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ABSTRAC.~.U'e consider examples Ax = A + X ( q ,  . ) q  of rank one perturba- 
tions with q a cyclic vector for A .  \ e  prove tha t  for any bounded measurable 
set B C I, an interval, there exist A ,  9 so that  {E E I / some Ax has E as an 
eigenvalue) agrees with B up to  sets of Lebesgue measure zero. We also show 
that there exist examples where Ax has a.c. spectrum [O, 11 for all A, and 
for sets of X's of positive Lebesgue measure, Ax also has point spectrum in 
10, I] ,  and for a set of X's of positive Lebesgue measure, Ax also has singular 
continuous spectrum in i0, I ] .  

In this note we will consider families of operators 

where A is a self-adjoint operator on a separable Hilbert space 'H and p E 7-1 is a 
cyclic vector for A. It will be convenient to  consider also the value X = oo, which is 
the operator QAQ on Q7-1 where Q is the projection onto the operators orthogonal 
t o  9.Let dpx be the spectral measure for Ax with vector p and dpx = (1+X2)dpx. 
It  it known [3] that dpx has a weak limit as X --+ oo, dp,, which is a spectral 
measure for A,. 

Define for x E R, 

where G may be infinite. 
Also define for z E C with I m z  > 0, 

(This differs from the standard F [6] by a factor of (1+ X 2 ) . )  It  is known 121, [6] 
that 
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Theorem 0. The sets 

P = { E  I G x ( E )< m )  U { E  I E is an eigenvalue of A x ) ,  

L = { E  I lim F x ( E  + i f )- F x ( E  + iO) exists and Im F x ( E  + iO) > O),
€ l o  

are X independent for X E R,and for every X E RU {m): 

p i p ( . )  = P A ( .  nP ) ,  

~ 8 . 1P A ( .nL ) ,= 

~ 8 0= P A ( .nS ) ,  

where piP,  p y ,  py  are the pure point, absolutely continuous, and singular contin- 
uous parts of the measure px. Moreover, 

P = U { E  I E is an eigenvalue of A x )  
X E R U { o o )  

and for any set C ,  

the Lebesgue measure of C .  In particular, by ( l a )  

and similarly for L and S .  

One can ask what kind of sets can occur as a P .  We have a partial answer given 
in Section 2: 

Theorem 1. For any bounded measurable set B and any interval I > B, there 
exists a measure d p  on I S O  that (where a.e. means with respect to Lebesgue measure) 

The measure d p  may be chosen purely a.c., or purely s.c., or purely p.p. 

Remarks. 1. By Theorem 0 ,  this says something about allowed sets of eigenvalues. 
2. We will also show that if B is open, we can drop the a.e. We believe that this 

can be done for an arbitrary Fg,  but have not proven it. 

Using a technical result in Section 3, we will prove our second main result in 
Section 4: 

Theorem 2. There exists an example A so that 

(i) a,,(Ax) = [O, 11 for all A. 
(ii) 	{ A  I a,,(Ax) n [ O , l ]  # 0 )  has positive Lebesgue measure; indeed, for any 

interval I C [0, 11, { A  I a,,(Ax) n I # 0 )  has positive measure. 
(iii) { A  I a,,(Ax) # 0 )  has positive Lebesgue measure; indeed, for any interval 

I C [0,  11, { A  1 a,,(Ax) n I # 0) has positive measure. 


There also exist examples where (i) is replaced by a,,(Ax) = 0 .  
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One can translate these results into ones for variations on boundary conditions 
for Schrodinger operators -ul' + Vu on [0, co) in two steps: 

(a) Extend the theory to cp E X 1 ( A )  and rewrite the Sturm-Liouville/Schrodin-
ger operator in this language [6]. 

(b) Appeal to the Gellfand-Levitan construction 	[ 5 ] ,which implies that for any 
measure p on a bounded interval I,we can find a continuous V on [0, co) with 
-uI1 + Vu limit point at infinity and boundary condition 0 at x = 0 so that 
the spectral measure dpe restricted to I is dp.  Typical of the result is: 

Theorem 1'. For any bounded measurable set B and interval I > B,  there is a 
continuous function V on [O, co) so that up to sets of Lebesgue measure zero, 

{E I -uI1 + Vu = E u  has a solution L~ at infinity) 

is precisely B. 

Because the Gellfand-Levitan construction gives no information on V at infinity 
(for example, it could be unbounded below), we regard these translations as being 
of limited interest. 

52. THESET WHERE G IS FINITE 

Recall that a perfect set is a closed set with no isolated points. We will also need 
the following notion. 

Definition. A closed subset C c R will be called minimal if and only if for all 
x E C a n d  E > 0, I ( x - E , x + E ) ~ C I  > 0. 

The name comes from the fact that among all closed sets D with lDACl=O, C 
is the minimal such set. We will see below that any closed set D has a minimal 
closed set C contained in it so that ID\CI = 0. 

We also define G, by 

With these notions out of the way, we can state the two main theorems of this 
section: 

Theorem 2.1. (a) Let C be any clvsed set in  R. Then there exists a pure point 
measure p supported on C so that {x I G,(x) = co) = C.  

(b) 	Let C be any perfect set. Then there exists a singular continuous measure p 
supported on C so that {x I G,(x) = co} = C .  

(c) 	Let C be any minimal closed set. Then there exists an absolutely continuous 
measure p supported on C so that {x I G,(x) = co) = C .  

Remarks. 1 .  The assumptions on the closed sets are optimal in that if x is an iso- 
lated point of C ,  then G,(x) < co for any singular continuous measure p supported 
on C;  and if x E C is a point with 1(x - E,  x + E )  n CI = 0 for some 6 > 0, then 
G,(x) < co for any a.c. measure supported on C .  

2. In general, {x I G,(x) = co} is only a G6, not a closed set. It is open if 
"closed" in this theorem can be replaced by G6. 

3. If B is any measurable set, we can apply the methods of proof below and get 
a p supported on B with {x ( G,(x) = oo) > B. If B is arbitrary, we can take p 
pure point. If B has no isolated points, we can take p singular continuous, and if 
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B has no essentially isolated points (i.e., no points x with l(x - E,  x + E )  n BI = 0 
for some E > 0), we can take p absolutely continuous. 

If we are willing to  throw out sets of measure zero, we can go beyond Theorem 
2.1. We write A = B to mean 1 AABl = 0. Then we will prove that: 

Theorem 2.2 (ETheorem 1). For B an arbitrary measurable subset of an  in-
terval I, we can find p supported on I S O  that 

p can be chosen to be purely absolutely continuous or purely singular continuous or 
pure point. In the a.c. case, p can be chosen so that the essential support of p is  
I \ B .  

In understanding perfect and minimal closed sets, it is useful to  have the following 
pair of results, which we will also need in proving Theorem 2.2. 

Proposition 2.3. Any closed set S i n  R can be written as S = C U D where C is  
perfect and D is  countable. 

Proof. Let C = {x E S I YE > 0, (x - E,  x +6) n S is uncountable) and D = S \ C .  It 
is easy to see that C is closed. If we show D is countable, then each (x - E,  x +E)n C  
is uncountable, so not empty and C is perfect. 

If x $ C, we can find a and b rational so x E (a,b) and ( a ,b) n S is countable. 
Since there are only countably many (a,b) with a ,  b rational, we can find a countable 
family of with each On n S countable, so D c U(On n S )  is countable. 

n 

Proposition 2.4. Any closed set S i n  R can be written as S = C U D where C is 
minimal closed and I Dl = 0. 

Proof. Let C =  {x E S I Ye > 0, I ( X - E , X + ~ ) ~ S I> 0) and D = S \ C .  Now just 
mimic the proof of Proposition 2.3. 

We need one more preliminary: 

Proposition 2.5. (a) For any non-empty closed set C ,  there exists a point mea-
sure supported by C .  

(b) For any non-empty perfect set C, there exists a singular continuous measure 
supported by C .  

(c) For any non-empty minimal closed set C, there is  an  absolutely continuous 
measure supported by C .  

Proof. (a) is trivial and stated for parallelism. (c) is also trivial (take dp  = xcdx). 
That leaves (b);  so let C be perfect. If C contains an entire interval [a ,b], place a 
scaled Cantor measure on (a,b) and use that for dp. So we need only consider a 
nowhere dense perfect set. By intersecting it with a suitable bounded interval and 
scaling, we will suppose it is a subset of [0,11. 

We claim such a C is homeomorphic to  (0, I)', the infinite sequences of 0's and 
1's. Use that homeomorphism to transfer the two mutually singular measures 

03 1 0 3 1  2 
da l  = €3 [-(S0+61)] and da:! = €3 (-SO+-61).

n=1 2 n = 1 3  3 



POINT SPECTRUM AND MIXED S P S C T R A L  TYPES 3597 

dol  may be purely absolutely continuous (as it is if C is a symmetric positive 
measure Cantor set), but then da2 is purely singular continuous. Either way, either 
dol  or da2 has a non-zero singular continuous component. 

To prove the claim (known, but the proof is so short that we give it) that a 
nowhere closed perfect subset C of [0, I] is homeomorphic to (0, 1 IN,  let a- = 
min(C), a +  = max(C), and el = a +  - a _ ,  the length of C.  Since C is perfect, 
el > 0. Let J = (* - $+, +%), the middle third of ( a_ ,  a+) .  Since C is 
nowhere dense, we can find xl  E J \ C .  Let Co = C n  (-cc,xl) ,  C1 = C n  ( x l , ~ ) .  
Then Co, C1 are perfect and diam(C1) < $. Now repeat this process, and so 
find Cm ,,,,,, (mi 6 (0 , l ) )  inductively so that diam(C,l..,m,) 5 ,..,,Cml --
Cml...mco U Cm m r l ,  each C,,, ,,..,, is perfect. Define at : C + {0,1) by at = 0 on 
each Cml ...,,-, and ae = 1 on each Cml,. .m,-l 1. Each a t  is continuous since each 
Cm,,,,,, is closed. Map C + (0, lIe by x + (a l (x) ,  a2(x) ,  . . .). This map is onto 

CO 

since for any fixed m l , .  . . , n Cm,,,.,, # 0 by compactness. This map is one-one 
e=1 

since diam(Cml,,,,,) + 0 to e + w uniformly in the choice of me. A continuous 
bijection is a homeomorphism. 17 

Pro0.f o,f Theorem 2.1. This is motivated by a construction in 171. For n = 1 ,2 , .. . . - . . 
and j = 0 , .  . . ,2^ - 1, let c/")= (&,g)n C which is C n [&,g]with the 
endpoints dropped if they would be isolated. Then if C is perfect (minimal), so 

is each non-empty c/"). For such non-empty c/"', let p!") be a measure of the 
requisite type (i.e., pure point, singular continuous, or absolutely continuous) of 

unit measure and supported on Cjn). Such measures exist by Proposition 2.5. Let 

3 & t ha t  
cjn'#O 

Then p is a finite measure of the requisite type supported on C .  If y $ C,  then 
Gp(y) 5 dist(y, C)-2 J d p  < cc since C is closed. On the other hand, if y E C 

and y E (&,g),then c:")# 0 and 
dp(" '  (z)2 (2-n)2, and if y E {&}:lon C. 

either c/")or C/T)~is non-empty. It follows that 

Proof of Theorem 2.2. This uses an explicit version of an argument of Howland [4] 
as in [I]. Since Lebesgue measure is inner regular, we can find C1,. . .C,, . . . and 

, . . . ,Kn, . . .  closed with C1 c C2 c . . .  c I \ B  and 1<1 C K:! C . . .  C B and 
with IB\U Knj = 0, I(I\B)\UC,I = 0. 

n n 

By Proposition 2.3, we can suppose that Cnls are minimal closed (and so, perfect) 
without loss of generality. We can also suppose each Cn is non-empty (if  II\BI = 0, 
wejust take p = 0). 
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Let p, be a unit measure of the requisite type supported on C, with 

Let 
00 

Since K, and Cn are compact and disjoint, dist(K,,C,) > 0 and thus, G,(x) 2 
2Tndist(K,, C,)2Gp,(x) = cc on C, and so on UC, and so a.e. on I \ B .  

On the other hand, since K, c K,+l, . . . , dist(K,, C,) 2 dist(K,, C,) if 
m > n a n d  so if x E K,, 

-. 

G,(x) = x2- 'dis t(~e,C r ) 2 ~ p ,(x) + x2-, < m ,  

and so G, < cc on UK, and thus a.e. on B .  
In the a.c. case, we can take p, = 'XCndx, in which case it is evident that

ICn I 
the essential support of p is UC, = I \ B  as claimed. 

53. ESSENTIALLYD E N S E  S E T S  

Definition. A measurable set S c I, an interval, is called essentially dense if for 
every subinterval J c I, we have I J nSI> 0. 

Theorem 3.1. There exist disjoint measurable subsets A, B ,  C C [O, I]  whose union 
is [O, 11 so that each is essentially dense. 

Remarks. 1. Our proof shows that one can assert the same for sets A l ,  . .  . ,A, 
rather than three sets or even construct a countable disjoint decomposition, each 
of which is essentially dense. 

2. Our construction is related to a construction in [2]. 

Proof. Let n j  = (23 + I ) ~ ,the square of the jthodd number. Given x E [O,l],we 
define a j(x) by requiring 

with a, (x) E {O,l, . . . ,n, - 1) and the requirement that if x's expansion can end 
in all O's, we do that (to settle the ambiguity between . . . a(n, - l)(n,+l - 1 ) .. . 
and . . . ( a +  1)O0 .  . . ). This is a standard positive measure Cantor set construction. 
Define m, = (n, - I ) .  Let 

A = {X / the number of j 's with a j (x)  = m, is 1 ,4 , .. . or infinite), 

B = {x / the number of j 's with aj(x)  = m j  is 2,5,8,.  . . ), 
C = {x I the number of j's with a, (x) = m, is 3 , 6 , 9 , .. . ). 

This is obviously a decomposition. We need only to show that each set is essentially 
dense. It suffices to show that IB n JI > 0 for any interval of the form J = {x I 
a1(x) = a1, . . . ,ak (x) = ak)since every interval contains such a J .  By increasing 
k by 1or 2 and shrinking J by taking a k + l  = mk+l (and perhaps a k + z  = mk+2), 
we can suppose that #{j E (1, .  . . ,k) I a, = m,) = 2 mod 3. In that case, by 
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looking at x's with no further ae(x)= me, we have 

since C $ < oo. 

Proof of Theorem 2. Decompose [O,1] = A U B U C into three disjoint essentially 
dense sets. Pick a measure dpl which is absolutely continuous with essential support 
A so that G,, (x) < oo a.e. on B U C and a S.C.measure p2 supported on B so that 
G,,(x) < oo on A U C  and G,,(x) = oo a.e. on B. Let dp = dpl +dp2.  

By Theorem 0 (recall X r Y means IXAYl = O ) ,  

By equation (3) and its analogs for a.c. and s.c., we have the claimed assertions 
(i)-(iii). For the examples with a,,(Ax) = 0, just use dp = dp2. 

R.d.R. would like to thank Professor Alejandro Bravo for very useful discussions. 
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