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A b s t r a c t .  We provide a complete spectral characterization of a new method 
of constructing isospectral (in fact, unitary) deformations of general Schrrdinger 
operators H = -d2/d .x  2 + V in L2(/l~). Our technique is connected to Dirichlet 
data, that is, the spectrum of the operator H D on L 2 ( ( - ~ , x 0 ) )  @ L2((x0, oo)) 
with a Difichlet boundary condition at x 0. The transformation moves a single 
eigenvalue of H D and perhaps flips which side of x 0 the eigenvalue lives. On the 
remainder of the spectrum, the transformation is realized by a unitary operator. 
For cases such as V(x) ---, ~ as Ixl --" ~ ,  where V is uniquely determined by the 
spectrum of H and the Dirichlet data, our result implies that the specific Dirichlet 
data allowed are determined only by the asymptotics as E ~ oo. 

w Introduct ion 

Spectral deformations of Schrrdinger operators in L2(/R), isospectral and cer- 
tain classes of non-isospectral ones, have attracted a lot of interest over the past 
three decades due to their prominent role in connection with a variety of top- 
ics, including the Korteweg-de Vries (KdV) hierarchy, inverse spectral problems, 
supersymmetric quantum mechanical models, level comparison theorems, etc. In 
fact, the construction of N-soliton solutions of the KdV hierarchy (and more gener- 
ally, the construction of solitons relative to reflectionless backgrounds) is a typical 
example of a non-isospectral deformation of H = - d 2 / d x  2 in L2(R) since the 
resulting deformation [1 = - d 2 / d x  2 + re" acquires an additional point spectrum 

{A1,..., Au} C (-e~, O) such that 

o'(H) = or(H) tO {A1,..., AN} 

(cr(.) abbreviating the spectrum). On the other hand, the solution of the inverse 
periodic problem and the corresponding solution of the algebro-geometric quasi- 
periodic finite-gap inverse problem for the KdV hierarchy (and certain almost- 
periodic limiting situations thereof) are intimately connected with isospectral (in 
fact, unitary) deformations of a given base (background) operator H = - d  2/dx 2 + V. 
Although not a complete bibliography on applications of spectral deformations in 
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mathematical physics, the interested reader may consult [1], [2], [3], [19], [31], 
[47], and the references cited therein. 

Our main motivation in writing this paper descends from our interest in inverse 
spectral problems. As pointed out later (see Remarks 4.5, 4.7, and 4.8), spectral 
deformation methods can provide crucial insights into the isospectral class of a 

given base potential V, and in some cases can even determine the whole class 
Iso(V) = {15" E LI~(/~) [ o ( - d 2 / d x  2 q- (1) _~ o-(_d2/dx2q_ V)} of such potentials. 

A particularly "annoying" open problem in inverse spectral theory concerns the 
characterization of the isospectral class of potentials V with purely discrete spectra 
(e.g., the harmonic oscillator V(x) = x2). 

In [24], we proposed a way to label the isospectral operators for such a situation 
with Dirichlet data. Fix xo and let H D be the operator in L 2 ( ( - ~ ,  xo)) | cr 
with Dirichlet boundary condition at xo. H o = H D @ H D. The Dirichlet data are 

the pairs (#, ~r) with # E ~ cr E {+, --} of eigenvalues o f H  D and a label of whether 
they are eigenvalues of H D or H D. We showed in [23], Theorem 3.6, that for any 
Dirichlet data, there is at most one V in the isospectral class of a given - d 2 / d x  2 -[- Vo 
with discrete spectrum so that V has the given Dirichlet data (in the degenerate 

case, where any eigenvalues of H ~ and H coalesce, one must include an additional 
parameter in the Difichlet data for each coincidence of eigenvalues, see Remarks 
4.9 and 4.10). That is, the map from V to Dirichlet data is one-one when defined 

on the isospectral set of potentials. The issue is determining the range of this map. 
While this paper does not solve the inverse discrete spectral problem, it will make 

one important contribution. As a result of our principal Theorem 4.4, we obtain 

the fact that for any potential V, any finite number of deformations of  Dirichlet 
data (i.e., Dirichlet eigenvalues together with their left/right half-line distribution, 

see (2.7)) in spectral gaps of V produce isospectral deformations (,' E Iso(V) of 
V. In particular, there are no further constraints on these Dirichlet data (except, of 
course, these deformations are required to be finite in number and to stay within the 

spectral gaps in question). Applied to the inverse discrete spectral problem, this 
means that any constraints enforced on Dirichlet data can only be asymptotic in 

nature, that is, can only come from their "tail end" at infinity. That such asymptotic 
constraints necessarily exist is a consequence of  a recently proved general trace 

formula for V(x) [24] (see Remark 4.8). The precise nature of these constraints, 
however, is unknown to date. 

Mathematically, the techniques involved to produce isospectral (,' or classes of 

non-isospectral ones where eigenvalues are added or removed, but the remaining 

spectral characteristics stay identically to those of  the base potential V, can be 

traced back to commutation methods. These commutation methods in turn are 
intimately connected with factorizafions of the Schr6dinger differential expression 
-d2/dx2--FV(x)  into products of first-order differential expressions. More precisely, 
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one seeks a factorization of  the type 

d 2 

dx 2 
- - - +  V(x) = ~(~)~(~)+  + ~, 

d d 
,~(~) = ~ + r ~(~)-~ = - ~  + r 

for some appropriate A 6 /IL A subsequent commutation of  the factors a(A) and 

a(A) +, introducing the differential expression 

d 2 

dx 2 + f '(•,x) = ~ ( ; q - ~ ( ~ )  + ;~, 

then yields associated isospectral or special classes of  non-isospectral deformations 

(,'(A, x) of  V(x) depending on the choice of  q~(A, x) in a(A), a(A)+. In the following, 
we briefly outline three different instances of  commutation techniques that occur 

in the literature. 
We start with the single commutation or Crum-Darboux  method (going back 

at least to Jacobi). In this method, H = -d2/dx 2 + V is assumed to be bounded 

from below, i n f . ( H )  > - e c ,  and A E R is chosen according to A < infer(H). 

One sets ~b(A,x) = ~,~(A,x)/~O.(A,x), where V3. satisfies ~"  = (V - A)~b (cf. (A.7)). 
Depending on the choice of  ~O. ()., x), the aforementioned commutat ion procedure 

yields a spectral deformation/7/.  (A) of  H, 

d 2 
/z/~(A) - dx z + f'~(A,x), V,,(A,x) - V(x) -  2{ln[~(A,x) l}" ,  

x E II(, A < in fa (H) ,  

which is either isospectral to H or acquires the additional eigenvalue A below the 

spectrum of  H, that is, 

either (r(f/~(A)) = cr(H) or cr(f/~(A)) = or(H) U {A}. 

Moreover, it can be proved that the remaining spectral characteristics of  H remain 
preserved in the sense that/:/~(A) and H, restricted to the orthogonal complement 

of  the eigenspace associated with A, are unitarily equivalent. 
A summary of  this technique, as well as pertinent references to its extraordinary 

history and to more recent applications of  it, will be given in Appendix A. 
The fact that A is required to lie below the spectrum of  H is clearly a severe 

limitation. One possibility to avoid this restriction is provided by the following 

second technique, the double commutation method. 
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Formally, this method can be obtained from two successive single commutations 

at a point A E R\c%s(H) (cre~s(') the essential spectrum), or equivalently, as the 
result of two single commutations at A' and A", A' # A", A', A" E R\~ress(H) with 

a subsequent limiting procedure A' ~ A and A" ~ A. The final outcome can 
be sketched as follows. Pick 7 > 0, A E ]R\~ess (H) and real-valued ~b:k (A, �9 ) E 
L2((R,-4-oc)), R E IR satisfying ~"(A) = (V - A)~(A). The spectral deformation 

[-/• of H is then given by 

d 2 
= & 2  + %, . , ( ) , , x ) ,  

f/• = V(x) - 2{ln[l q: T j dx' ~+(A,x')2] } '', 
4-o0 

7 > 0, A E R\Cress (H). 

In this case, one can show that 

cr(/7/• = or(H) U {A) 

and again ,g/+,.y(A) and H are unitarily equivalent upon restriction onto the 
orthogonal complements of their eigenspaces corresponding to A. 

A summary of this method together with appropriate references to its history, as 
well as to recent applications of it, will be provided in Appendix B. 

Finally, and most importantly in connection with the contents of this paper, we 
shall describe a third commutation method first introduced by Finkel, Isaacson, and 

Trubowitz [12] in 1987 in connection with an explicit realization of the isospectral 
torus of periodic potentials. This method was again used by Buys and Finkel 

[4] (see also Iwasaki [32]) in the context of periodic finite-gap potentials and by 
Prschel and Trubowitz [48] and Ralston and Trubowitz [49] for various boundary 

value problems on compact intervals. As in the previous case, this method formally 
consists of two single commutations, but this time at different values of the spectral 

parameter. The principal contribution of this paper is a generalization of the work 
of Finkel, Isaacson, and Trubowitz to arbitrary (i.e., not necessarily periodic) 

base potentials V(x) and a complete spectral characterization of this commutation 
technique. As a result we obtain a powerful new tool in constructing sets of 
isospectral potentials for arbitrary base potentials. 

We briefly sketch this approach. Suppose ~9• (z, �9 ) E L2((R, -t-oc)), Z 6 C\cress (H), 

R E R satisfy ~"(z) = (V - z)~(z), and pick a spectral gap (Eo,E1) of H with 
#,/2 E (E0, E1 ). Define 

= - { - , + ) ,  x m 
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where W(f, g)(x) = f ( x )g ' ( x )  - f ' ( x ) g ( x )  denotes the Wronskian o f f  and g (taking 
limits if/2 = #). The spectral deformation [/(~,~) of H is then given by 

d 2 
f/(~,~) = dx 2 + V(~,~), 17(~,~)(x) = V(x) - 2{In[W(~,,~)(x)]}". 

In order to define (z(~,o), one needs, of course, to show that W(~,~)(x) is non- 
vanishing on IR. Indeed, the key to our extension of this method to the whole line is 
precisely our proof in [25] that this Wronskian is non-zero. This proof avoids the 
indirect argument of [12], [48], [49] that relies on compactness of the underlying 

interval. (Even if one is only interested in the compact interval case, our direct 
proof is simpler than their indirect argument.) In addition to allowing the extension 
to whole line problems in principle, this paper provides explicit calculations in the 

change of Weyl-Titchmarsh and spectral functions. 
In our main result, Theorem 4.4, we shall prove that 

(r(/-/(~,~)) = (r(H); 

in fact,/-/(~,~) and H will turn out to be unitarily equivalent. Moreover, if (#, c~) 

is a Dirichlet datum for H with respect to the reference point x0, then all Difichlet 
data for H(~,~) with respect to x0 are identical to those of H, except that (#, cQ 

is removed and (/2, 5) is added instead. These results and a variety of extensions 
thereof constitute the principal new material in this paper. Because the spectral 
types of all operators in [12], [48], and [49] are explicitly known, the unitarity 

theorem is a trivial consequence of the determination of spectra. However, for 
general base potentials, the spectral types can be exotic so that the unitarity result 

is much stronger than a mere equality result of spectra. Our proof of the unitarity 

relies on the explicit formula of the changes in the spectral matrix. 
Section 2 provides the background needed in the remainder of this paper. 

Section 3 treats Weyl-Titchmarsh m-functions and spectral functions associated 

with half-line Dirichlet operators. Section 4 contains our principal results on 
isospectral deformations and provides a complete spectral characterization of this 
deformation method. In particular, the Weyl-Titchmarsh M-matrix and spectral 

matrix of the deformation /-/(~,~) are computed in terms of the corresponding 

matrices of the base operator H. A variety of additional results and possible ex- 
tensions, including limit point/limit circle considerations, iterations of isospectral 
deformations, general Sturm-Liouville operators on arbitrary intervals, and scat- 

tering theory, are treated in Section 5. Finally, the single and double commutation 

methods are reviewed in Appendices A and B, respectively. 
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w P r e l i m i n a r i e s  o n  the  D i r i c h l e t  d e f o r m a t i o n  m e t h o d  

This section sets the stage for a complete spectral characterization of  the Dirichlet 

deformation method in the remainder of this paper. 

Suppose 

(2.1) V E L],,~(~) is real valued, 

introduce the differential expression 7- = - d 2 / d x  2 + V(x), x ff R, and pick Ao E 

and 71+ (Ao, x) satisfying 

TV(AO) = Ao~(Ao), 
(2.2) 

r/=(Ao, �9 ) E L2((R, • R E ~, r/=(Ao,x) real-valued. 

Given 7t~ (A0,x) we define the self-adjoint base (background) operator H in L2(R) 

via 

(2.3) 

H f =  r f ,  

f 6 D(H) = {g E L2(R) I g, g ' E ACioc(~); 7-g E L2(]~); 

lim WOT:~(Ao),g)(x ) = 0 if ~- is l.c. at �9 oo}. 

Here W ( f ,  g)(x) = f(x)g '(x)  - f ' ( x )g (x )  denotes the Wronskian o f f ,  g E ACtoc(~) 
(the set of locally absolutely continuous functions on R) and l.p. and l.c. abbreviate 

the limit point and limit circle cases, respectively. The corresponding boundary 

condition at ~ w  in (2.3) is superfluous and hence to be deleted whenever 7- is l.p. at 

, J ~ ,  ,J E {- ,  +}. The reader unwilling to get caught up in limit circle situations 

may safely add the assumption that 7- is l.p. at 5=oo which renders H independent 

of  the choice of  r/___ (A0, x). However, as discussed in Lemma 5.3, assuming ~- to 

be l.p. at •  does not necessarily dispose of  all limit circle considerations in 

connection with the deformation method at hand. 

Given H and a fixed reference point x0 E R, we introduce the associated Dirichlet 
operator H D in L2(I~) by 

(2.4) 
HDf = 

f E D(H D) = {g E L2(!t~) I g E aCioc(R),g' E acioc(R\{xo}); limo g(xo 4- c) = 0; 

7-g E L2(i~); lim WO?-L(Ao),g)(x ) = 0 if 7- is l.c. at + 2 } .  
X ~  ~- oC 

Clearly, H D decomposes into 
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with respect to the orthogonal decomposit ion 

(2.6) L2(~) = L2((-oo,xo)) �9 L2((x0, oo)). 

(For notational convenience, we shall later identify (x0, croo) with (-o~,x0) or 

(x0, c~) depending on whether a = - or cr = +.) Moreover, for any # E 
aa(HD)\o-(H) (~ra(.) = a( .  )\Cress(" ), the discrete spectrum, a ( .  ) and cress(. ), the 

spectrum and essential spectrum, respectively), we introduce the Dirichlet datum 

(2.7) (#, a) E {cra(HD)\cra(H)} x { - ,  +}, 

which identifies/z as a discrete Dirichlet eigenvalue on the interval (x0, croo), that 
is, # E cra(H~), cr E { - ,  +} (but excludes it from being simultaneously a Dirichlet 

eigenvalue on (:co, -~rc~)). 
In some cases, for instance, if V(x) ~ oo as Ixl ~ co, the spectrum and Dirichlet 

data uniquely determine V(x) [23], Theorem 3.6 (cf. also Remarks 4.9 and 4.10). 

Next, we pick a fixed spectral gap (E0, El ) of  H,  the endpoints of  which (without 

loss of  generality) belong to the spectrum of H, 

(2.8) (E0, El) c E0,E1 

and choose a discrete eigenvalue # of  H D in the closure of.that spectral gap, 

(2.9) # E cra(H D) n [E0,E1] 

(we note there is at most one such # since (H D - z) -I  is a rank-one perturbation of  
(H - z)- l ) .  According to (2.7), this either gives rise to a Dirichlet datum 

(2.10) (# ,a)  E (E0,E1) x { - , + } ,  

or else to a discrete eigenvalue of  H_  D and H+ D, that is, 

(2.11) /z E {E0,EI} n at(H) f~ a,l(H D) n aa(H~) 

since the eigenfunction of  H associated with # has a zero at :co. In particular, since 
(H D - z)-1 is a rank-one perturbation of  (H - z ) - l ,  one infers 

(2.12) Cress (H D) = aess (H), 

and thus, # 6 {E0,E1} n aess(H) is excluded by hypothesis (2.9). Hence, the case 

distinctions (2.10) and (2.11) are exhaustive. 
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In addition to # as in (2.9)-(2.11), we also need to introduce/~ E [E0,El] and 

6" E { - ,  +} as follows: Either 

(2.13) (~,a) E (Eo, E,) x { - , + } ,  

or else 

(2.14) E {to, } n od(/4). 

Given H, we define solutions ~b• of  ( r  - z)~P(z) = 0 which satisfy 

g'• �9 ) E L2((R, +oo)), R E ~, 

lim W(~+(z),g)(x) = 0 f o r a l l g  E D(H). 

If ~,:~(z,x) exist, they are unique up to constant multiples. In particular, ~k• 

exist for z E C\cre~s(H) and we can (and will) assume them to be holomorphic with 

respect to z E C \ a ( H )  and real-valued for z E R. One can choose, 

> b ,  
(2.16) ~+(z,x) = ( ( H -  Z)-lX(,~,b))(X) f o rx  - c~ < a < b < ve 

< a,  

< b  
and uniquely continue for x . (Here Xa(.  ) denotes the characteristic function 

> a  

of  a set ~ c_ I~.) A finite number of isolated eigenvalues can be included in the 

domain of  holomorphy of  ~ (z) by multiplying (2.16) with an appropriate function 

o fz .  

Next, we state a simple technical result which will be needed in the context of  

(2.19) and (2.20). 

L e m m a  2.1 Let ~po(#, .), ~bo(~, .) E LZ((R, aoo)), R E ~ be defined as in 
(2.15). Then 

(2.17) Jim (/~ - # ) - '  W(~bo(#),~o(t2))(x) = - j (dx '~bo(#,x ' )  z. 

Proof  Since 

(2.18) 

x 

o ' o o  
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((2.18) is easily verified by differentiating W(~,o (#), ~,o (~))(x) w.r.t, x and using 

(2.15)), we only need to justify interchanging the limit ~ --* # and the integral in 
(2.18). By (2.16), 

((H -/2)-~X(~,~))(x ') -- c+(~z)~b+(~,x') 
x ' > x > b > a  

for 
x t < x < a < b  

for some constants c• r 0, and hence 

- / dx'~b~(iz,x')~po(~z,x') = c~ I (~bo (/_t)X(~,,~) , (H - ~)-~X(,~,~)) 

yields the desired continuity with respect to/~. 

ad(H) n Crd(HO). A proper factor removes the pole at z = # in this case.) 
(This fails at first sight if # E 

[] 

Given ~bo(#,x), ~b_a(~,x), and Lemma 2.1, we define 

(2.19) 

= S (~ - #)-~ w(~,~(u), ~ _ ~ ( ~ ) ) ( x ) ,  W(~,~)(x) 
L 

and the associated Dirichlet deformation 

( 2 . 2 0 )  

#,/2E [Eo,EI], / 2 r  

(2, 6) = (U, -o) ,  U ~ (Eo, Et) 

d 2 
e~z,~ = - ax---~ + f / /~ ,o~(x) ,  

f'(~,,~)(x) = V(x) - 2{ln[W(;,,e,)(x)]}", x E I~, 

(We will show in Lemma 2..2 that W(;,,~)(x) r 0, x E R and hence (2.20) is 

well-defined.) In the remaining cases (2, 6-) = (it, o-), # E [Eo, Eli, and # = /~ E 
{Eo, El } n Crd(H), we define 

(2.21 ) f'(~,o) (x) = V(x). 

Equation (2.21) represents the trivial deformation of  V(x) (i.e., none at all), and for 
notational simplicity these trivial cases are excluded in the remainder of  this paper, 

unless explicitly stated otherwise. For obvious reasons we will allude to (2.20) as 
the Dirichlet deformation method in the following. 

If/~ E Crd(H), then ~b_(/2) = c~b+ (/~) for some c E lt~\{0}, showing that W(;,,e,)(x), 
and hence V(~,,o)(x) in (2.19) and (2.20), become independent of  cr or 6. In this 
case we shall occasionally use a more appropriate notation and write fr (x) and ?~ 

(instead of  f'(o,~)(x) and ?(~,~/)" 
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The next result, taken from [25], shows that (2.20) is well-defined on R. For 

the reader's convenience, we reproduce the proof  of  the special case we need of  

Theorem 1.6 in [25]. 

L e m m a  2.2 [25] Suppose/z,/2 E [E0, El] and (::, (#, x), ~_o (/2, x), or, ~ E { - ,  + } 

are defined as in (2.15). Then 

(2.22) W(~p~,(#),r162162162162 #r  x E ~ ,  

and hence, 

(2.23) (,'(~,~) E L~oc(~) 

in (2.20). 

P r o o f  Since W(~(/~),~p_o(#)) = const. r 0 and (2.23) is clear from (2.19), 

(2.20), and (2.22), we only focus on the case W(~o(#),~_~(/2))(x) r 0, # r /2, 

x E R .  

First, consider the case 3 = a = - ,  assume without loss of  generality that/2 > #, 

and abbreviate 

W(x) = w ( r  (~), r (/2))(x), x ~ R. 

Suppose that 

(2.24) 

Define 

W(xl) = 0 for some X 1 E ]l~. 

J" r  (/~, x), x _< xl, 
(x) 

"~,r x >_xl, 

where ~'l E R is defined such that T/l E D(H) and 

r  x<_x, ,  
~,(x) = 

- ' n~+( /2 ,x ) ,  x >Xl .  

If/2 E era(H), we define in addition 

~o(x) = r = -~o(x), 

and if # E ad(H), 

X 0 ~ - - 0 0  

~ 2 ( x ) = r  x 2 = + o o .  
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Then 

(2.25) (~:,r/k) = (~j,~k) fo ra l l j ,  k. 

Indeed, l e t j  < k; then (2.25) just  means that 

(2.26) 

Xk 

f clxV,_ (u,x)r = o. 
xj 

But 
xk 

faxr162 = ( u  - [ W ( x k )  - W ( x j ) ]  = / 2 ) - i  0 

due to W(xj) = 0 and l imx~•  = 0 if /2 or # lie in ad(H) since 

l imx_+~ W(gl , g z ) ( x )  = 0 for all gl ,g2 E D(H). (For xo = - c ~  take gz = ~b+(/2) E 
D(H) and choose gl = ~ -  (U) nearxo = - c o  and continue gl E /9(H)  appropriately. 

Similarly, for x2 = +e~, take gl = ~b_(#) E D(H) and choose g2 = ~b+(/2) in a 
neighborhood of  x2 = + ~  and continue gz E D(H) appropriately.) Next, one 
verifies that [ 1 ] 1 

H - E ( / 2 + # )  r / j= E( # - / 2 ) %  

and hence, for 77 E span {r/j}, 

implying 

[ H - l ~ ( / 2 + ~ ) ] r /  = l l / 2 - # ] n r / H  

dim Ran(P[u,~](H)) > dim span{r/j), 

where P~(H) denotes the spectral projection of  H corresponding to 12 c_ IIL But 

~b_ (tz) and ~+ (/2) are linearly independent on each interval (since their Wronskian 

is non-constant) and hence all 7/3- are linearly independent. In particular, 

dim Ran(P(u,,~)(H)) > 1, 

which contradicts our basic hypothesis that (E0, El ) C R\a(H). This contradiction 
shows that (2.24) is impossible, and hence W(x) ~ 0 for all x E/~. 

Next, consider the case b = - a  = - (and still/2 > #). Define 

~'(x) = w(v,.(u),r x ~ ~, 
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and suppose 

( 2 . 2 7 )  W ( x ) ) = 0  for somexl  ER. 

We introduce 

ol(x)= { - 7 1 r  x < 

0, x ~ xl 

(fixing 71 by demanding 711 E 73(H)) and 

{ r162 x S XI, 
~l(X)= 0, X>Xl.  

If/2 E era(H), we introduce in addition 

and if/2 E ad(H), 

TI2(X ) = ~_ ( / . t ,X)  = ~2(X), X0 = +OO. 

The rest of the proof is analogous to the case considered first: The Oj's are linearly 
independent by considering their supports and 

f dxg,_(~,x)~b_(/2,x) = (#- /2 ) -1  ~li_moo[l~,(x,)_ l~'(c)] = 0  
--00 

s i n c e  ~ : ( x  I ) ~-- 0 by hypothesis, and both 0 -  (#, x) and ~p_ (/2, x) satisfy the boundary 
conditions of H at -c~.  

Finally, the cases ~b+ (/~, x), 0• (/2, x) can be obtained by reflection. [] 

Actually, Lemma 2.2 is only the tip of the iceberg. The principal results of [25] 
relate the number of zeros of appropriate Wronskians on an arbitrary interval (a, b) 
of the type studied in this section to dimensions of spectral projections of general 
Sturm-Liouville operators on (a, b). For a previous generalization of Sturm's 
separation theorem invoking the sign of Wronskians, see [36]. 

For later reference, we now summarize our basic assumptions on V, #, and/2 in 
the following hypothesis. 

(H.2.3) (i) Suppose V E ~oc(R) to be real-valued. 
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(ii) 

(Eo,E1) C R\a(H), Eo, E1 E a(H), 

,u E ad(HD), (#, cr) E (Eo, E~) • { - ,  +} or # e {Eo, E~ } N ,rd(H), 

(/5, o') E (Eo, El) x { - ,  -~-} or 12 E {Eo, E1 } ~ era(H), 

#,/SE[Eo,E1], # # / 2  o r ( /5 ,# )= (# , -~ r ) ,  #E(Eo,E~). 

Next, we introduce various solutions of  (~(~,~) - z)(b(z) = 0 needed in (2.32)-  
(2.35) to define the self-adjoint operator H(~,~) in L2(R) associated with r 
Define 

(2.28) (p_,~ (#, x) = r (/5, x)/W(;,,~)(x), 

(2.29) r = r ~be,(/5,xo) = O. 

Then 

(2.30) (~(~,~)r162 = #r  (?(~,~)r =/5r 

and 

(2.31) 4_~ (~,, x ) ~  (/5, x) = [wi~,~> (x)-~]'. 

The Dirichlet deformation operator [/(;,,~) associated with ~(~,~) in (2.20) is then 

defined as follows: 

(2.32) 
f E Z)(/~/(~,~)) = {g E Lz(R) [g,g' EACloc(~);?(~,e,)g E L2(ll~); 

g satisfies one of  the b.c.'s in Cases I - I I I  if 

~(~,a) is 1.e. at - ~ and/or  + ~ ) .  

The boundary conditions (b.c.'s) alluded to in (2.32) are chosen as follows: 

Case I: Either ~- is 1.p. at •  or # - a. 

(2.33) 
lira W(r = 0 

X---~ O" O~ 

w((~_~(u) ,g) (x)  = o lim 
x - - - * - - ~ ' ~  

if ?(a,o) is 1.c. at ~-~, 

if ~(Z,~) is 1.c. at - # ~ .  

Case II: 

(2.34) 

= - a ,  r is 1.c. at - c ~  or + ~ ,  and # E Od(n). 

lim W(r = 0 i f?(~,~)is l .c ,  atwc~, 
X---*~OO 

w e { - , + ) .  
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Case III b = - a ,  ~- is 1.c. at - oc  or +oc, and/2 �9 Crd(H ). 

(2.35) lim W(~_~(#) ,g ) (x )  = 0 if ?(~,a) is l.c. at woo, w �9 { - ,  +}. 
X~6dOO 

(Note that Case II = Case III if (/2, a) -- (#, - a ) . )  
As always, there is no boundary condition at w<x~ in (2.32) if ?(~,a) is l.p. at woe, 

w �9 { - ,  +}. Cases I-III, of  course, are not exhaustive. We singled them out since 
they are the only situations where the spectra of H and/7/(~,~) are closely related 
(see (3.17) and the discussion at the end of  Section 3). 

If/2 �9 ad(H), we will occasionally use the more appropriate notation (,'~(x), ?~, 
and/:/~ (instead of fz(~,a)(x), -~(~,~), and/:/(~,a), cf. the comments following (2.21)). 

We conclude this section by introducing the Dirichlet operator/:/D associated (~,a) 
with/7/(~,a) and the fixed reference point xo �9 I~ 

(2.36) 

f �9 D(/7/~.a)) = {g �9 L2(I~) I g �9 ACloc(l~),g' �9 ACloc(~,\{xo}); limo g(xo 4- ,) = O; 

?(~,a)g �9 L2(~);g satisfies one of the b.c.'s in Cases I - I I I  if 

?(~,a) is 1.c. at - oo and/or  + ~ } .  

In analogy to (2.5),/:/O decomposes into (~,~) 

(2.37) ~ D  - D  ~ D  H(~,a) = H(~,a),_ {~ H(~,o),+ 

with respect to (2.6). 

w Half-line Weyl-Titchmarsh and spectral functions 

In this section we derive the Weyl-Titchmarsh m-functions for the Dirichlet 
deformation operator/z/(#,a) and relate them to those of  H. Moreover, we provide 
a complete spectral characterization of/z/p_ a' , in terms of H~ ~ ~,bt, ) ,::t: 

We start by introducing the transformation 

(3.1) 
{ ACloc(/l~) --* ~ ( ~ )  

V(~,a)(z) : f ( x )  --, fc(~,a)(z,x) = f ( x )  - (Z - #)-I~b-~(tz,x)W(~bo(#), f)(x) ,  
z �9 

and note that by inspection, 
(3.2) 

= o if and only if ( (T-z )~(z ) ) (x )  = O, z �9 
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Moreover, one verifies 

~,,~)(z,x) =(u~ ,~ ) ( z ) f ) (x )  

(3.3) =(z  - #)-I(z  - [z)f(x) - (z - , ) -~([~,x)W(~p_~(~) , f ) (x) ,  

f E AC~oc(R), z E Ck{#}, 

(3.4) 

{ (ur162 = o, 
(u/,~,~)(~)r = (~ _ ~ ) - t  w( r  r  
l im(z - lz)( U(; , ,~) (z )~o(#)  ) (x)  = O, 

~im(z - # ) ( u ~ , ~  (z)~-~ (#))(~) = - w ( ~ o  (~,), ~_~ (~,))~_~ (#, ~). 

In addition, if 

then 

(3.5) 

(7- - z)r = 0, (7- - ~)~(~) : o, z,~ ~ C\ ( t ,} ,  

w(r r 
w(~_,,(#),  ui;,.~)(z)r = w/,~.~)(~) 

z - ;~ w(r r 
(3.6) W(~( /2) ,  Uic~,~)(z)~,(z))(x) - 

z - ~z W(~,~) (x) 

w(v(; , ,~(z)r  v(~,~(~)r  - z - ~ w( r  r  
Z - #  

(3.7) + 
w ( r  (~), r  w ( r  (~), r 

(z - ~)( ' i -  ~) w~;,,~l(x) 

Next, let r  be the standard fundamental system of solutions of  

(7- - z ) ~ ( z )  = 0, z E C defined by 

(3.8) r xo) = O'(Z, x o ) = O ,  ~'(Z, XO) = O(Z, XO) = 1, Z E C 

with x0 E R the reference point used in (2.4), and denote by tg(~,~)(z,x), ~(~,~)(z ,x)  

the analogous fundamental system of  solutions of  (?(~,~) - z)(b(z)  = O, z E C 

satisfying (3.8). Since by definition (2.15), ~o(z, .) E L2( (R ,  croo)), R E ~ Z E 



282 E GESZTESY, B. SIMON AND G. TESCHL 

C\/~ satisfy the boundary conditions of H near croo (if any) and, in particular, 

limx-~,o~ W(~bo(z),g)(x) = O, g E D(H),  one obtains 

(3.9) ! i 

~b~(Z, Xo)/~p~(Z, Xo) = m~(z), cr E {- ,  +}, z E C\]I~, 

where m~(z) denotes the Weyl-Titchmarsh m-function of H with respect to the 
half-line (x0, crc~), a E {- ,  +}. Thus, 
(3.10) 

~ 

(U(~,o)(z)f)(xo) - z - # f (xo) ,  
z - #  

(U(;,,o)(z)f)'(xo) = f ' ( xo )  - ~z - # m-~(~) f (xo) ,  z,/2 E C\{#}, f E ACIoc(I~), 
z - #  

imply 

(3.11) 

$(,~,,~/(z, x) =(u(,~,~ / (z)ea(z))(x), 

z - u (u(~,~ I(z)o(z))(x) ~ =z 

+ fz - #_ m_~(fz)(U(~,o)(z)~(z))(x),  
z - #  

z, ~ ~ c \ {#} .  

The case (12,~) = (#,-or) in (3.10) and (3.11) can be obtained by a limiting 
procedure (+m• being Herglotz, has at most one simple pole for A E [E0,EI] 
with a negative residue), 

xo -1 

(3.12) ~,-~u!im(~-#)m~(/~)= ( f dxr 2) , ~ ~ {-,+} 
GO0 

(see, e.g., [23], Appendix A for a brief summary on Weyl m-functions). 
The following general fact on Weyl m-functions, which provides an effective 

tool for computing them in the context of/-/(;,,~), may well be of independent 
interest. 

L e m m a  3.1 Let ~' E Lal(R) be real-valued, ~ = - d 2 / d x  2 + ~/(x), x E ~, and 

~(A,x),  A E R,~r E { - , + }  non-zero real-valued solutions o f  (? - A)~b(A) = O. 

Define the self-adjoint operator ~I in L2(N) by 

(3.13) 

Hf  = ~f, 

f E D(~I) = {g E L2(1R) I g, g' E ACloc(l~); ~'g E L2(I~); 

lim W(~+(A),g)(x)  = 0 if ? is I.e. at + oo}. 
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( I f?  is l.p. at +cx) and~or -oo, the corresponding boundary condition in (3.13) 
is to be deleted.) Denote by ~(z, x), "O(z, x) the fundamental system of solutions of 
(? - z)~b(z) = O, z E C, with initial values as in (3.8). Then the limits 

(3.14) f f ~ ( z ) = -  lim W(~(A),O(z))(x) 
x - ~  W(~(~), ~(z))(x)' 

z e c \R ,  o e { - , + }  

exist and represent the Weyl-Titchmarsh m-functions of H on the half-line (xo, cr{x) ). 

P r o o f  First suppose that ? is l.p. at crc~ and z E C\R. Then 

(3.15) 

W(~,,(A), O(z))(x) O(z,x) + tan(~3(x))O'(z,x) 

W(~(A),  ~(z))(x) c~(z,x) + tan(~3(x))~'(z,x)' 

cot(/3(x)) = -~7" (A, x)/~o (A, x) 

converges to ff~,,(z). This does not quite represent the typical Weyl limit point 
consideration in which one usually involves an x-independent boundary condition 
parameter/3 E [0, 7r). However, due to the l.p. hypothesis made, the Weyl disks 
shrink to a limit point and the x-dependence of  13(x) in (3.15) becomes immaterial 

in the limit x ~ croo. 
Next, assume ? is 1.c. at croo. Then ~(z, �9 ), 0"(z, - ) E L2((R, croo)), R E I/L and 

hence the limits 
(3.16) 

lira W(q~(A),~(z))(x) =W(~o(A), ~(z))(x0) 
X ~ O ' O O  x/ 

+ (z - A) dx'~o(A,x')~(z,x') for 2(z,x) = O(z,x) 
( 7 O O  

exist. Actually, the limits in (3.16) not only exist but they are also non-zero, since 
otherwise one could construct self-adjoint operators with boundary conditions at 
cr~ induced by ~(z,x) or "O(z,x) with associated eigenvalue z E C\R. 

Next, consider the function 

r = ~(z,x) + ~(z )~(z ,x ) ,  z e c \~ ,  

where ffz~,(z) denotes the m-function associated with H on (x0,aoo). Since by 
construction, ~,(z,  x) satisfies the boundary conditions of H at aoo, one infers 

O =  lim W(~,~(A),~(z))(x) 
X ~  0 " 0 0  

= [xlimoo W(~(A), 0"(z)')(x)] + fft~,(z) [x~lim W(~(A),  ~(z))(x)] , 
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and hence (3.14) again. [] 

Applying Lemma 3.1 to/~/(~,s), we obtain as our first major result the following 
expression for the half-line Weyl-Titchmarsh m-functions of/z/(~,~) in terms of 
those of H. 

T h e o r e m  3.2 Assume (H.2.3). Given H and/-/(#,,~) by (2.3) and (2.32), respec- 
tively, denote by m• (z) and m(#,a),• (z) the corresponding m-functions associated 
with the half-lines (xo, +~).  Then 
(3.17) 

rh(~,~),• - z - ~ m• /2 - ~_ m-a(f~), fi # #, 
z - #  z - #  

xo -1  

fn(;~,~),• : m• - ( f dxq~(#'x)2) Z-#I, ( / 2 , # ) = ( # , - a ) , z E  C\R. 
0"0~ 

P r o o f  Combining (3.11), (3.5), and (3.6), one computes rh(#,~),~(z), 0J E { - ,  +} 
either from 

= [ O(z))(x) ] lim W((b~(~z),O(;,,e~)(z))(x) z -  # - l i r a  
I 

z /2 (3.18) 
/ 2 - #  _ m_a(/2) 
z - / z  

or from 

(3.19) 

- [ W(~b_o(/2),O(z))(x)] lim W(~b_~(#),O(~,~)(z))(x) z # -xf im~ W(~b_~(#),ck(z))(x) 

2 - #  
_ m _ a ( f z )  

z -  lz 

(or from both), depending on Cases I-III in (2.32)-(2.35) by applying Lemma 3.1 
to/Z/(~,~) and H. [] 

An examination of rh(~,a),• (z) in (3.17) then reveals the following behavior near 
# and/2. 

Corol lary  3.3 (i) Suppose Iz,/2 E (Eo, El), /2 # # or # E {E0, E1 } n ~7d(H ), 
/2 E (E0,E1). Then, rh(~,~),_~(z) is holomorphic in a neighborhood of~2 whereas 
rh(6,~),~(z) has a simple pole at fz with residue 

(3.20) lim(z - 12)rh~,#),~(z) = (/2 - #)Imp(/2) - m_~(/2)] # 0. 
Z---*/z 

Both rh(~,,~),+ (z) are holomorphic in a neighborhood of#. 
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(ii) Assume # = [z E (Eo,E~), 6 = -or. Then th(~,~) _~(z) is holomorphic in a 
neighborhood o f  [z whereas ~n(;,,~),~ (z) has a simple pole at ~ with residue 

(3.21) 

.~0 -1 

(i i i)Assume # 6 (Eo,Ej), ~z E {Eo ,E l }Naa(H)or  #,Tz E {Eo,EI}NCrd(H), /z r [z. 
Then rh(~,~),• (z) are both holomorphic in a neighborhood o f  l~ and [z. 

Proof Observing that 

(3.22) mc,(z) = c ~ ( z - u ) - l + O ( 1 ) ,  cr E I~\{0}, m_o(z) = O(1), ~z E (A0, Al), 
Z ----}/t Z . ~ / 2  

(3.23) m• = c •  -1 + O(1), c• E IR\{0}, c:~ <>0, tz E od(HD) ncr(H), 
Z ~ / ~  

cases (i) and (ii) are a straightforward consequence of (3.12), (3.17), and the fact 
that m_ (/2) r m+(12) since/2 ~ ad(H). For (iii) one observes, in addition, that first, 

m_(~) = m+(~) since/~ E ad(H)\aa(H ~ 

by hypothesis, and second, 

(3.24) l im(z  - )Qm• exists for all A 6 [E0,EI] 

since +me (z) are Herglotz functions (and Cress(H) n [E0, Eli = O). [] 

As we will explore in more detail in the next section, Corollary 3.3 (i) for 
#, t2 E (E0, El), /~ # /~ just means the Dirichlet datum (/z, a) gets changed into 
(/~, 8) and (ii) illustrates the "flip" of the Dirichlet eigenvalue # from one half- 
line (x0, cry) to the other, (x0, - c ry ) ,  changing (/z, ~r) into (#, -or). The remaining 
cases represent non-isospectral deformations of H where the eigenvalue # E aa(H), 
respectively, ~ E ae(H), or both, ~,/2 E ~ra(H) are actually "knocked out" of the 
spectrum of H (i.e., do not belong to ~r(/:/(),~)), respectively, ~r(/-:/~)). 

Corollary 3.4 Let z E C\{cr(H) U {#}}, it E (Eo, Ej ). Then ~([z ,x ) ,  ~k_~(#,x), 
# ~ [z, and (U(f~,#)(z))~b+(z))(x) satisfy the boundary conditions of[-l(f~,~) (if  any) 
at (r~, - a m ,  and +cx~, respectively. In particular, 

lim W(~,,(t2),~)(x) = 0, 

lim W(~_,,(a),~)(x) = 0, # ~ ~, (3.25) 

lim W(U(z,~)(z)r177 = 0 
X ~  :5::cr 
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for all ~ e D(H(;,,a)). Moreover, 

(3.26) 

(justifying the notation we chose for ~a([z,x) and ~_~(tt,x)). 

P r o o f  Let [L ~ ~, ,~ denote the Dirichlet operators (2.37) corresponding to "?(z,a) ~/z, ), 

on the half-line (x0,~oo), o~ C { - , + } .  Since rh(~,a),a(z) has a pole at z = /2 by 
Corollary 3.3, one infers/2 E crd([-l~-,,a),~ ). Moreover, since (5~,~) -/2)r = 0 

and ~a(/2,x0) = 0 (cf. (2.29)), ~'a(/2,x) is the corresponding eigenfunction of 
/z/o and hence ~e,(/2) ~ D(/7/~,a),~) satisfies (3.25) and (3.26). In the case of (~,a),a 
~_~(~z,x), U #/2, one verifies that 

,t ~ ~ X rh(~,a),_~(#) = m_a(t 2) = W_z,(tz,xo)/~b,a(t~, o) = ~b'_o(#,xo)/~-~,(U, xo) 

and hence (3.25) and (3.26) are valid for r  Finally, as a consequence of  
(2.15), one infers that 

(3.27) r177 = c• + m:~(z)r z e C\~(H) 

for some constants c• Combining (3.11), (3.17), and applying U(~,a)(z) to 
(3.27) results in 

(3.28) 
((u(~.o)(z),+(z))(x) = c:~(z)~=--~u~ [~(~,e) (z, x) + en(~,o~(z)$(~.~)(z,x)], 

z e C\{o(H) u {~}}. 

Clearly, (3.28) proves that U(~,~)(z)~:L (z) satisfy (3.25) and (3.26). [ ]  

Given the fundamental relation between rh(~,,o),• and mi(z) in Theorem 3.2, 
we can readily derive the ensuing relation between the corresponding spectral func- 
tions tS(~,,a),+__ (A) and p+ (),) associated with the half-line Dirichlet operators/-/~,a),• 
and H~ ~ The right-continuous non-decreasing functions p+ (,~) and tS(~,~),+ (,~) are 
defined for >, E II~ by 

(3.29) P i ( t )  - p:~(A') = ~limlimrr-iag0 ,~o f du Im [m+(u + ie)] 
,V+6 
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and 

(3.30) 

),+6 

" A' = I ~(~,a),i(A) - PC~,a),:~( ) +limlimTr-I dv Im [mcma),• + i~)]. 
6jO ~I0 J 

A'+6 

This sets up the second major result of this section. 

T h e o r e m  3.5 Assume (H.2.3). Let H o and [1 ~ denote the Dirichlet (#,a),• 
operators (2.4) and (2.37), and dp• (A) and d#(#,a ),:~ (I) the corresponding spectral 
measures generated by p~: ( ,k ) and/5(~,a),:L(A), respectively. Then 

(3.31) 

d#(~,,~),+(A) : a #i 

+ ( / 2 - # ) {  0' 6 = q :  }d0(A-12) ,##12 ,  
[ m _ ( ~ )  - m + ( ~ ) ] ,  a = + 

(;,, a )  = (~ , , -o ) ,  ~ e •. 

1, x > 0 ,  
HereO(x)= O, x < O .  

Proof  Inserting (3.17), for # # ~ (for simplicity) into (3.30) yields 

(3.32) 

" A '  #(~ ,~ ) ,+ ( , x )  - pr ) = 

,I+6 

f {~2+(u-#)(u-#) Im[m• • lim lim rr- l du 
~o .0 ~;-- ~ ~ 

M+6 

~ - ) S T d { m _ ~ ( ~ )  - Re [m• + iE)]} �9 

Since 

(3.33) 

m• are real-valued for v e [E0, E,]\{/~}, 

Im[m• + i0)] dv has no support in a sufficiently small 

neighborhood of 12 (since 12 E IE0, Eli\{#}), 

(3.34) edu ~ dO(u - [z) weakly, 
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(3.35) 
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- i  lm[m-~(u + i~)]du ~10 dp.~(u) weakly [49], 71" ) 

lim(=f=ieTr-im~(A + i~)) = p=(A) - p• - 0), 
~.~0 

(3.36) lim(q:ieTr-im-(A + iE)) < p~(El) - p• - 0), A E [E0,Ei], 
~ 1 0  - - -  " 

[~Tr-lm• cE[0 ,  c0], AE[E0, E t ] f o r s o m e c 0 > 0 ,  C > 0 ,  

(3.32) implies (3.31 ) for/z r 12 by splitting the integral in (3.32) into a sufficiently 
small interval around ~ (if #2 E [A', A]) and the remaining intervals (applying the 
dominated convergence theorem). The case (fi, 6) = (tz, - a )  is treated analogously. 
[] 

R e m a r k  3 .6  If #2 # #, the factor (A - #~)/(A - IT) # 1 in (3.31) shows that 
the half-line Dirichlet deformation method H~ ~ --+ /7/o affects all remaining (~,,,~),~ 
norming constants corresponding to eigenvalues of H E. More precisely, denote by 

xo - 1 

• 

= p = ( A •  - p + ( A •  - o )  

the norming constant associated with A:,.  E ap(H~ A• # # and denote by 
~.2(~,~.),• the one associated with A:~,n E O'p(f'/~,6.),• Then 

(3.37) -2 )~• -- /~ C2 C(~,,~),=,n- ~ -~ +,n" 

Only in the case (/2, 6) = (#, - c  0 do the remaining norming constants stay invariant, 

(3.38) -2 C(t~ _ o ) , + , n  = C 2  n . 

In fact, the deformation (#, ~r) ---, (#, - a )  coincides with the isospectral case of  the 
double commutation method considered in Appendix B (cf. Remark B.3(i)). The 
corresponding invariance in (3.38) was originally proven in [19]. 

Theorem 3.5 implies the following half-line deformation result. 

T h e o r e m  3.7 Assume (H.2.3) and denote by H ~ and [-I ~ the half-line 
_ (~,,~),• 

Dirichlet operators (2.4) and (2.37). 
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(i) Suppose #,/2 E (E0, El ). Then 

(3.39) 

-o  / {"~'>(t-/~176 ~  
o~)(H<~,~),o) = t ,~p)(H_~ u {/2}, ~ = - 6 ,  

- o  J" o~p) (H~) \ {#} ,  o = - , ~ ,  
~ = '[ O~p)(HL,) o = 6, /2 ~ ~ 

(ii) Assume U E {Eo, El } n crd(H), /2 E (Eo, El). Then 

(3.40) 
-D cr(p)(H(f,,~),~) = {cr(p)(H~)\{#}} U {/2}, 
D ae)(H(~,~),_o) = a(p)(H_~ /2 ~ a(H~.o),-o). 

(iii) Suppose # E (E0, El ), ~ E {E0, El } A ffd(H). Then 

(3.41) 
~ '  ( H ~ ) \ { u } ,  Or(p) (Hfi,a) = O'(p) 

O (H_~ /2 r o'(H~,~:). 

(iv) Assume #,/2 E {Eo, El } A ad(H), # r p. Then 

(3.42) - D  . ~ / ( H ~ , •  ' /2r  - o  a(H~,+ ). 

(Here a(p)(. ) denotes Cr( ) or ap(" ) (the point spectrum, i.e., the set of  eigen- 
values) and we recall our occasional use o f  the notation ofH;,,~_- O instead of[1~,o), 
if~2 E ad(H), c f  the paragraph preceding Lemma 2.2.) 

(v) 

(3.43) ~D D 
O'ess,ac,sc(H(t~,~,),• = Cress,ac,sc(n• 

Moreover, [t ~ and H D, restricted to the orthogonal complements of  the (at (fz,~ ), + 
most one-dimensional, possibly equaling {0}) eigenspaces corresponding to/2 and 
#, are unitarily equivalent. 

Proof  This is a direct consequence of Corollary 3.3, Theorem 3.5, and the fact 
that half-line spectra corresponding to separated boundary conditions are simple. 
In particular, we note that by Corollary 3.4(i) and (iii), rh(~,~),:~ (z) are holomorphic 
in a sufficiently small neighborhood of # and/or/2 whenever they belong to Crd(H). 
[] 

As long as #,/2 E (E0,El) and hence #,/2 ~ ad(H), (3.39) just says that the 
Dirichlet datum (#, a) associatedwith H ~ = H~176 got changed into the Dirichlet 
datum (/2, 6) associated with /~D(t2,#) = /~D(t~,~r), - @ /r.~D(;,,e),+. The cases (ii)-(iv) 
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examine all remaining possibilities where ~z and/or 12 belong to aa(H) and possibly 

~ra(H~) in which case, however, they no longer belong to aa(/:/~,~)). 

We have yet to show that our choices I-III  of  boundary conditions of/:/(~,~) in 

(2.32)-(2.35) are indeed the only ones that lead to our fundamental formula (3.17) 
as claimed after (2.35). We only need to focus on l.c. cases and hence assume 

that ~ is l.c. at +oc. By Lemma 3.1, the m-functions rh(~,o),• of  f/(~,~) can be 

computed as follows, 

(3.44) m(h,o).• = - lim W~(A),0(f,,o)(z))(x) 
~ - ~  w(~(A), $(~,o)(z))(x)' 

where (?(~,~) - AN(A ) = 0 for some A e /1~. Consider a corresponding f(A,x) 
satisfying (r - A)f(A) = 0 andj~(A) = U(z,e)(A)f(A). Then (3.44) becomes 

(3.45) 
z - . [  . w(u(~ ,~) (~ f ( .~) ,u~ ,~) (z )O(z) ) (x )]  / 2 - ~ ' m _ ~ ( ~ ) .  

,h(~,~),• = z /2 - x ~ m  w(u(~,~)(~lf(~) ,  u(r,,~)(z)r z - / 2  

Applying (3.7) to (3.45) then yields 

(3.46) 

Z t2 rh(~,~),+(z) + m-e~(/2) = - (A -/2)W(f(A),c~(z))(x) 
z /~ z - / 2  x 

(.x - z)(/2 - ~) w ( ~ ( ~ ) ,  r ~_o (/2))(x) ]. 
1 

z - ~ w ( r  (~), ~_o(/2))(x) / 
(A - (A - z)(/2 - #) W(~b~(#), O(z))(x)W(f(A), ~b_o(/2))(x) 

/2)W(f(A), O(z))(x) 
z - u w(~, , (u) ,~_~(/2)) (x)  ]" 

In order to reproduce (3.17), the right-hand side of  (3.46) would have to equal 

( 3 . 4 7 )  - l i m  WQI(A),O(z))(x) = m• 
x - ~  W(~(;~), r 

for some real-valued solution r/(z, x) of  (~-- A)~b(A) = 0 which satisfies the boundary 

conditions of  H at ~:oo. Clearly, f (A,x)  = ~b~,(#,x) andf (A,x)  = ~b_~(/2,x) are 
distinguished in (3.46) and these were precisely the cases we singled out in (2.32)-  
(2.35). No other choice o f f (A,x)  in (3.46) is compatible with (3.47). 

w Spectral and WeyI-Titchmarsh matrices, isospectrai deforma- 
tions 

In this section we prove our principal results including explicit computations 

of  the Weyl-Titchmarsh and spectral matrices of/:/(~,o) in terms of  those of  H. 
Moreover, we provide a complete spectral characterization of/-/(~,o) and/7/~,~) in 

terms of  H and H D. 
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We start with the Weyl-Titchmarsh matrices for H and/z/(~,~). To fix notation, 
we introduce the Weyl-Titchmarsh M-matrix in C 2 associated with H by 
(4.1) 

M(z) = (Mp,q(Z) )l<p,q<_2 

= [ re - (Z) -m+(z) ]  -1(m_(z)m+(z) 
[m_ (z) + m+ (z)]/2 

z 6 C\R 

[m_(z) +m+(z)]/2 ) 
1 

and similarly, in connection with/z/(~,~), by 
(4.2) 

M(~ ,~ ) ( z )  = (~t(r 
= [ ' ~ / ~ , ~ ) , -  (z)  - ,~( ,~,~) , .  ( z ) ] -  1 

x (,:n(;,,~),_(z)r 
[rh(~,o),_ (z) + rh(~,a),+ (z)]/2 

z 6 C\R. 

[r~/~,~) _ (z) +rh(~,a),+ ~z)]/2 ) 
1 

An application of  Theorem 3.2 then yields 

T h e o r e m  4.1 Assume (H.2.3) and z 6 C\R. Given H and/z/(~,~) by (2.3) and 
(2.32), respectively, their Weyl-Titchmarsh M-matrices are related by 

/17,/(~,o)a,l (z) _ z - ~ MIA(Z) - 2/2 - ~ m_~(/2)M,,2(z) 
z - #  z - #  

(/2 -/~)2 m-~(/2)2M22(z), 
( 4 . 3 )  + (z - ~ ) ( z  - / 2 )  ' 

(4.4) /(4(~,~),t,2(z) = MI,2(Z) /2 - # m-~(/2)M2,2(z), 
z - #  

(4.5) 2f/(~,~),2,2(z ) _ z - 12 M2,2(z), /2 # #. 
z - #  

Equivalently, 

(4.6) 

iVI('fi'o)(Z) = (Z-- #)-I(z-- /2)-I ( z -  Z-(/2; #)m-~ ) 

• M(z) ( Z-  # O )  
- ( / 2  - u ) m - ~ ( / 2 )  z - / 2  ' z ~ c \ ~ .  

The case (/2, 69 = ( # , - a )  follows by a straightforward limiting argument (see 
(3.12), (3.17), and (3.31)). 

P r o o f  This is just  a combination of  (3.17), (4.1), and (4.2). [] 
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We note that (4.3) can be written as 
(4.7) 

M(i"a)""(z) - z ~ ' -Z--~ -Z " 

A close examination of/f/(Z,o)(z) then reveals the following behavior near # and/~. 

C o r o l l a r y  4.2 )15/(~.~) (z) is holomorphic in a neighborhood of p and [z (for all 
values of it and [~ admitted by (H.2.3)). 

P r o o f  It suffices to examine the pole structure (or better, the lack thereof) of  
l~4(~,O),p,p(Z), p = 1,2 since det[.~/(z)] = - �88 then controls that one of M(~i,~),l,2(z) 
as well. The proof then proceeds along a case-by-case study depending on whether 
#, respectively/~, lie in (E0, El ) or in {E0, El } A ad(H). More specifically, one uses 
(3.26)-(3.28), 

(4.8) 
m_(~) = m+([z), M2,2(z) = c(z -/-2) -1 + O(1), 

Z~,u 

if and only if/2 C ad(H)kod(H D) 

e 

and 

(4.9) M2,2(z) = c ( z - p ) + O ( ( z - # ) 2 ) ,  cE/ l~\{O}for#E[Eo,El]nad(H~ 

The holomorphy assertion then follows directly from (4.5) and (4.7). 

Given the basic connection between M(~,~)(z) and M(z) in Theorem 4.1, we 
can now proceed to derive the analogous relations between the spectral matrices 
15(~,~) (A) and p(A) associated with/-/(~,~) and H, respectively. The right-continuous 
non-decreasing matrices p(A) and tS(~,,~)(A) in C 2 are defined for ,~ E II~ by 

p()k) = (Pp,q('~))l<_p,q<_2, /9(/~,fi)("~) = (P(~,8"),p,q('~))l<_p,q<_2, 

(4.10) p(A) - p(A') = limlimTr-l~.to ~1o f du Im[M(u + ie)], 
) , '+6 

(4.11) 

A+6 

~5(~'s)(A) - 15(~'~ = l imlim 7 r - ~ e t 0  ~to f du Im[/174(~,o)(u + ie)]. 
M+6 

The result for t](~,a)(A) in terms of that of  p()Q then reads as follows. 
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T h e o r e m  4.3 Assume (H.2.3). Given H and/-/(#,e) by (2.3) and (2.32), let 
dp( )~ ) and d#(#,~ ) ( ~ ) be the corresponding C 2-valued spectral measures generated 
by p( )~ ) and ~(;,,~ ) ( )~ ), respectively. Then 

(4.12) 

(4.13) 

(4.14) 

dr ()~) - ~ - ~ dpl,1 ()Q /2 - # m - )~ # - 2 A  /2-o(#)dpl ,2(/~) 

(/2 - u ) 2  
4- (A ---~7(~ C/2) m-~(/2)2 dp2,2(A), 

d/5(s = dpl,2(A) /2 - I'z m-a - ( / 2 )dpz ,2 (A ) ,  
A - #  

dp(/2,0),2,2()~) -- /~ - /2  dp2  2()~), /2 • #. 
A # ' 

Equivalently, 

(4.15) 

( ) ~ - #  (/2 #)m_~(/2) ) d/~(/2,6.) (,~) = ()~ __ #)-1 ()~ __/2)-1 0 ~--  ; 

0) 
x dp()Q -(/2 - #)m_~(/2) ,X - / 2  ' /2 r #" 

The case (/2, ~) = (#,-~r) follows by a straightforward limiting argument 
(cf. (3.12), (3.17), and (3.31)). 

P roo f  It suffices to consider tS(~,~),2,2(A), the remaining cases being analogous. 
Equation (4.5) and 

Im[/IS/(6,~),z,2(u + ie)] -e2 + (u - #)(u -/2) im[M2,2(u + ie)] 

(/2 - u ) ,  
+ (u - #)2 + e2Re[Mz,2( u + ie)] 

show that one can follow the proof of Theorem 3.5 step by step involving (3.34)- 
(3.36) (replacing m+ (z), p+ (•) by M2,2(z), p2,2()Q, etc.). [] 

This finally leads to the principal spectral deformation result of this paper. 

T h e o r e m  4.4 Assume (H.2.3) and let H, [/(~,~), H ~ and H~,~) be defined by 
(2.3), (2.32), (2.4), and (2.36), respectively. 

(i) Suppose #,/2 E (E0,E1). Then I-I(;,,#) and H are unitarily equivalent. 
Moreover, I-I~,# ) and H D, restricted to the orthogonal complements o f  the one- 
dimensional eigenspaces corresponding to/2 and #, are unitarily equivalent. 
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(ii) Assume # E {E0, El } M gd(H), /2 E (E0, E1 ). Then 

(4.16) Or(p) (/Z/(R,~)) = a(p)(H)\{/.t}, 

(4.17) - D  o-(p) (H(R,a)) = {cr(v ) (HD)\(#} } U {/2}. 

(iii) Suppose # E (E0, El ),/2 E {E0, El } A O'd(H ). Then 

( 4 . 1 8 )  o-(p) (IT/j) = o ' ( i , ) ( H ) \ { / 2 } ,  

(4.19) a(p)(kD) = Crcp)(HD)\{#}, /2 !~ (7(f/D) �9 

(iv) Assume #,/2 E {E0, E1 } n aa(H), # ~/2. Then 

(4.20) Or(p) (/T/j) = a(p)(H)\{Eo, El }, 

(4.21) a(p)(/T/D) = (X(p)(H~ /2 it a(/Z/D). 

In cases (ii)-(iv), the corresponding pairs o f  operators, restricted to the obvious 
orthogonal complements o f  the eigenspaces corresponding to # and~or/2, are 
unitarily equivalent. In particular, 

(4.22) cress,.c,s c (ft(R,6.)) ~ D = O'ess,ac,sc(H(R,6)) = O-ess,ac,sc(H o )  - -  Cress,ac,sc(H ). 

P r o o f  This is a direct consequence of Corollary 3.3, Theorems 3.5, 3.7, and 4.4, 
and the orthogonal decompositions of H D = H o ~ HD+ , ~-]O __ I-]O rr~ ~-lO - (R,~) - -  (R,~) , - ' -~  (R,~),+" 
Moreover, in connection with case (iv), one observes that # E ad(H) n Crd(H o) 
necessarily implies that/2 E {{E0, Ej } F~ ad(H)}\{/~} cannot lie in (rd(H o) (i.e., two 
consecutive discrete eigenvalues of H cannot both belong to the spectrum of  HD). 
[] 

R e m a r k  4.5 Perhaps the most spectacular consequence of Theorem 4.4(i), from 
an inverse spectral point of  view, is the fact that any finite number of  deformations 
of Dirichlet data within spectral gaps of V yields a potential f '  in the isospectral 
class of  V. No further constraints on (#j, aj), (/2j, 6j), other than (#j, crj), (/2j, bj) E 
(Ej-I,Ej) x { - ,  +}, (Ej_I,Ej) E I~\a(H),j = 1, . . .  ,N, N E N are involved. 

On an intuitive level, the Dirichlet deformation method amounts to the following 
two-step procedure. In the first commutation step, effected by ~b,,(#,x) in (2.19), 
the Dirichlet eigenvalue # E (E0, El) associated with H = - d 2 / d ~  + V on the 
interval (x0, (zoo) for some xo = x0(/a) E IR is moved to oo, thereby producing a 
singular intermediate potential deformation of  V(x) in the process. The second 
commutation step, effected by ~b_~ (/2, x) in (2.19), then moves back this "Dirichlet 
eigenvalue" from do to /2 E (E0,El) associated with the interval (x0,6oo). In 
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the latter process, the resulting deformation f'(~,~/(x) becomes regular again (i.e., 
W(~,a) (x) ~ 0, x E I~) and isospectral to the original base potential V(x). 

We conclude this section with a series of remarks. A variety of additional results 
and possible extensions in connection with the Dirichlet deformation method will 

be presented in Section 5. 

R e m a r k  4.6 (i) The isospectral property (i) in Theorem 4.4, in the special case 
of periodic potentials V(x), has first been proven by Finkel, Isaacson, and Trubowitz 
I12]. Further results can be found in Buys and Finkel [4] and Iwasaki [32] (see 
also [40]). Similar constructions in connection with SchrOdinger operators on a 
compact interval can be found in Prschel and Trubowitz [48] and Ralston and 
Trubowitz [49] (see our discussion in the introduction). 

(ii) By inspection, Dirichlet deformations produce the commuting diagram 

(/~2, a2 ) 
Z \ 

(/~1, O'1) , (/Z3, O'3) 

for (#j, ~rj)E [E0,Ei] x {- ,  +}, 1 _<j < 3 according to (H.2.3). 
(iii) Let # E (E0, E1 ). Then the (isospectral) Dirichlet deformation (#, (r) --, 

(/~, - a )  is precisely the isospectral case of the double commutation method consid- 
ered in Appendix B (see Remark B.3(i)). It simply flips the Dirichlet eigenvalue # 
on the half-line (x0, croo) to the other half-line (xo, -rroo). In the special case where 
V(x) is periodic, this procedure has first been used by McKean and van Moerbeke 

[461. 
(iv) In analogy to Remark 3.6, the Dirichlet deformation method as displayed 

in (4.12)-(4.14) changes magnitudes of discontinuities of p()~) at all eigenvalues 
An 6 o'p(H) as long as/2 ~ #. Even in the special case (/2, 0) = ( # , - a )  discussed 
in item (iii) above, one obtains invariance of the magnitudes of jumps at An only 

for the spectral matrix element p2,2()~). 
(v) In the non-isospectral cases (ii)-(iv), a combination of the present Dirichlet 

deformation method with the double commutation method in Appendix B can 
restore isospectrality by inserting an eigenvalue at #,/2, or both. 

R e m a r k  4,7 In certain cases where the base (background) potential V is 
reflectionless (cf. (5.6)) and H is bounded from below and has no singularly 
continuous spectrum, the isospectral class Iso(V) of V (the set of all (/'s such that 
~r([-l) = a(H)) is completely characterized by the distribution of Dirichlet (initial) 
data (#j+l (x0), aj+j (x0)) E [Ej, Ej+I] x {- ,  +}, j  E J in non-trivial spectral gaps of H. 
Herex0 E ~ is  afixed reference point andJ  = {0, 1,... , N - 1 } , N  E Norj  E J = 1~0 
(= 1~ u {0}) parametrizes these non-trivial spectral gaps (Ej, Ej+l) of H (the trivial 
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one being ( - ~ , i n f a ( H ) ) ) .  Prime examples of this type are periodic potentials, 

algebro-geometric quasi-periodic finite-gap potentials, and certain limiting cases 

thereof (e.g., soliton potentials). In these cases, an iteration of  the Dirichlet 

deformation method, in the sense that (#j+l (x0), aj+l(xo)) ---, (~j+l(XO), 6-i+l(X0)) 

within [Ej, E-i~-i] • { - ,  +} for each j E J, independently of each other (cf. (5.4), 

(5.5)) yields an explicit realization of  the underlying isospectral class Iso(V) of 

potentials with base V. In the periodic case, this has first been proved by Finkel, 

Isaacson, and Trubowitz [12] (see also [4], [32[). More precisely, the inclusion of 

limiting cases #j+l (xo) E {E i, Ej+l } n c~e~(H) requires a special argument (since it 
is excluded by (H.2.3)) but this can be provided in the special cases at hand. 

R e m a r k  4.8 Another case of primary interest concerns potentials V with purely 

discrete spectra bounded from below, that is, 

ty(H) = ad(H) = {Ej}jcN,, - c~  < Eo, E) < E)~_,, j E No, 

o-~(H) = O. 

(For simplicity, one may think in terms of the harmonic oscillator V(x) = x 2, [38], 

[451.) In this case, either 

E (Ej ,  • (-,+} 

o r  

uj -I (xo) = Ej -i = ;zj+2(xo),  

that is, Dirichlet eigenvalues necessarily meet in pairs whenever they hit an eigen- 

value of  H. The following trace formula for V(x) in terms of cr(H) = {Ej}jE~ and 

cr(Hx ~ = {tzj(x)}jE.~ (/4>.0 the Dirichlet operator associated with r = - d 2 / d x  2 + V(x) 
and an additional Dirichlet boundary condition at x -- y), proven in [24], 

(4.23) V(x) = Eo + l i m a  -I Z(2e- '~uAx) - e -':'Ej - e-OE~+'), 
j= l  

then shows one crucial difference to the periodic-type cases mentioned previously. 

Unlike in the periodic case, though, the initial Dirichlet eigenvalues #j~_ l (x0) cannot 
be prescribed arbitrarily in the spectral gaps (Ej, Ej+ l ) of  H. Indeed, the fact that 

the Abelian regularization in the trace formula (4.23) for V(x) converges to a limit 

restricts the asymptotic distribution of #j+~ (x) E [Ej, Ej+t] as j --, oo. However, 

as stressed in Remark 4.5, one of  the fundamental consequences of  this paper 

concerns the fact that there is no such restriction for any finite number of  spectral 

gaps of  H (see (5.4), (5.5)). In other words, only the tail end of  the Dirichlet 
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eigenvalues #j+~(xo) as j ~ cc is restricted (the precise nature of  this restriction 

being unknown at this point), any finite number  of  them can be placed arbitrarily in 

the spectral gaps (Ej, Ej+l) (with the obvious "crossing" restrictions at the common 

boundary El+ i of  (Ej, Ej+ l ) and (Ej+ 1, Ej,2)). This fact served as one of  our prime 

motivations for this paper. The only other known restriction to date on Dirichlet 

initial data (#j(xo), ai(x0)) is that aj(x0) = - and ai(x0 ) = + infinitely often, that is, 

both half-lines ( - ~ , x 0 )  and (x0, oo) support (naturally) infinitely many Dirichlet 

eigenvalues. 

The general characterization of  the full isospectral class of  operators with purely 

discrete spectra remains a (very interesting) open problem. It is quite surprising 

that more than sixty years after the founding of  quantum mechanics, the isospectral 

class of  the one-dimensional harmonic oscillator remains shrouded in mystery. 

Finally, it seems appropriate to comment  on the map from V to Dirichlet data 

alluded to in the introduction and describe the role played by the additional 

parameter needed in the Dirichlet data in the special case where eigenvalues of  H ~ 
and H coincide. 

R e m a r k  4 .9  Suppose H (and hence H o) has empty essential spectrum and 

is bounded from below. In order to show that the map from V to Dirichlet data 

(suitable interpreted to allow for eigenvalue coincidences of  H ~ and H)  is one-one 

when defined on the isospectral set of  V, one can use results in [23] and [24] as 

follows. Since the spectra of  both H and H ~ are purely discrete they determine the 

diagonal Green 's  function G(z, xo, xo) = [m_ (z) - m+ (z)] - 1 by formula (6.7) of  [24]. 

Moreover, since the Weyl m-functions are meromorphic,  we only need to know 

whether the pole of  G(z, xo, xo)- 1 at each z = # belongs to m+ (z) or m_ (z) in order 

to recover m+(z), that is, we need a as in (2.7). If/~ is an eigenvalue o f H  ~ and H, 

and hence a pole of  m_ (z) and m+(z), cr is not merely a sign but needs to contain the 

information about how the residue of  G(z, xo, xo)-: at z = # is distributed between 

m+ (z) and m_ (z) as discussed in Theorem 3.6 of  [23]. A convenient choice for this 

additional parameter  (see, e.g., [ 20]) would be a = (7+ - 3'- ) / (3"+ + 3"- ) E ( -  1, 1), 

where 3'+ denote the respective residues of  m+(z) at z = #. In this extended 

sense (when compared to (2.7)) the spectrum of  H and the Dirichlet data (#, a) 

uniquely determine V(x) for a.e. x E IlL These considerations are not confined 

to operators with purely discrete spectra but also apply to situations where H is 

reflectionless and has no singularly continuous spectrum. This has been discussed 

in the context of  Jacob• operators in [20] but analogous arguments work in the 

Schrrdinger  operator case. 

R e m a r k  4 .10  The additional parameter a0 introduced in Remark 4.9 in the 

case where E0 is an eigenvalue of  H and H D (and both have purely discrete spectra) 

can be tuned to produce all correspgnding isospectral potentials in Iso(V). In fact, 

the double commutat ion procedure (see Appendix B) allows one to add/subtract 
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'Tl to the residues of the Weyl m-functions (see (B.27)) as long as the term under 
the logarithm in (B. 14) does not become zero. 

In addition, one can use the following three-step procedure to generate a 

prescribed degeneracy at an eigenvalue E0 of H: 
(i) Use the Dirichlet deformation method to move # to a discrete eigenvalue 

E0 of H. (This removes both the discrete eigenvalue E0 of H and the (Dirichlet) 
eigenvalue # of H ~  

(ii) As a consequence of step (i), there is now another eigenvalue t2 of H o in the 

resulting larger spectral gap of H. Move/~ to E0 using the Dirichlet deformation 
method. 

(iii) Use the double commutation method to insert an eigenvalue of H at E0. 
Finally, use the method at the beginning of this remark to change or0 into any 

allowed value. 

Theorems 3.7 and B.2 then show that the resulting operator is unitarily equivalent 
to the original operator H, and (3.17) and (B.27) then prove that the remaining 
Dirichlet eigenvalues remain invariant. 

w Various additional results and possible extensions 

In our final section we discuss a variety of additional results and sketch 

possible extensions, including limit point/limit circle considerations, iterations of 
the Dirichlet deformation procedure, scattering theory, and general Sturm-Liouville 
operators on arbitrary intervals. 

We start with two limit point results. The first, although trivial from a technical 
point of view, nevertheless will apply in a great variety of situations. 

L e m m a  5.1 Assume (H.2.3) and define H and H ~ as in (2.3) and (2.4). Let 
a E {- ,  +} and suppose that one o f  the fo l lowing conditions (i)-(iii) holds. 

(i) ~ress(H~ ~ ~ 0. 
(ii) Gess(H~ ~ = 0 and H ~ is bounded f rom below. 

(iii) a(H ~ = crd(H ~  = {Eo,n}ncz with y~n~z(l + E2,n) -1 = oo. 

Then, both "r and ?(~,~) are in the limit point case at croo. 

Proof  Clearly, r is 1.p. at aoo if condition (i) holds since differential expressions 
being regular at x0 and l.c. at aoo can only generate self-adjoint operators in 

L2((x0, aoo)) with purely discrete spectra. (Indeed, all solutions of "r~b = Z~, z E C 
being in L2((x0, crc~)) yield a compact, in fact, Hilbert-Schmidt resolvent.) These 
spectra necessarily accumulate at +oo and -oo  (see, e.g., Lemma C.1 in [19] for 

a short argument based on principal solutions in Hartman's terminology). Finally, 
the Hilbert-Schmidt argument for the resolvent would lead to ~n~z( 1 + E 2)- I < c~ 

for the corresponding eigenvalues {En}nez in the 1.c. case at eoo. Theorem 3.7 then 
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shows t h a t / t  ~ shares the corresponding property (i), (ii), or (iii), rendering (~,~),~, 
?(~,~) l.p. at crcc as well. [] 

Our second limit point result is a bit more refined and tailored toward the 
Dirichlet deformation method (denoted as DDM for brevity in the remainder of  

this section). 

L e m m a  5.2 In addition to (H.2.3), assume that #, [z E (Eo, El), # r [z and 

= cr. Then ~-(i,,~) is in the limit point (resp., limit circle) case at woo if and only i f  

-c is limit point  (resp., limit circle) at ~ocx~, w E { - ,  +}. 

P r o o f  Assume that ~- is l.p. at aJoe and suppose the contrary for ~(~,,,), that is, 

suppose ?(h,,,) is 1.c. at woo and hence 

(5.1) ~(r(/2, '), '~-~,(#, ") E L2((xo,woo)). 

Since by hypothesis, r is l.p. at woo, both functions in (5.1) generate the same m- 
function rh(~,~),,,(z) associated with/-/(~,~) on (x0, cooe). This follows directly from 

(3.18) and (3.19). In particular, both ~,( fz ,x)  and ~b_,,(#,x) fulfill the boundary 

conditions of/z/(~,o) and the analog of  (3.25) at a~ee. As a consequence of  (5.1), 
we obtain existence, in fact, vanishing of  the limit 

lim W(~o(#) ,~_~(#))(x)  = O. 
X ~ C O 0 0  

Since by Corollary 3.4 ~,,(/~, .) E L2((x0,ooo)) and ~_~(#,  .) E L2((x0,-cre~)) 

satisfy 
lim W(~o(/~),~)(x) = 0, lim W(~_~(/2),~)(x) = 0 

for all ~ E 79(/Z/(~,,,)), we arrive at the following case distinction. Either 

(i) w = cr. Then ~_~(#) E D(/z/(~,,)) and hence # E ap(~l(~,o)), 

or 

(ii) ~o = - a .  Then ~,,(/~) E 79(/Z/(~,,,)) and hence ~ E ap(/z/(~,~)). 
Either way, since cr(/Z/(~,o)) = a(H) by Theorem 4.40), we get a contradiction since 

by hypothesis #, ~ E (E0, El ) c R\~r(H). If  r is 1.c. at ~oe~, suppose ?(~,~) is 1.p. at 
a~e~. By studying the reverse deformation (t2, a) --* (~, cr), r would have to be l.p. at 
woo by our previous argument. This contradiction shows ?(~,o) is l.c. at woo. By 

symmetry in r and ~(~i,~), the proof is complete. [] 

After these encouraging results, we shall take a chance (and possibly disappoint 
the reader) by describing a construction showing that DDM  in general neither 

respects the l.c. nor the l.p. case if 5 = -cr. More precisely, we will construct 
an example where we "hop" from l.c. to l.p. and then back to a l.c. case. This 

illustrates our warning raised in the paragraph following (2.3). 
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L e m m a  5.3 I f  5 = -a ,  the Dirichlet deformation method (as presented by 

(H.2.3), (2.3), and (2.32)), in general, neither preserves the limit point nor limit 

circle case. 

P r o o f  Let # E (E0, El) and choose H in such a way that r is l.c. at ac~ but 
l.p. at -(7oo by assuming Cress(H Do) ~ 0. Now consider the (sign flip) defor- 

mation (#,a)  ~ (#,-or) .  Clearly, "~(u,-o) is l.p. at - a o o  since aess(k~ o~ o) = 
aess(H_D~) ~ 0. However, we claim that "~(u,-o) is l.p. at ac~ as well. To prove 
this assertion, we suppose the contrary, that is, we assume "~(u,-~) to be i.c. at croo. 
Then the left-hand side of  the following identity (cf. (2.17)) 

0 " 0 ; 2  

is in L l ((x0, ac~)). However, the right-hand side is clearly not integrable near aoo, 
providing the desired contradiction. Hence, ?(u,-o) is indeed l.p. at +oo. A further 

sign flip, that is, ( # , - a )  ---, (lz, or), restores the original differential expression ~- 
which was 1.c. at cr~ (see Remark 4.6(ii)). Summarizing, 

(5.2) T ' ?(u,-,,) , (?(u _~))(u,~) = T, 

that is, in obvious notation, 

(5.3) o) (u, , (u, o), 
I.e. I.p. I.c. 

displays the required deformations. 

By Remark 4.6(ii) again, (5.3) can be modified to an example of  the type 

(# ,  (7) , (/.~, -or),  /.z,/~ E (Eo, E l  ), /.t r  
l.p. l.c. 

using the chain 

(u, o) , o) -o )  
l.p. l.p. I.c. 

(relying on Lemma 5.2 in the first step). 

Next, we briefly comment  on how to iterate DDM (see [4], [12]). 

V E L~o~(R ) and 
Suppose 

(En,En+l), # n + l , ~ n + l  E [En,En+l], ~ 1 7 6  E {-- , -}-}  
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satisfy (H.2.3) for each n = 0, 1 , . . . ,  N - 1, N E N. Then the Dirichlet deformation 

result after N steps, denoted by ~(~,,~) ..... (ZN,~), reads as follows: 

_ d 2 

(5.4) ~-(;"'~) ..... ( ~ ' ~ )  - dx 2 + ~'(~,,~,/ ..... (~ ,~) (x) ,  

l~'(~,,a,) ..... (~N,a.,)(x) V(x) - 2{In[W(~,,~, ..... (~,,,,~N)(x)]} , x E l~, 

(5.5) 
W(/~ 1,6-1) ..... (~N,~rN)(X) : W (  ~a| (Ul) ,  1/)-fi- (]~1) . . . .  , I~aN([-tN ), ffY-&t~(~tN ) )(X) 

(]A1 -- # 1 ) ' ' '  (~N -- UN) 

#,+j,[tn~-i E [E,,En-1], #~ ~ YZn, 0 < n < N - 1. 

In case (/~n0,~n0) = (#,~,-an0) for some 0 < no < N -  I, one amends (5.5) 

by replacing the pair (t2n o - #~o )-t  (~O~,o (t2n0), ~-~-o (/2no)) by (~o~ (#n0), ~'~-o (#no)) 
(where " - "  abbreviates d/dA). It should perhaps be pointed out that 

W ( ~ , ( ~ l )  . . . .  ,~_~N(ytN))(X) in (5.5) denotes a slightly modified 2N x 2N 

Wronskian of  solutions of ~-~(z) = z~O(z). In particular, it is understood that 

~"(z,x)  must be replaced by (V(x) -z)~P(z,x), and similarly for higher derivatives 

of ~b. At the end of  this process only ~, ~t, and V enter (5.5) and no additional 

smoothness on V is required. At this point each of  our previous results has an 

obvious counterpart in connection with (5.4), (5.5). 

Next, we will show that DDM leaves reflectionless potentials invariant. We 

recall that H (resp. V) is called reflectionless if and only if 

(5.6) for al lx E !t~, arg(G(A+iO, x,x))  = rr/2 for (Lebesgue) a.e. A E aess(H). 

Here G(z,x,x ' )  denotes the Green's function of H (i.e., the integral kernel of  

(H - z) - l )  and G(A + iO, x,x) = lim,+0G(A + ie,x,x) in obvious notation. As 

discussed in [211, (5.6) is equivalent to 

(5.7) m T ( A + i O ) = m _ ( A + i O )  fora.e.  AEae~s(H). 

This then implies 

L e m m a  5 . 4  Assume (H.2.3). Then/:/(~,~), is reflectionless i f  and only i f  H is. 

P r o o f  By (3.17) and Theorem 4.4, one observes that (5.7) holds if and only if 

th(~,a),+(A + iO) = rh(~,a),_ (A + iO) for a.e. A E crr = Cre~(H). [] 

Since 

(5.8) G(z,xo,xo) = [m_ (z) - m+(z)] -1, 
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we might add the fact that by (4.2) and (4.5), 

(5.9) G,(;,,~)(z, xo,xo) = z - / 2  G(z,  xo,xo), 
z -  tz 

where G(;, ,a)(z,x,x ')  denotes the Green's function of/z/(~,~). (5.9) again under- 
scores the change/~ ~ / 2  (but it stops short of  indicating cr ~ 6). 

In the following we describe how to define DDM for general Sturm-Liouville 
operators. To keep this section within a reasonable length, we only point out the 
major changes required in this context. 

V E L~oc(II~) real-valued, Xo E II~ ~ p - ' ,  q,k E L~oc((a,b)), kp E ACloc((a,b)) ,  

p > 0, k > 0, q real-valued, 

- o o  < a  < b  < oo, x0 E (a,b), 

f l ~ pfl 

(5.10) 

W( f , g ) (x)  ~ ~V( f , g)(x)  = f ( x ) p ( x ) g ' ( x )  - p (x ) f ' ( x )g (x ) ,  

L2(~) ~ L2((a, b); kdx), 

-r ---~ ? = ~ - ~ x  P(X)~_x + q(x  ) , x E (a ,b) ,  

~ ,~ )  --' ~-/~,~) : k - ~  - + 0/~,~)(x) , 

~(~,o)(x) = q(x) + ~ (k(x)p(x)) '  - 2 ~ p ( x )  a~x ln[l~'(~,#)(x)], 

~,/~,~)(x) = { ( /2-  ~ ) - i f f ( fo (u) ,r  u,/2 ~ [E0,e,], u ~ /2  
_ o r s  k(x,)dx,~(~,x,)2, (/2,6) = (u , -o ) ,  ~ ~ (e0,el) ,  

Since (a generalization of) Lemma 2.2 is actually proven in [25] for the general 
Sturm-Liouville case on (a,b), every result in this paper extends to the general 
setting in (5.10). In particular, the fundamental Theorems 3.2, 3.5, 3.7, 4.1, 4.3, 
and 4.4 (replacing 4~(#,x') 2 by k(x')4~(/~,x') 2 if (/2, 6) = ( # , - a ) )  do not change at 
all. 

Next, we turn to short-range scattering. Assuming temporarily 

(5.11) V E LI(!I~, (1 + [xl)dx ) to be real-valued, 
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the Jost solutions f •  (z, x) associated with V are defined as usual by 

(5.12) 
f+(z ,x )  = e § + / dx' z - I / 2 s i n [ z l / 2 ( x -  x ')]V(x') f=(z,x ') ,  z E C\{O}, 

:k,,,,o 

Im(z 1/2) >_ O. 

Denoting 

(5.13) f+(A,x) = l)mf+(A + iE,x), A > O, 
1o 

one obtains 

(5.14) 

t 

Rr(A ) . . . .  
f+(A,x) = f:F(A,x) + rT~-J~t,~,x), A > 0 

and 

(5.15) 

2iAI/2 
T(A) = W ( f _ ( A ) , f + ( A ) ) '  

Re(A ) = w(U_(A),T+(A)) Rr(A ) = _ w(U_(A) , f+(A))  A > 0 
W ( f _  (A),T_ (A)) ' W ( f _  (A),f+ (A)) ' 

define the scattering matrix S(A) in C 2 associated with the pair (H, Ho), where 
Ho = -d2 /d  12, D(Ho) = H2'2(R), 

(5.16) 
T(A) R~(A) ) 

S(A) = Re(A) T(A) ' A > 0. 

(5.12) and (5.14) then yield (see, e.g., [8], Section 2) 

f• { 
(5.17) 

r (A,x)-- { 

e +iM/2x + o( 1 ), x ---+ 4-9<), 

--T(l:~)e ~i~''% + T----(~eRr(A)~-i)~'/2x q- 0(1), x --+ ZFCx~, 

-4-i)d /2 e • + o( 1 ), x ---, -4-~x), 

zkiAI/"2 +jAil2 x I / 2 ~ e T i ) O " 2 x  r---t2SK e TiA + o(1), x ---, q:oo, 
A>O.  
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The following result proves that DDM preserves the class of L t (IR; (1 + Ixl) dx) 
potentials and computes the scattering matrix S(~,~)(A), 

(5.18) (~'-' A > 0 ,  s(~~)(:~)= k[~,~)(~) r(~,e)(:~) ' 

associated with the pair (/:/(~,a),Ho) in terms of  S(A) in (5.16) associated with 
(H, Ho). 

L e m m a  5.5 In addition to (H.2.3), assume #,/~ E (Eo, El) C ( - ~ ,  0). Then 

f'(~,~) ~ L * (n< ( 1 + Ixl) dx) if and only if V ~ L l (I~; ( 1 + Ixl) dx) and the scattering 
matrices S(~,~)(A) and S(A) in (5.18) and (5.16) associated with ([-l(~.a), Ho) and 
(H, Ho), respectively, are related via 

(5.19) 

T(~,o)(A) = T(1), 

_~ ~,/z T ia(-T,) '/2 ~'/2 • m ( - u )  '/z R'~(A), 
R[h,a)(A ) = Ai/2 •  I/2 AI/2 q : ia ( - -U) l /2  A > 0 .  

P r o o f  First, we prove that V E Ll(I~;(l + Ixl)dx) if and only if f'(m~) E 
Lt(R; (1 + Ixl)dx) for/~ r ft. We adopt the strategy of  Deift and Trubowitz [81 in 
their proof of Theorem 3.2 (which treats the analog of Lemma 5.5 in the single 
commutation context; see Appendix A and especially the paragraph preceding 
(A.32), (A.33)). Introduce 
(5.20) 

go(tZ, x) = ~o(tt,x)e ~ g_o(~,x)  = ~,_c,([z,x)e -c'(-;')'/'-x, t~ r ~z. 

Then Lemmas 2.1 and 2.6 of  [81 yield 

(5.21) go(# , x )=Co . •  +o( l ) ) ,  x~-4-cx~, 

with Co.• > 0, and 

(5.22) 
g'~(#,x) = o(1), Ixl ---, ~x~, 

g~(#, .) E L~162 NLI(I~; (1 + Ixl)dx) 

and similarly for g_a(~,x) .  Next, abbreviating W(x) = W ( ~ ( # ) ,  ~k-~(/2))(x), one 
computes, using (5.21), 

(5.23) 

l)'(t~a ) - V = 2W-2[W '2 - WW"] 

= {[6-(_/~)1/2 + ~r(_ll)l/Z]gog_~ + g,,g,_~ _ g_~g~}-2 

x 2(/2 - #){2&(-[z)l/ZgZg_~g'_o + 2cr(-#)l/Z&,gZ_ag~ 
~2 _t2 2 t2 

+ ~o8-e, - g-ago }, # # [z. 
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By (5.21) and (5.22), the right-hand side of  (5.23) is clearly in L l (~R; (i + lxl) dx) 

at least as long as (/2, 6) # (#,-or).  The case (/2, 6) = (#,-or)  leads to a rather 
cumbersome 0/0  expression in (5.23). Fortunately, this is quite irrelevant since 
we can simply apply DDM twice, that is, use the deformation sequence (#, a) ---, 
(/2, - a )  + (#, - a )  with/2 #/_t (instead of (#, a) --+ (#, - a )  in one step) by appealing 
to Remark 4.6(ii). This then proves ~'(~m) �9 LI(~;(  1 + Ixl) dx) if and only if 

V �9 LI(I~; (1 + [xDdx ) in all cases. 
Next, define 

~,~),• = (u(~,a>,:(~lf~(A))(x), ~ > o,/2 # .  

(cf. (3.1)). Then (5.17) yields 

All2 • i6(_/2)U2[e+i;d:2 x o(1)], 
~,a),___(A,x) = All2 + io.(_/_t)l/2 + 

(5.24) 

A l /2 4- i6(-/2 )l /2 [ T_~ erl:i,x'/2x 
.f(~,a),• = )0/24- i a ( -# ) l /2  + - -  

X ~ -4-0o, 

Rr(~) 

All2 :t= i&(_/2)1/2 AU2 :k i a ( - p )  1/2 eC_i~,tl,-x ] 
• A1/2 + ia(-/2)U2 .XI/2 q: &r(-#)l/2 + o(1) , x ---+ :t=oo 

~ g  

)0/2-+- i6(-/2) j/2 1 e+i;dl2 x + ( ~ , -  e~:i;~,l:x 
A ' /2+ia( -#)  112 7"(~.~) (A) ~ +o(1)  , 

x---, :t:oo, )~>0 ,  / 2 # u ,  

with T(:,o)(A), R r, e,~(A) as given by (5.19). Applying this two-step procedure to (D,-, 
S(D,o)(A) then proves (5.19) also in the remaining (sign flip) case (#, a) ---, ( ~ , - a ) .  
[] 

For simplicity we only considered the case #,/2 �9 (E0, E1 ) in Lemma 5.5. There 
is no problem in moving/2 to the boundary of the interval (E0, El ) as long as the 
boundary point in question is an eigenvalue of  H (i.e., different from E1 = 0). 
Indeed, in the case (#, a) --+ #2 �9 {E0, E1 } n ad(H), # �9 (Eo, El ), the analog of 

(5.19) then reads 

/~1/2 _ i(_/2)1t2 T(A), 
7"D(A) = All2 + i(_/2)1/2 

(5.25) 
~ l  

R;(a)  = 
)0/2 _ i(_/2)1/2 )0/2 -b ia(-/2) 1/2 Rer(A), 
A 1/2 7 ~  X -q75 :F icr(-/2) 112 

> o, (u,~) �9 (Eo, E~) x { - , + } ,  /2 �9 {Eo, E, } n od(H). 
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One observes that the transmission coefficient in (5.19) stays invariant with respect 
to DDM (since Lemma 5.5 describes the isospectral case ago)(//(~,~)) = crCo ) (H) 

as #,/2 E (E0, El)) whereas (5.25) exhibits a change of T(A) (as it must since now 
/2 E {E0,E1} f3 era(H) got knocked out of the spectrum of/-/(~,~), Cr(p)(H(~,~)) = 
a(p) (H)\{/2}). In this context we invite the reader to compare with the correspond- 

ing single and double commutation results in Appendices A and B (see (A.32), 
(A.33), and (B.35), (B.36)). 

R e m a r k  5.6 It should be pointed out at the end that the material in this paper 
is not at all confined to SchriSdinger or Sturm-Liouville operators. In fact, (a 

generalization of) Lemma 2.2 for general second-order finite-difference (Jacobi) 
operators appeared in [52]. Moreover, the discrete analog of DDM was used in [28] 

to construct an explicit realization of the isospectral torus for algebro-geometric 
quasi-periodic Jacobi operators. A detailed analysis of the discrete version of 

DDM will be given in [53]. 
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A p p e n d i x  A. The  s ingle  c o m m u t a t i o n  or  C r u m - D a r b o u x  m e t h o d  

We briefly summarize the main spectral characteristics of the single commutation 

method (abbreviated occasionally as SCM in this appendix). The principal source 
for the following material is the fundamental paper by Deift [7] (see also [8], [26], 

[50]). Further hints to the literature and to applications of this method in spectral 
theory and completely integrable systems are collected at the end of this appendix. 

Suppose 

(A.1) V E ~o~(I~) is real-valued 

and assume that the differential expression 

d a 
(A.2) ~- = -~--~ + V(x), x E R is non-oscillatory at both + c~. 

Denote by H the uniquely associated self-adjoint operator in L2(IR), maximally 

defined, that is, 

(A.3) 
H f  = T f ,  

f E D(H) = {g E L2(•) I g, g' EACloc(]I~);~'g E Lz(R)}. 
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Because of (A.2), H is bounded from below, 

(A.4) H_> E0, E0 = infa(H) > -oo. 

Next, let r177 (z, x), z E C\cre.~ (H) be the unique (up to constant multiples) solutions 

of 

(A.5) rr = zr  

satisfying for all z E C\aess (H), R E 

(A.6) r 1 7 7  a n d r 1 7 7  f o r A < E 0 .  

(The latter condition in (A.6) can always be achieved since r r 0 for 

A < Eo.) One defines 

(A.7) r = l (1-Ul)r162 ul E [-1, 1], AI < Eo 

(we identify r = r for notational convenience) and 

(A.8) 

(A.9) 
d d 

c,.,(.Xl) = ~ + r a"'('x~)+ = ---dx + r 

(We note that r (Al,x) # 0 for A~ < E0.) One infers that 

d 2 
(A.10) r=a~,,()~t)a~,,(.~l)+ + Al -- dx 2 + V(x) 

is independent of Ul E [- 1, 1] and A i < E0 and introduces a commutation of a~, (Al) 

and a., (A1)+. 

(A.11) 
~Vl ('~1) = O~v I ( '~l)+Otvl ('~1) "+ "~1 --  

(/,,, (A1 ,x)  = V(x) - 2{1n[r (A1 ,x)]}", 

d 2 
- -  dx---~ + f',, (,X~,x), x E R ,  

~l < Eo, vl E [-1, 1]. 

One verifies 

(A.12) 

c,~, (.xj)+r ( .x~)= 0, ~ ,  (.x~)r ( .xl)-  ~ = 0, 

r .) ~ L2((R, +oo)), r177 .) ~t U((R, :~oo) ) ,  R ~ ~, 

r .) C L 2 ( ( - ~ , n ) ) o L 2 ( ( R , ~ ) ) ,  g ~  •, 

Cu,()q,-') -1 E L2(R), vl E (-1,  1). 
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Next. let A. t (Ai). A., (Al)*. and/:/., (Ai) be the following closed linear operators in 
L2(R) associated with c~.. (Aj). a., (Ai)+. and ?., (Ai). respectively. Consider 

(A.13) Do = {g E D(H)[ supp(g) compact}, 

(A.14) 

Then. 

(A.15) 

and (cf.[30]) 

(A.16) H=Av,(AI)A. , (AI)* + Aj, 

A.,(Aj) = 

A. , (A, )* Iv .  = ~ . , ( A , ) + l v  ~ 

/~/., (Al) = A.~-~l  )* ~ (Al) + Al. 

In particular, by Lemma 5.1(i), "?.,(AI) (and, of course, T) is l.p. at + ~  since 
/:/., (Ai) _> Al (H > E0). Let 

A.,(A])* = S.,(A~)IA.,(--X~)*I = IA.,(AI)IS.,(A]), 
(A.17) 

IA.,(AI)*I = [A.,(A1)A..(--~I)*] 1/2, IA.,(AI)I = [A.,(AI)* A~.,(AI)] 1/2 

denote the polar decomposition ofA., (Ai)*. where 

(A. 18) S., (Aj) : L2(I~) ---* Ker(A., (AI))• 

is unitary. At this point we used the fact that Ker(A., (Ai)*) = {0} by the hypothesis 
A1 < ~0 = infa(H). Moreover, we introduce the orthogonal projection P.,(A1) 
onto Ker(A., (Ai)), that is, 

(A.19) /3 ,(Al ) = { O, v, E {-1,1} 
II~.,(A])-]II~2(~.,(AI) -1, " )ff)u,( .~l)  - I  , V 1 E ( -1 .1)  

(cf. (A. 12)). 
The fundamental result regarding the spectra of H and/:/., (Al) then follows as a 

special case of the unitary equivalence of AA* and A* A, restricted to the orthogonal 
complements of their respective null spaces (see Deift [7]). 

T h e o r e m  h . l  (Deift [7], see also [26], [50]) Let H, /Z/., (AI ), vl E [-1, 1], 
A l < Z0 = inf ~(H), and S., (A 1), P.~ (A l) be given as in (A.3), (A. 16). and (A. 18), 
(A.19). Then 

(A.20) /~Vl ( /~ l )  [ Ran(l-[~.,(AI))=S.,(Aj)HS,,~(AI) -l ,  
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that is. [1• l (hi) and H, and [4., (A 1 ) and H, vl E ( -  1, 1 ), restricted to the orthogonal 
complement of the (one-dimensional) eigenspace associated with the eigenvalue 
AI of fl.~ (AI). are unitarily equivalent. In particular, 

(A.21) 

%,)( / : / . , (~))  = { oc./(/-/), -1 ~ {-1 ,  1}, 
cr(p)(/-/)U{A1}, u, E ( - 1 , 1 ) ,  

Ker([4, , (A1)-  AI) = { {0}, ul E { -1 ,  1}, 
span{r ul E ( -1 ,1 ) ,  

O'ess,ac,sc(f/v, (~1)) = tress,ac,sc(H). 

Next, we describe a variety of additional results and possible extensions 
paralleling Section 5. This is intended to facilitate comparisons with DDM as 
well as the double commutat ion method  in Appendix B. 

One verifies that 

(A.22) ~ . , , •  (z, ;~1 ,x) = w(r177 ~., (~l))(x)lr (;~,x) 

satisfies 

(A.23) 
§ (A, )~ ,  ,+(z, A, ) = z~.,.• (z, A, ), 

~.,,• Al, - ) ~ L2((R,  -4-oo)), z E C\a(H), R E R. 

(The latter fact is proven in [26], Appendix  A for z < A~; one can use (2.16) to 

extend it to z E Cka(H).) Hence, normalizing ~+ (z,x) temporarily (and without 
loss of generality) by 

(A.24) •• = 1, x0 E R fixed, 

the Weyl-Titchmarsh m-function ~h~,1,• A1 ) associated with /z/.I(AI) and the 
reference point x0 is given by (el. [21]) 
(A.25) 

Z - - A  1 
rh.,,• (z, A1) = cot(a~, (A l)) - m• (z) - cot(c~,,, (AI)), 

cot(c~v,(Al)) = �89 - vl)m_(Al) + 1(1 + vl)m+(Al), vl E [-1 ,  1], z E C\R. 

Here use has been made of 

rh.,.~:(z, Ai) -' = % , , •  Al ,xo) ,  

(A.22), (A.24), and the fact that ?., (Al) is 1.p. at +oo. 
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Given (A.25) one can compute M., (z,)~1 ), the Weyl-Titchmarsh M-matrix in 
C 2 associated with/z/~, (AI) in terms of M ( z ) ,  the M-matrix of H (see (4.1)). One 
obtains 
(A.26) 

c~ (A' [ ] 
/~fwl l , l (Z , '~ l ) - -  Z ~ -  ] ) )MI  l ( Z ) + 2 c o t ( a v , ( A l ) )  1 c~ MI2(Z) 

, , Z _ _ ~  1 ' 

COt4 (t~vl ()~1))] . . . .  
+ (z - )q) - 2cot2(a.,  (Al)) + - - - ~  /m2 2~Z), 

Z -  ~ J ' 

_ F 2 COt2(o~v, ()~1)) _ 11 M2,2(Z), (A.27)  /~v,,I,2(Z, /~1)= c~176 L Z - -  "~l 

(A.28) 
1 

-~/.,.2,2(Z, At) = z _--~MI.1 (z) - 
Z-- 

2 cot(a.,  (AI))Mt,2(z) + 
z - A ~  

COt2 (C~v, (AI)) M2,2(Z), 
Z - -AI  

z ~ C\R. 

One readily confirms that all matrix elements AS/~, ,p,q(Z, "~l ), 1 _< p, q _< 2 have a 
pole at z = .~1 if and only if//'1 E (-- 1, l ) (i.e., if and only if cot(a~, (A1)) ~ m+ (AI)) 
in agreement with Theorem A. 1. Moreover, we might note that m_ (AI) r m+ (AI) 
since Ai < E0 = infa(H) .  

One could use (A.26)-(A.28) to compute the corresponding C2-valued spectral 
matrix ~,,,(A, AI) of/:/~,(A1) in terms of p(A), the one associated with H. The 
resulting formulas (although providing an alternative proof of Theorem A. 1), how- 
ever, are rather complex and hence omitted. (A.26)-(A.28) become simpler if 
the Dirichlet boundary condition ~(x0 4-0) = 0, used to compute rh~,+(z, '~1 ), 
/~fvl (Z, "~1 ), is replaced by sin(m,, (Ai))r 4- 0) + cos(a~, ("~1))r -4"- 0)  = 0. We 
will not pursue this now but return to this approach in Appendix B. 

Iterations of SCM can be handled as follows. Assume V E L~oc(R ) to be real- 
valued and pick Aj < A2 < . . .  < AN < E0 = in fa (H) ,  vj E [-1,  1], C+j  > 0, 
l _< j _< N, N E 1% Then the SCM result after N iteration steps, denoted by 
Tvl ..... vu(Al . . . .  , AN), reads as follows: 

(A.29) 

d 2 
"Fu, ..... VN(/~I, ' ' '  , "~N) -- N.X2 "Jr- ~"vl ...... N(. ,~I, . . . ,  AN,X), X E ]I~, 

I?~, ...... N(A1,..., AN,X) = V(x )  - 2{ln[W(~b~, (AI) , . . . ,  ~N (Au))(x)]}", 

O , , j ( A j , x )  = �89 - vj)C_jr + �89 + vj)C+jO+(~j,x), 1 <_j < N. 
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The obvious analog of Theorem A.1 (distinguishing between vj E ( -1 ,1 )  and 
uj E {-1,1})  then applies to/z/,, ....... , ,(Aj,. . . ,  AN), the unique semi-bounded self- 
adjoint operator associated with "G, ...... N(A|,. . . ,  AN) (see [26], Appendix A for 
more details). 

In analogy to Lemma 5.4, one infers from (A.25) that/:/,, (A|) is reflectionless 
if and only i fH  is (as observed in [21]). 

In order to obtain the Sturm-Liouville generalization of (A. 1)-(A. 16) (see [27], 
[50]), one assumes 

(A.30) 
p ,p ' , k , k '  E ACl,,c((a,b), q E L~oc((a,b)) real-valued, 

p > 0 ,  k > O,-oo < a < b < c~, 

and makes the changes 

) ~.,(A,) ~ ~.,(A~) = ~ + ~.,(A,,x) , 

k(x)  - + 4 . , (A~ , x )  , 

7" "---* ~ =~vl (AI)~vq (AI)+ --I- A I = k ~  -dxx p(x)--~ --I- q(x) , 
(A.31) 

7.v, ( A I ) _  ~ ~.T,I (AI)=o~vl(Al).S-~,v, ()~1)..l_ A I A  = ~ _ ~ x P ( X ) . ~ + ~ l v l ( A l , X )  , 

~)v, (AI) = AI~v,(AI) , 

p"(X) p'(x) 2 3k'(x)2p(x) k"(x)p(x) 
~),,(Al,x) =q(x) - - - ~  + ~ + 4k(x)2 2k(x) 

( 1 d ) d  ln[~G,(A,,x)], + ~(-~(k(x)p(x))' - 2aTxP(X ) 

~.,  ( A , , x l  = ( , , / k ( x )p (x l  ~ . ,  (A, ,  x))'/~0., (A~ ,x). 

It remains to sketch the scattering theory formulas analogous to (5.19), assuming 
V E Ll(~; (1 + Ixl) dx) to be real-valued. (We use the conventions established in 
(5.11)-(5.17).) It was proved by Delft and Trubowitz ([8], Theorem 3.2) that 
f/.,(Al) E Ll(R; (1 + ]x[)dx) if and only if V is, and also the scattering matrix 
S.~ (A, A l) associated with the pair (/7/., (A l), H0) in terms of S(A) in (5.16), the one 
corresponding to (H, H0), was determined as follows: 

(A.32) 

A 1/2 + i ( -AI )  1/2 
7"v,(A, A1)--- AI /2 - - i (_AI ) I /2  T(A), 

~er A AI/2 +i (_AI ) I /2  t 
Rv,( ,AI) = Al /2 - - i (_AI ) l /2  Rr(A), A > 0 ,  Ai <E0,  v l ~ ( - 1 , 1 ) ,  
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(A.33) 
= Y ( ; 9 ,  

_e Al/2 • i u l ( _ ~ l ) l / 2  t 
R"~,, ( A , ) ~ l  ) = Ail2Tiui(_Ai)il2Rr(~), ,k>0 ,  )~l <E0, uj E {-1,1}.  

Further generalizations of(A.32), (A.33) in the context of supersymmetric quantum 
mechanics can be found in [31 and [22]. 

The discrete analog of SCM for general second-order finite-difference (Jacobi) 
operators has been developed in detail in [28 I. 

Finally, we provide a brief historical account and hints to some applications of 
SCM. SCM, or as it is often called, the Crum-Darboux method, (A.7)-(A. 11) goes 
back at least to Jacobi [33] and Darboux [6]. Important later contributions are due 
to Crum [5], Schmincke [501, and especially, Deift [7] (see also [8]). In particular, 
the spectral deformation results of this method, as summarized in Theorem A.1, 
are due to Deift [71. 

In recent years, this method has been applied to a description of the isospectral 
manifold of periodic and algebro-geometric quasi-periodic finite-gap solutions of 
the (m)KdV hierarchy (see, e.g, [10], [11], [171, [181, [221, [291, [40], [41], [42], 
[43], [44], and the references therein) and the construction of soliton solutions 
(resp., reflectionless potentials) of the (m)KdV hierarchy relative to given back- 
ground (base) solutions (resp., potentials) by means of B~icklund transformations 
(cf., e.g., [7], [8], [14], [17], [22], [26], [42], and the literature cited therein). 

As is obvious from (A.I 1), ~,,(Al,x) had to be chosen zero-free (and hence 
Az < Z0) in order to guarantee V,, (AI) E ~ ( R ) .  This considerable restriction on 
the range of AI will be overcome in the following appendix. 

Appendix  B. The double commutat ion method 

We review the double commutation method (occasionally abbreviated as DCM) 
to insert eigenvalues into spectral gaps of general background (base) SchrSdinger 
operators following [19] and [27]. Applications of this method and pertinent 
references to the literature are collected at the end of this appendix. 

Assuming V satisfies 

(B. 1 ) V E Ljloc (//~), V real-valued 

and introducing the differential expression ~- = -d2/dx 2 -t- V(X), x E ~, we pick 

A0 E R and r&(A0,x) satisfying 

Tr = ~o~( ,~o) ,  

~7• .) E LZ((R, +oo)), R E II~, ~7~:(Ao,x) 
(B.2) 

real-valued. 
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Given 7• (A0, x), we define the self-adjoint background (base) operator H .  in L 2 (1~) 

via 
(B.3) 

H:~f = ~-f, 

f �9 D(H+) = {g �9 Le(R) I g,g' �9 ACloc(~); Tg �9 L2(i~); 

lim W(rl• = 0 if~-is i.e. at wc~, w �9 { - ,+}} .  
X ~ C Q O O  

Our choice of  notation purposely stresses a possible dependence of H+ on r/• (A0, x). 
I fT is in the l.p. case at woo, w �9 { - ,  +}, the corresponding boundary condition in 
(B.3) is superfluous at woo and hence to be deleted from (B.3). In particular, if ~- 
is l.p. at +oo, then H_ = H+ = H is independent of the choice of  ~7~(A0,x). 

Next, denote 

L2o~([ZFoo, +oo)) = {g �9 L~o~(ll~)lg �9 L2((ZFoo, c))} 

for some c �9 IR and pick ~1 �9 (0, (X)),)~1 �9 ~ and ~b• satisfying 

~-r = zr 

r  .) e U((n,+oo)), z �9 c\o~(H• n �9 ~, 

(B.4) ~b:L(A,x) real-valued for A �9 11~, 

r Et:((n,+oo)), n e ~ ,  

l im W(~•  i f r  isl.c, at woo, ~ e { - ,  +}.  

As in (B.3), the last condition in (B.4) is superfluous at woo i f  T is l.p. at woo, 
w �9 { - ,  +} .  Given -yj > 0 and ~• ,x), we define the linear transformation 

(B.5) 

{ q~([+oo, ~:oo)) --, q~([+~, T~)), 
U• (A,): f(x) --*~'• (A, ,x) = f ( x )  + 71~• (A, ,x) f , x  dx'r177 (AI ,x')f(x'),  

where 
(B.6) 

x -1 

~zt_,ffl(,~l,X) = (U+,,-yI(,~I)~)-4-(,~I))(X)= [1 ~"Y1 f dxt~b+(Al,Xt)21 ~b• 
d:cx~ 

By inspection, one infers for the inverse transformation 

(B.7) 
{ ~( [+~,  :~o~)), ~ ~([+oo, ~:~)), 

D'4-'3" ('~1)- 1 : h ( x ) - - - ~ h ( x ) : F T l r  x ~ f : ~  dx'O+,~, (AI ,x')h(x'). 
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We list a few more facts (cf. [27]) which explain Lemma B.1 and Theorem B.2 
below. 

(3 .8)  I ~ ~ d x  ! 1 • dx ~b+,-r,(Ai,x') 2 1 :~71 /~)5=(Al,X') 2 

(B.9) 

6+,~, (~,) �9 L2(~), { [ / ]-'} II~• =~?' l - l i m  1T~, d x ' e •  2 , 

:kec 

(B.10) 

? _  ! - 
dx f-_-y,(Al,x )g=-r,(Aj,x') = T dx'f(x')g(x') 

5:oc +cx~ 

r ]-'r / +')'1 [1 :F3'I dxPr 2 dxtr t) dx"e+(Al,x")g(x"), 

(B . l l )  

x j 
q: / dx'f(x')g(x') = q: dx'j~,-n (Al,x')~,:e,.y, (Al,x ') 

•  5 : o c  / ]1/ 
~:-~, I1 +-y, a~'~:,~,(,h,x') 2 ~ ' ~ , ~ , ( ~ , , x ' ) E ~ = , ~ , ( A l , X ' )  

-4-oo ::1: cx~ 

f x"'" (,Xl ,x"). X dx ,! ~-I-,I,1 (AI, )g=,'~, 
-i-oo 

Next, we denote the restriction of  U• (Al) to L2(LK) by 

(B.12) U+-,, (A~) = &• (A~) L~(R~ ' 

define the orthogonal projections 

(B.13) II~b+(AI)[[22(~'+(AI), �9 )r ), ~b• E L2(]~), 
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and introduce the double commutation differential expression 

(B.14) 

d 2 
"?I,'r, (h i )  -- dx  2 q- l~/':tz,-r] (h I ,x) ,  x �9 R, 

~/• = V(x) - 2{ln[l  :F T, f dx' r177 } ". 
•  

Relations (B.5)-(B. 11 ) then yield 

L e m m a  B.1 [27] 
(i) U• (h i ) :  (l - P• (hi))L2(~:) -+ (1 - b• (AI))L2(I~) is unitary. 
(ii) ?• (hi)(U• (hi)f) -- U• (hi)(Tf). 

Lemma B.l(ii) shows that U• (hi) are transformation operators for the pairs 
(/:/• (hi), H• in the terminology of [37], Chapter l, [39], Chapter l, that is, they 
map solutions of Tr = zr z �9 C\{AI } into those of ?=,v~ (hi)~(z) = z~(z). 

The self-adjoint operator/:/• .~ (hi) corresponding to ~• (hi) is then defined 
by 

(B.15) 

(h ] ) f  = 

f �9 D(/:/=,~, (AI)) = {g �9 Lz(IR) I g, g' �9 ACioc(lR);-~• (h | )g �9 Lz(R); 

x l i m  W(~• = 0 

if ?• is 1.c. at ~oo, ~ �9 { - ,  +}}. 

As usual, the last boundary condition at ~ in (B. 15) is to be deleted if ?• (Ai) 
is 1.p. at ,Joo. 

The principal result concerning the spectra of/z/• .y, (Al) and H+ then reads as 
follows. 

Theorem B.2 [27] LetH•177 71 > 0, / ~ •  ~• hl E ~, 
and U• ), P: (Ai) ,  ,b• be given as in (B.3), (B.15), (B.4), (B.6), and 
(B. 12), (B. 13). Then 

(i) Ai C ap(/Z/• (AI))  and 

(B.16) Ker(//~,~, (/~1) - -  -~1)  = span{~+,7, (Al)}. 

(ii) If ~b• (Ai) ~ L2(IR) (and hence ~- is l.p. at +oo), one obtains 

(B.17) /7/+,-n (Al)(1 - /5+,7~(A,))= U+,7,(A,)HU+,7,(1 -P• 
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that is, [-I• (Aj) and H, restricted to the orthogonal complement of the (one- 
dimensional) eigenspace associated with the eigenvalue )~] of [-l• (A i), are uni- 
tarily equivalent. In particular, 

(B.18) 

(iii) If ~b• E L2(~), then there exists a unitary operator [-]• = 
u• (,h) �9 ~/l  + 3', t1~• (,~a)ll @ 1 on (1 - e •  ))LZ(~) �9 P• ) t2(~) such that 

(B.19) /~/• (AI) = O+,-r, (hi)H• O~-,-y, (AI)-I 

Moreover, 

(B.20) ffess,ac,sc(F'/• (/~1)) = Oress,ac,sc(H+) 

in cases (ii) and (iii). 

R e m a r k  B.3 (i) Thus far we considered the case 0 < 3'• < o0. The limit 
3'• ~ ccin(B.14)( implying~•  , 0andhenceP•  = 0)formally 

seems to yield an isospectral deformation of  H• when compared with Theorem 

B.2. One computes 

(B.21) 

d 2 
~-+,~(A~)- dxZ +9+,o~(~l,x), x 6 R ,  

fz+,o~(A,,x)= V(x)-  2{ln[qz / dx' ~b• } ''. 
-.I.-oo 

A quick look at (2.19) and (2.20) then shows that (B.21) is precisely the (sign flip) 
Dirichlet deformation (cf. Remark 4.6(iii)) where 

(B.22) (~],+) ---' (~l,q:), ?• = ?(x,,:F), /z =/2 = ~j, ~ = -or = q:. 

As a consequence of  (B.22), Cases II and III in (2.34) and (2.35) coincide and 
~ 

the boundary conditions in H(a, :~) (if any) are identical to those in (B.15), upon 

replacing ~• (Al ,x) by 3'1~• ()h ,x) and formally letting 3"1 ~ oo. Thus 

(B.23)  /f-/w,oo(/~l) = B(A,,_w), (/~l,6d) = (/ . t ,6d)= (/2,-6d), 6dE {--,--~-} 

is the right definition for the self-adjoint operator associated with ?,~,o~(Aj) in 
(B.21). Hence the case 71 = oo is fully covered by Sections 3-5, and (B.21) indeed 
gives rise to an isospectral deformation of  H+. The isospectral nature of (B.21) 
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has been systematically exploited in the context of  B~icklund transformations for 

the (m)KdV equation in [26]. 
(ii) If H_ has an eigenfunction ~• (AI) E D(H• associated with the eigenvalue 

Al, one can reverse DCM and remove Aj upon choosing 71 = -II~,• -2. In 
this case, ~• (AI) q~ L2(R) and hence ~• (),l) is 1.p. at +oo (cf. [19], [27]). 

(iii) Similarly to DDM (and in contrast to SCM in Appendix A where we ex- 

ploited that r was non-oscillatory and hence 1.p. at +oo), DCM does not necessarily 

produce a 1.p. differential expression ~• (),~) at q : ~  even if ~- was 1.p. at q:oo. 
In fact, one can use (ii) above to construct an example where 0- is l.p. at qzoo but 
?• (A l) is l.c. at Too ([ 19], [271). However,  ?=,-r, (Ai) is l.p. at -boo if and only if r 
is and ?• (A1) is l.c. at qzoo if r is ([ 19], [27]). Of  course, Lemma 5.1 immediately 

covers the present situation upon entering the obvious changes in notation. 

Next, we turn to a computation of  Weyl-Titchmarsh functions associated with 
/z/• (A1) in terms of  those of  H• Since some of the following results (such as 
(B.26)) are new, we provide a few more details. First, some necessary notation. 

Let x0 E I~ be a fixed reference point and assume temporarily the notation used 
in Lemma 3.1. Given H, ~', and ff~• (z), the corresponding m-functions associated 

with the half-line (x0, +oo), we define the usual fractional linear transformation of  

,~• 

(B.24) 

- 1 + cot(a)ff,• (z) At3t  

m• = cot(c~) + m + ( z )  

,~~ = ,~_(z), z c c \R  

, a ~ ( O ,  Tr), 

and 

( ) (cos,o, sin o,) cos(a)  - sin(a) M(z) 
/tT/'~(z)= sin(a) cos(a)  sin(a) cos(a)  (;n~-(z);n~(z) 1['~- (z) + '~-(z)] ) 

(B.25) = [,~_(z) - , ~ _ ( z ) ] - '  �89 + , ~ ( z ) ]  1 

s176 = ~(z), z ~ 2, 

with ,~/(z) defined in terms of  ff~• (z) as in (4.1). (B.24) and (B.25) are associated 

with the boundary condition sin(a)~'(x0 + 0) + cos(a)~b(x0 + 0) = 0, a E (0, 70 as 
opposed to the Dirichlet boundary condition a = 0, ~P(x0 + 0) = 0 in connection 

with fit• (z) and ~/(z). 

L e m m a  B .4  Denote by fn~, 7~ ,j, ( z, A j ) and m~ ( z ) the corresponding m-functions 
for/z/~,.~ (A1), o: E { - ,  +} and H (= H~) associated with the half-line (x0, +oo). 
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(i) Supposem~ r oo(i.e., 7,b~(AI,xo) # 0), w E { - , + } .  Then 
(B.26) 

,~.~,.• Aj) = cot(/3~(A! )) 

sin2(cr,.,(At )) [ ,~. (~,,). .  co'h (0~,(At ,xo) 2 + "0"(A~ ,xo) 2) ] 

+ sinZ(z3~(Al )) z - A] Lm• = ~z) - c o t ( , ~ , ( A ] ) )  + J 
xo - I 

51=Tl[i-a~71 f d x ~ w ( A , x )  2] , 
t ~ A ~  

cot(c~(Ai )) = - m ~  cot(,0.., (AI)) = cot(a..,(A] )) - a.'5', ~,~ (A, ,xo) 2. 

(ii) Suppose m~ = ~ (i.e., ~ ( A t , x o )  = 0), aJ E { - ,  +}. Then 

(B.27) ,~,o ~(z ~,) : m~ (z) + 
~5,jWs(A1 ,xo)  2 

Z - A t  

with %1 as in (B.26). 

P r o o f  We recall that 

(B.28) - ,3~,-,, (A~ ,x) W(r ), ~:~ (z))(x) g)w,7,,~_ (z, )~1 ,x )  = "t/)~ ( z , x )  - o3-,/1 z.~--~l 

satisfies 

( B . 2 9 )  
~. , ,  (A,)~,~,.~ (z,),1) =z6o,~,,,(z, ~,,), 

~,.,,-r,,~(z, Ai, �9 ) E L2((R, 4-c~)), z E C\a(/s/~...~,~ (A, )), R E/R 

and also note that 

6.,.,.-,,.,.,(A~,~,x) = 6~- , , ( .h ,x)  = [1-,. , . ,~ ax' ~,,,.,(:,,3,x') 2 ,,.,,(A~,x), 
I,. 

W O O  

/ I 

IA.4, [ 
X ~ - X  0 (B.30) 

m~ (z) : ~(Z, Xo)/~,.,(Z,Xo), 
W(~,o, (Zl), ~,o2 (Zj)(x0)  - m~ (z2) -m~,(zl).~ 

(B.29) and (B.30) then yield 
(B.31) 

~0  m~ .y,.~.(Z, AI) -' = ~/)a-',3'l ,+ (Z, "~1 ,Xo)/ffJw."r t ,+ (Z, "~1, Xo) 

={ i - a~5'l ~.b (At ,Xo)~(m~ - m~(At~ ))(z - AI ) - I}  -I  

• {m~ + a~@l~o(Al ,xo) 2 - ~'~Ir ,x0) 2 

x [(m~ +w~lzp~(Al,xo)2)(m~ - m~ - A]) - l  } 
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if m~ r 

and (B.27) by a limiting procedure if m ~ = co. Applying (B.24) to m ~ (z) and 

rh ~ ~,,:~(z A ) with the choices 

c o t ( ~ ( A l ) )  = -m~ and cot(3~(Ai)) = cot(a,~(A1)) - ~l~)~(AI,x0) 2 

then shows, by a straightforward (but somewhat painful) computation, that (B.31 ) 

is equivalent to (B.26). [] 

The singularity structure of (B.26) and (B.27) near z = Al then leads to a corre- 
sponding pole behavior ~ .-.~(A,/, or M~,-r, ~z, Ai), 3)/~ (z, AI) (the C2-valued M-matrices 

of/:/~,-r, (Al)) when compared to M~(x ' ) (z) ,  M~ (the M-matrices of H). The 
actual expressions for the M-matrices, the half-line spectral functions, and the 
C2-valued spectral matrix of/7/~ -r, (A1) for a~ r 0,/3~ r 0 in terms of those of  H 

are similar to the special case a~ = '3~ = 0 and m~0(Al ) = oo described in detail 
in [ 19]. While they provide an alternative proof of  Theorem B.2, we resist the 

temptation of  providing detailed formulas at this point. (B.26) appears to be a new 
result. 

Iterations of  DCM can now be performed as follows. Assume V E/_qlo~(~) to be 

real-valued and pick ~ E { - ,  +}, ~j > 0, Aj E ~, 1 <_j <_ N, N E N. Then the DCM 
result after N iteration steps, denoted by ~,o,~, ..... ~ (A l , . . . ,  AN), reads as follows: 

(B.32) 

d 2 
"Fw."t, ..... ")'U(/~l, -- ",)~N) -- d x  2 --]- ~zw.3,1 ..... ~,N()~I . . . . .  .~N,X), X E ~ ,  

~/'~,'71 ..... "iN( )~1 . . . .  , )~N,X) = V ( x )  - 2 { l n [ d e t ( 1  + C~,N(X))]}  tt, 

// l/2 l / 2 )  ) 
C~"N(X) = ~k -ta3"yk ~g dxt  ~Jw(Ak'xt)2/)w(Ag'xt)  I<k,g<_N 

The analog of  Theorem B.2 then applies to/z/~,-r~ ..... -rN(Ai,..., AN) , the self-adjoint 
operator associated with ~,~,~, ..... ~N(AI . . . . .  AN) (defined similarly to (B.15)) as 

discussed in detail in [27] (see also [22], [26]). 
As in Lemma 5.4 one infers from (B.31) that/:/,~,-r, (Al) is reftectionless if and 

only if H is (as observed in [21 ]). 

The Sturm-Liouville generalization of  (B. l ) -(B.  14) then leads to the following 

results. One assumes 

p- l ,q ,k  E L~oc((a,b)), kp E ACloc((a,b)), q real-valued, 

p > O ,  k > 0 ,  -oo<_a<b<_w 
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and makes the substitutions (see [27]) 

(B.33) 

- d x P ( X ) ~  + q(x) , 

~. ()~1)= 1 ( ad/x d ) § --, T~,.,, ~ ( ~  - p ( x ) ~ ,  + ~ , ~ , ( , X j , x )  , 

Cl~'-~' ( A "  x) = q(x) + ( k - ~  ( k(x)p(x) )' - 2 ddr p(x)  ) 

x aTx In l- .3"yl  k(x ' )dx 'w~o( l l , x ) -  , a J �9  { - , + } .  

It remains to sketch scattering theory for real-valued potentials V C 

L ~ (]1~; ( 1 + Ixl) ax) similar to DDM and SCM in Section 5 and Appendix A. (We 

again use the conventions established in (5.11)-(5.17).) Suppose Ai < 0, 71 > 0. 

Then we claim that DCM leaves L l (~;(1 + Ixl)dx) potentials invariant as in DDM 

and SCM. More precisely, we assert that V~,-r, (A l) �9 L I (i~; (1 + rxl)dx)if  and only 

i f V  �9 LI(II~; (1 + Ix[)dx). Indeed, since 

(B.34) 

[ / 1 ~[-'tw,3,1(Al,X ) -- V(x) : 1 - 0.2")' I d x '  1/)w(,~l,X") 2 2",f~/,~to(,~l , x )  4 

[ ) ]-' + I - ~'~ d x ' ~ ( A i , x ' )  2 4~o~/~ ~ ( I 1  / '  ,x)~(,X~,x), ,,, e { - ,  +}, 

O)(X~ 

the right-hand side of  (B.34) is exponentially decreasing near ~ooo and hence in 

LJ((R,,~oo);(l + [x[)dx) for all R E ~. In order to treat (B.34) near -,~oo, one 

expands 

-' / ,)-' / ( , ~/ - ~ dxP ~O ~ = - ~o dx v2 ~ l , x' 

w o o  ~d or 

,x, lO ')] 

in (B.34) and notices that O( ( . . . ) - l )  is exponentially decreasing as x ~ -,~oo. The 

proof of our assertion is then finished by observing that the leading order term in 

(B.34) is precisely the isospectral double commutation deformation corresponding 

to 71 = vo (cf. Remark B.4(i)), which in turn corresponds to the (sign flip) Dirichlet 

deformation (Al, +~o) ~ (Ai, -~ ) .  The latter has been dealt with in Lemma 5.5. 
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The fact that DCM leaves L t (R; (1 + Ixl)dx) potentials invariant was proved by 

Levitan [37], Section 6.6 using a different strategy (which yields exponential decay 

of  [~'~.-y, (A1 ,x) - V(x)] also as x --* -a;oo). 
Finally, we compute the scattering matrix in this context. Following the 

arguments in (5.11)-(5.20), one readily verifies the following expressions for 

the scattering matrix S~-n(,~,Al) of  the pair (/z/~,-r,(Al),H0) in terms of  S(),) 
corresponding to (H, H0): 

(B.35) 

A 1/2 + i(-AI )1/2 
T~:y,(,~,AI) = & , / 2 C ~  T(,~), 

{ Rq~), 
~,"t, )O /2 + i ( - , k l )  I/2 )2Re()~) ' k ~ (A,.Xl) = (~,/2_,(_~,),:2 

,kl/2+i(_)M)ll2]2j~r(}~] 
k "  (A ,A~)  = ( x , . - ~ - x , i , . :  "" , " , '  

~,~, Rr(~), 

~ e  { - , + } ,  

c o = + ,  

w.,------if, 

.X > 0, .X~ ~ ( - o o , 0 ) \ a a ( / - / ) ,  -yj > 0, 

(B.36) i"~,-y, (A, Al) = T(A), kr,.y, ()~, Al) = Rr(A), 

a; E { - ,  +}, ,~ > 0, )q E ~d(H), "Yl > 0. 

The case 71 = oo is a special case of  (5.19) with # = t2 = X~, a = - 6  = a;. 
The discrete analog of  DCM for general second-order finite-difference (Jacobi) 

operators can be found in [28]. 
As in Appendix A, we conclude with a brief account of  the history of  DCM 

and references to further applications of  it. The seminal work by Gel 'fand and 

Levitan [16] in 1955 on a solution of  the inverse spectral problem seems to mark 
the first appearance of  DCM where it has been used in connection with Wigner-von 
Neumann examples on the half-line (0, oo). (For a more recent treatment of  the 

half-line case (0, oo), see [7].) Shortly afterward, the construction of  reflectionless 
potentials in the particular case of  r = -d2/dx 2 (i.e., V - 0), using double 

commutation formulas as a result of  applying the inverse scattering approach, was 
derived by Kay and Moses [34]. Their result regained prominence when Gardner, 
Greene, Kruskal, and Miura [15] used this formalism to solve the initial value 

problem for the KdV equation and derived the KdV N-soliton solutions. The case 
of background (base) potentials V E L l (R; (1 + Ixl)dx) is considered at length in 

[8] and [37], Section 6.6. The case of  periodic finite-gap background potentials 
is treated in [13], [14], [26], and [35]. Close connections between the double 

commutation technique and .the inverse spectral method based on Marchenko's 
approach can be inferred, for instance, from [13], [14], [15], [22], [34], and 
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[35]. General backgrounds were first treated in 126] (see also [91, Chapter 4). In 
particular, the construction of KdV and mKdV soliton solutions relative to general 
(m)KdV background solutions on the basis of  (single and double) commutation 
techniques has been systematically studied in 126]. In spite of the widespread use 
of the double commutation method, its spectral characterization, as summarized 
in Theorem B.2, under slightly stronger assumptions on 7-, was first proven only 
recently in [ 19]. 
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