapunov behavior, and #(E) is
called the Lyapunov exponent.

To give the Thouless formula, we need to define the resonance set first.
In Section 2, we defined the operators HD(L), HN (L), HDN (L), and
HND(L). Now, let [Ek(l, D)], [Ek(l, N)], [Ek(l, DN)], and [Ek(l, ND)] be
the corresponding eigenvalues.

Definition. For each given & # (0, 1), let =& be a fixed small number
such that =&<}(&), where }(&) is defined by (2.16). Then the resonance set,
R& , for the operator H& is defined by

R&=RD _ RN _ RDN _ RND , (3.2)

where

RD= .
�

d=1

,
�

m=1

.
�

n=m

.
k

[E # [&d, d] | |E&Ek(n, D)|<exp(&n}(&)&=&)].

(3.3)

RN , RDN , and RND are defined by replacing [Ek(l, D)] in (3.3) by
[Ek(l, N)], [Ek(l, DN)], and [Ek(l, ND)] resp.

Remark. We conjecture that instead of (3.2) and (3.3), the resonance
set in [&1, 1] can be defined by

R&= ,
�

m=1

.
�

n=m

.
k

[E # [&1, 1] | |E&E (n)
k |<exp(&nmin[(1&&�2&), 1�2])],

where [E (n)
k ] are the eigenvalues of H&=H0+V(x) on the n th potential

well, [(2n?&2?)1�&, (2n?)1�&], with Dirichlet boundary conditions. We
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believe that this is the reasonable definition of the resonance set. However,
in our proof of the Thouless formula, we need to use the resonance set
defined by (3.2) and (3.3).

From the definition, it is easy to show that

Theorem 3.1. Let R& be the resonance set for H& which is defined by
(3.2) and (3.3) and let dimH denote the Hausdorff dimension. Then

|R& |=dimH R&=0.

Now, we are ready to prove one of our main results.

Theorem 3.2 (Thouless formula). Let H& be the Schro� dinger operator
given by (1.1). Let #0(E)=[max(0, &E)]1�2 and k0(E)=?&1[max(0, E)]1�2.
Then for any E � R& , where R& is defined by (3.2) and (3.3), we have

#(E)=#0(E)+|
�

&�
ln |E&E$| d(k&k0)(E$), (3.4)

where #(E) is the Lyapunov exponent for H& , and k(E) is the integrated
density of states for H& .

We prove this theorem by proving the following series of lemmas. The
first three lemmas are already given in [1], so we will not give a proof for
these results here.

Lemma 3.3 [1]. For a.e. E,

lim
l � �

l&1 ln |u0(l, E)|=#0(E), (3.5)

the limit being through the integers.

Lemma 3.4 [1]. Let Ek(l ) be the eigenvalue of H& on L2[0, S&(l )] with
vanishing boundary conditions, and let E (0)

k (l )=(?k�S&(l ))2 be the corre-
sponding eigenvalue of H0 . Then

|Ek(l)&E (0)
k |�&V&�=1. (3.6)

Lemma 3.5 [1]. For fixed l, we have that

u(S&(l ), E)
u0(S&(l ), E)

= `
�

k=1
_ E&Ek(l )

E&E (0)
k (l )& . (3.7)
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From [1], we also know that

lim
M � � _|k(E$)�M

ln |E&E$| dk(E$)&|
k0(E$)�M

ln |E&E$| dk0(E$)&
=|

�

&�
ln |E&E$| d(k&k0)(E$). (3.8)

Lemma 3.6. For E � RD , we have

lim
l � �

1
S&(l )

ln `
�

k=1
} E&Ek(l )
E&E (0)

k (l ) }=|
�

&�
ln |E&E$| d(k&k0)(E$). (3.9)

Proof. For a given E � RD , without loss of generality, we can also sup-
pose that E � R (0)

D , where R (0)
D is the corresponding resonance set for H0

with Dirichlet boundary condition. From now on, we always suppose that
E is fixed and E � RD _ R (0)

D .
For each fixed E, we can choose M(l ) such that M(l ) � � as l � � and

ai (l )>E+1 (i=0, 1), where

a0(l)=sup[E$ | k (l )
0 (E$)�M(l )], a1(l )=sup[E$ | k(l )(E$)�M(l )].

For convenience, we define

fl (E)=
1

S&(l)
ln `

�

k=1
} E&Ek(l )
E&E (0)

k (l ) } , f (E)=|
�

&�
ln |E&E$| d(k&k0)(E$).

Then we have

| fl (E)& f (E)|= } 1
S&(l )

ln `
k�M(l ) S&(l )

|[E&Ek(l )]�[E&E (0)
k (l )]|

+
1

S&(l )
ln `

k>M(l ) S&(l )

|[E&Ek(l )]�[E&E (0)
k (l )]|& f (E) }

� } |
a1(l )

&�
ln |E&E$| d(k(l )&k)(E$)

&|
a0(l )

&�
ln |E&E$| d(k (l )

0 &k0)(E$) }
+ } |

�

a1(l)
ln |E&E$| dk(E$)&|

�

a0(l )
ln |E&E$| dk0(E$) }

+ } 1
S&(l )

ln `
k>M(l ) S&(l )

|[E&Ek(l )]�[E&E (0)
k (l )]| } . (3.10)
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By (3.8), we have

lim
l � � } |

�

a1(l)
ln |E&E$| dk(E$)&|

�

a0(l )
ln |E&E$| dk0(E$) }=0. (3.11)

Since E (0)
k (l )=(?k�S&(l ))2, by using Lemma 3.4, we have

ln `
k>M(l ) S&(l )

} E&Ek(l )
E&E (0)

k (l ) }= :
k>M(l ) S&(l )

ln } 1+
Ek(l )&E (0)

k

E (0)
k (l )&E }

� :
k>M(l ) S&(l )

S 2
&(l )�[?2k2&S 2

&(l ) E]

�S&(l ) |
�

M(l )

dx
?2x2&E

.

Therefore,

} 1
S&(l )

ln `
k>M(l ) S&(l )

|[E&Ek(l )]�[E&E (0)
k (l )]| }=O \ 1

M(l )+ . (3.12)

So, it remains to estimate

Jl# } |
a1(l )

&�
ln |E&E$| d(k(l )&k)(E$)&|

a0(l )

&�
ln |E&E$| d(k (l )

0 &k0)(E$) } .
We define

Il (E)=[E&$l , E+$l], $l=
1
3 exp(&l }(&)&=&), (3.13)

where }(&) is defined by (2.16) and =& is given in the definition of the
resonance set.

Since E � RD _ R (0)
D , there are no eigenvalues of HD(L) and H0D(L) on

the interval Il (E) which is defined by (3.13). Thus, k(l)(E), k (l )
0 (E) are

constant on the interval Il (E). Also, we notice that

} |Il (E)
ln |E&E$| dk(E$) }�CE[|Il (E)]1�2 (3.14)

where CE is a constant for a given E. So, we have

Jl= } |(&�, a1(l )]"Il (E)
ln |E&E$| d(k(l )&k)(E$)

+|
Il (E)

ln |E&E$| d(k (l )&k)(E$)

551LYAPUNOV EXPONENTS



File: 580J 292512 . By:BV . Date:02:09:96 . Time:11:48 LOP8M. V8.0. Page 01:01
Codes: 1927 Signs: 628 . Length: 45 pic 0 pts, 190 mm

& } |(&�, a0(l )]"Il (E)
ln |E&E$| d(k (l )

0 &k0)(E$)

&|
Il (E)

ln |E&E$| d(k (l )
0 &k0)(E$) }

� } |(&�, a1(l )]"Il (E)
ln |E&E$| d(k(l )&k)(E$) }

+ } |Il (E)
ln |E&E$| dk(E$) }

+ } |(&�, a0(l )]"Il (E)
ln |E&E$| d(k (l )

0 &k0)(E$) }
+ } |Il (E)

ln |E&E$| dk0(E$) } . (3.15)

By (3.14), we know that

lim
l � � |

Il (E)
ln |E&E$| dk(E$)=0. (3.16)

Similarly,

lim
l � � |

Il (E)
ln |E&E$| dk0(E$)=0. (3.17)

Using integration by parts, we have

} |(&�, a1(l )]"Il (E)
ln |E&E$| d(k (l )&k)(E$) }

�(k(l )&k)(a1(l )) ln |E&a1(l )|

+[(k(l )&k)(E+$l)&(k(l )&k)(E&$l)] ln $l

+ } |(&�, a1(l )]"Il (E)

(k(l )&k)(E$)
E$&E

dE$ } .
By Theorem 2.1 and (3.13), we know that

lim
l � �

(k (l )&k)(a1(l )) ln |E&a1(l )|=0

lim
l � �

[(k(l )&k)(E+$l)&(k(l )&k)(E&$l)] ln $l=0
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and

} |(&�, a1(l )]"Il (E)

(k(l )&k)(E$)
E$&E

dE$ }�C1 l&}(&) } |(&�, a1(l )]"Il (E)

1
E$&E

dE$ }
�l&}(&)[C2 ln $l+C3 ln |a1(l )&E|]

� 0 as l � �.

Thus,

lim
l � � } |(&�, a1(l )]"Il (E)

ln |E&E$| d(k(l )&k)(E$) }=0. (3.18)

Similarly,

lim
l � � } |(&�, a0(l )]"Il (E)

ln |E&E$| d(k (l )
0 &k0)(E$) } . (3.19)

So by (3.15)�(3.19),

lim
l � �

Jl=0. (3.20)

Now, by (3.10)�(3.12) and (3.20), we have proved that lim l � � | fl (E)&
f (E)|=0. Therefore, Lemma 3.6 is proved. K

Now, by combining the results of Lemma 3.5 and Lemma 3.6, we have
proved the following result:

Then for E � RD , we have that

lim
l � �

1
S&(l )

ln } u(S&(l ), E)
u0(S&(l ), E) }=|

�

&�
ln |E&E$| d(k&k0)(E$).

By using Lemma 3.3, we obtain the following control on the limit

lim
l � �

1
S&(l )

ln |u(S&(l ), E)|=#0(E)+|
�

&�
ln |E&E$| d(k&k0)(E$).

By using different boundary conditions, we can obtain similar control of
(1�S&(l )) ln |v(S&(l ), E)|, (1�S&(l )) ln |�u(S&(l ), E)��x| , and (1�S&(l )) ln |�v
(S&(l ), E)��x|. Therefore, we obtain control of (1�S(l )) ln &TS(l )(E)&,
namely,
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Lemma 3.7. For E � R& , where R& is the resonance set defined by (3.2)
and (3.3), then

lim
l � �

1
S(l )

ln &TS(l )(E)&=#0(E)+|
�

&�
ln |E&E$| d(k&k0)(E$), (3.21)

where & }& denotes the matrix norm, and Tx(E) is defined by (3.1).

Now, Theorem 3.2 follows from Lemma 3.7 and the definition of the
Lyapunov exponent.

Next, we want to compute an explicit formula for the Lyapunov expo-
nent by using the Thouless formula and the formula for the integrated
density of states. First, (3.4) asserts that ?k+i# is the boundary value of an
analytic function in the upper half plane. Let F(z)=?k(z)+i#(z) for
Im z�0, and define F� (z)=(1�2?) �?

&? - z&cos x dx with branch cut from
&1 to � along the real axis. Then F� (z) is analytic for Im z>0, and by
Theorem 2.1, Re F� (z) � ?k(E) as z � E (Im z>0, E # R). Therefore,

#(E)= lim
Im z>0, z � E

Im F� (z)+C,

where C is a real constant. That is,

#(E)=
1

2? |
?

&?
[cos x&E]1�2

+ dx+C.

Notice that for E>1, #(E)=0 and the integral in the right-hand side is
also zero, so C=0. Therefore, we have

Theorem 3.8. For all E � R& , where R& is defined by (3.2) and (3.3), the
operator H& in (1.1) has Lyapunov behavior with the Lyapunov exponent
given by

#(E)=
1

2? |
?

&?
[cos x&E]1�2

+ dx (3.22)

where [ f (x)]+=max[0, f (x)].

Remarks. 1. In fact, there is no mystery for this beautiful Lyapunov
exponent formula if we use the WKB (see [4, 5]) heuristic argument.
However, it's not easy to justify the WKB solutions.

2. Note that while R& is &-dependent, the right-hand side of (3.22) is
&-independent!
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4. SOME SPECTRAL CONSEQUENCES

We have already proved that for a.e. E # [&1, 1], H& has positive
Lyapunov exponent. By simply applying the Kotani argument (see [7]) or
rank one spectral theory (see [3, 10, 11]), we can get dense pure point
spectrum on (&1, 1) for almost all boundary conditions. Also, we can
show that the eigenfunctions are exponentially decaying. The result on pure
point spectrum is an unpublished result by Kirsch and Stolz which is stated
in [6] by Kirsch, Molchanov, and Pastur, and the result on exponentially
decaying eigenfunctions is proved by Stolz in [14]. Now, we can give an
explicit decaying rate of eigenfunctions.

Theorem 4.1. Let H %
& be the operator H& given by (1.1) with the %

boundary condition at 0, u(0) cos %+u$(0) sin %=0. Then for a.e. % # [0, ?)
(with respect to Lebesgue measure), H %

& has dense pure point spectrum on
(&1, 1), and the eigenfunctions of H %

& to all eigenvalues E # (&1, 1) decay
like e&#(E) x at � for almost every %, where #(E) is given by (3.22).

Next, as we have shown that the resonance set has Hausdorff dimension
zero, by applying rank one perturbation theory, we get a new result on
singular continuous spectrum.

Theorem 4.2. Let H %
& be the operator H& given by (1.1) with the bound-

ary condition at 0 given by u(0) cos %+u$(0) sin %=0 for % # [0, ?). Then
for %{?�2, the singular continuous part, (d+%)sc , of the spectral measure d+%

for H %
& is supported on a Hausdorff dimension zero set.
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