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ABSTRACT. We consider examples Ay = A + A(p, - )¢ of rank one perturba-
tions with ¢ a cyclic vector for A. We prove that for any bounded measurable
set B C I, an interval, there exist A, so that {E € I | some Ay has F as an
eigenvalue} agrees with B up to sets of Lebesgue measure zero. We also show
that there exist examples where A, has a.c. spectrum [0,1] for all A, and
for sets of A’s of positive Lebesgue measure, Ay also has point spectrum in
[0,1], and for a set of X’s of positive Lebesgue measure, Ay also has singular
continuous spectrum in [0, 1].

§1. INTRODUCTION

In this note we will consider families of operators

where A is a self-adjoint operator on a separable Hilbert space H and ¢ € H is a
cyclic vector for A. It will be convenient to consider also the value A = oo, which is
the operator QAQ on QH where Q is the projection onto the operators orthogonal
to ¢. Let duy be the spectral measure for Ay with vector ¢ and dpy = (1+A?)du,.
It it known [3] that dpy has a weak limit as A — o0, dps, which is a spectral
measure for A..

Define for = € R,

d
CE=

where G may be infinite.
Also define for 2 € C with Imz > 0,
dp\(E
e = [ 2 = q a2, (an-2)7)
-z
(This differs from the standard F' [6] by a factor of (1 + A2).) It is known [2], [6]
that
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Theorem 0. The sets
P={FE|Gi(E) <o} U{E | E is an eigenvalue of A,},
L={FE| lilrg Fy\(E + i€) = F\(FE +10) ezists and Im F(E +i0) > 0},

S=R\PUL
are \ independent for A € R, and for every A € RU {o0}:
(1a) PSP () =pa(- N P),
(1b) () =pa(- NL),
(1c) X () =pa(-NS),

where p/p\p, P53, P are the pure point, absolutely continuous, and singular contin-
wous parts of the measure py. Moreover,

P = U {E | E is an eigenvalue of Ax}

A€RU{o0}

and for any set C,

oA (C
2 [ &8s o=
the Lebesgue measure of C. In particular, by (1a)

pp

px (C)

(3) /(1*+ ) d\=|CNP|

and similarly for L and S.

One can ask what kind of sets can occur as a P. We have a partial answer given
in Section 2:

Theorem 1. For any bounded measurable set B and any interval I D B, there
exists a measure du on I so that (where a.e. means with respect to Lebesgue measure)

<00 ae r€B
G = ’
o() {z oo a.e. z€I\B.

The measure dy. may be chosen purely a.c., or purely s.c., or purely p.p.

Remarks. 1. By Theorem 0, this says something about allowed sets of eigenvalues.
2. We will also show that if B is open, we can drop the a.e. We believe that this
can be done for an arbitrary Fy, but have not proven it.

Using a technical result in Section 3, we will prove our second main result in
Section 4:

Theorem 2. There exists an ezample A so that
(1) oac(Ax) =[0,1] for all A.
(i) {A | opp(Axr) N[0,1] # B} has positive Lebesque measure; indeed, for any
interval I C [0,1], {\| opp(Axr) NI # 0} has positive measure.
(iii) {X | osc(Ax) # O} has positive Lebesgue measure; indeed, for any interval
IC0,1], {\| osc(Ax) NI # B} has positive measure.

There also exist examples where (i) is replaced by gac(Ax) = 0.
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One can translate these results into ones for variations on boundary conditions
for Schrodinger operators —u” + Vu on [0, 00) in two steps:
(a) Extend the theory to ¢ € H_1(A) and rewrite the Sturm-Liouville/Schrédin-
ger operator in this language [6].
(b) Appeal to the Gel'fand-Levitan construction [5], which implies that for any
measure £ on a bounded interval I, we can find a continuous V on [0, 00) with
—u” 4+ Vu limit point at infinity and boundary condition  at z = 0 so that
the spectral measure dpg restricted to I is du. Typical of the result is:

Theorem 1’. For any bounded measurable set B and interval I D B, there is a
continuous function V on [0,00) so that up to sets of Lebesgue measure zero,

{E| —u" + Vu = Eu has a solution L* at infinity}
is precisely B.

Because the Gel’'fand-Levitan construction gives no information on V' at infinity
(for example, it could be unbounded below), we regard these translations as being
of limited interest.

§2. THE SET WHERE G IS FINITE

Recall that a perfect set is a closed set with no isolated points. We will also need
the following notion.

Definition. A closed subset C C R will be called minimal if and only if for all
zeCande>0,|(z—€ez+€)NC|>0.

The name comes from the fact that among all closed sets D with |[DAC|=0, C
is the minimal such set. We will see below that any closed set D has a minimal
closed set C contained in it so that |D\C| = 0.

We also define G, by
du(y)
G,(z) = / —
g (z—-y)?
With these notions out of the way, we can state the two main theorems of this
section:

Theorem 2.1. (a) Let C be any closed set in R. Then there exists a pure point
measure p supported on C so that {z | G,(z) = 00} = C.
(b) Let C be any perfect set. Then there exists a singular continuous measure p
supported on C so that {z | G,(z) = 00} =C.
(c) Let C be any minimal closed set. Then there exists an absolutely continuous
measure p supported on C so that {z | G,(z) = oo} =C.

Remarks. 1. The assumptions on the closed sets are optimal in that if z is an iso-
lated point of C, then G, (z) < oo for any singular continuous measure u supported
on C; and if £ € C is a point with |(z — ¢,z + €) N C| = 0 for some € > 0, then
Gu(z) < oo for any a.c. measure supported on C.

2. In general, {z | G,(z) = oo} is only a Gs, not a closed set. It is open if
“closed” in this theorem can be replaced by Gs.

3. If B is any measurable set, we can apply the methods of proof below and get
a p supported on B with {z | G,(z) = oo} D B. If B is arbitrary, we can take p
pure point. If B has no isolated points, we can take p singular continuous, and if
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B has no essentially isolated points (i.e., no points z with |[(z — e,z +€)NB| =0
for some € > 0), we can take p absolutely continuous.

If we are willing to throw out sets of measure zero, we can go beyond Theorem
2.1. We write A = B to mean |[AAB| = 0. Then we will prove that:

Theorem 2.2 (= Theorem 1). For B an arbitrary measurable subset of an in-
terval I, we can find p supported on I so that

{zel|Gyu(r) <0} =B.

1 can be chosen to be purely absolutely continuous or purely singular continuous or
pure point. In the a.c. case, p can be chosen so that the essential support of u is
I\B.

In understanding perfect and minimal closed sets, it is useful to have the following
pair of results, which we will also need in proving Theorem 2.2.

Proposition 2.3. Any closed set S in R can be written as S = C U D where C' is
perfect and D is countable.

Proof. Let C = {z € S| Ve >0, (x—€,z+¢€)NS is uncountable} and D = S\C. It
is easy to see that C is closed. If we show D is countable, then each (z —¢€,z+€)NC
is uncountable, so not empty and C is perfect.

If x ¢ C, we can find a and b rational so z € (a,b) and (a,b) NS is countable.
Since there are only countably many (a, b) with a, b rational, we can find a countable
family of {Oy}n=1 with each O, NS countable, so D C LT{(O,L NS) is countable. O

Proposition 2.4. Any closed set S in R can be written as S = C U D where C is
minimal closed and |D| = 0.

Proof. Let C={z € S |Ve> 0, |(z —€,z+€)NS| >0} and D = S\C. Now just
mimic the proof of Proposition 2.3. O

We need one more preliminary:

Proposition 2.5. (a) For any non-empty closed set C, there exists a point mea-
sure supported by C.
(b) For any non-empty perfect set C, there ezists a singular continuous measure
supported by C.
(c) For any non-empty minimal closed set C, there is an absolutely continuous
measure supported by C'.

Proof. (a) is trivial and stated for parallelism. (c) is also trivial (take du = xcdz).
That leaves (b); so let C be perfect. If C contains an entire interval [a, b], place a
scaled Cantor measure on (a,b) and use that for du. So we need only consider a
nowhere dense perfect set. By intersecting it with a suitable bounded interval and
scaling, we will suppose it is a subset of [0, 1].

We claim such a C is homeomorphic to {0, 1}", the infinite sequences of 0’s and
1’s. Use that homeomorphism to transfer the two mutually singular measures

dor = & [E(60+61)] and das= & (L6 + 261)
al_n=12 0 ! an a2_n=l30 31‘
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da; may be purely absolutely continuous (as it is if C is a symmetric positive
measure Cantor set), but then das is purely singular continuous. Either way, either
daj or das has a non-zero singular continuous component.

To prove the claim (known, but the proof is so short that we give it) that a
nowhere closed perfect subset C of [0,1] is homeomorphic to {0,1}V, let a_ =
min(C), ay = max(C), and ¢; = a4 — a_, the length of C. Since C is perfect,
¢ >0. Let J = (4=F2+ — & a=ta+ 4 &) the middle third of (a—,a4). Since C is
nowhere dense, we can find z; € J\C. Let Co = CN(—00,z1), C; = CN(z1,00).
Then Cy,C; are perfect and diam(C;) < % Now repeat this process, and so
find Cp,..m,(m; € {0,1}) inductively so that diam(Cp,...m,) < (%)2, Cmym, =
Crmy..me0 U Cmy .. .mo1, €ach Cpy,  m, is perfect. Define a, : C — {0,1} by a; = 0 on
each Cp,..m,_,0 and ag = 1 on each Cp,,..m,_,1. Each a, is continuous since each
Cm,...m, is closed. Map C — {0,1}¢ by =z — (a1(z),az2(z),...). This map is onto

oo
since for any fixed my,..., eﬂl Cm,...m, # 0 by compactness. This map is one-one

since diam(Chy,..m,) — 0 to £ — oo uniformly in the choice of m¢. A continuous
bijection is a homeomorphism. O

Proof of Theorem 2.1. This is motivated by a construction in [7]. For n=12,.
and j = 0,...,2" — 1, let C") = (&, %) NC which is C N [, L] with the
endpoints dropped if they would be isolated. Then if C is perfect (minimal), so
is each non-empty C](-n). For such non-empty C](»"), let ug-") be a measure of the
requisite type (i.e., pure point, singular continuous, or absolutely continuous) of
unit measure and supported on C]("). Such measures exist by Proposition 2.5. Let

S I
]so that
c{M 0

Then p is a finite measure of the requisite type supported on C. If y ¢ C, then
Gu(y) < dist(y, )72 [dp < oo since C is closed On the other hand, if y € C
and y € (&, &5 ) then C(n) # 0 and f—(—zLy—)Q— > (272 and if y € {%}?:0 NnC,
either C’( ") or C 1 is non-empty. It follows that

d > —90-n
etz
so {y | Gu(y) =00} =C. O

Proof of Theorem 2.2. This uses an explicit version of an argument of Howland [4]
as in [1]. Since Lebesgue measure is inner regular, we can find Ci,...C,,... and
Ki,...,K,,... closed with C; c Cy C --- c I\Band K; C K, C --- C B and
with ]B\LT{K | =0, {(I\B)\%JC,,I =0.

By Proposition 2.3, we can suppose that C),’s are minimal closed (and so, perfect)
without loss of generality. We can also suppose each C,, is non-empty (if |[I\B| = 0,
wejust take pu = 0).
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Let pn, be a unit measure of the requisite type supported on C,, with
Cr={z| Gy, (2) = oo}
Let

[ee)
p=3 2 "dist(Kn,Cn)pin.
n=1
Since K, and C, are compact and disjoint, dist(K,,C,) > 0 and thus, G,(z) >
27"dist(Ky, Cr)?G,, (z) = 00 on C,, and so on UC, and so a.e. on I\B.
On the other hand, since K, C Kp41,..., dist(K,,Cp) > dist(K,,Cn) if
m>nandsoifr € K,,

n—1 oo
Gu(z) =Y 27 dist(Ke, Cp)* G () + 327" < o0,
=1 {=n

and so G, < oo on UK, and thus a.e. on B.
In the a.c. case, we can take p, = I—C}—IXCn dz, in which case it is evident that

the essential support of p is UC,, = I\ B as claimed. a

§3. ESSENTIALLY DENSE SETS

Definition. A measurable set S C I, an interval, is called essentially dense if for
every subinterval J C I, we have |JN S| > 0.

Theorem 3.1. There exist disjoint measurable subsets A, B,C C [0, 1] whose union
is [0,1] so that each is essentially dense.

Remarks. 1. Our proof shows that one can assert the same for sets A4;,..., 4,
rather than three sets or even construct a countable disjoint decomposition, each
of which is essentially dense.

2. Our construction is related to a construction in [2].

Proof. Let n; = (2j + 1)2, the square of the j*" odd number. Given z € [0, 1], we
define a;(r) by requiring

with aj(z) € {0,1,...,n; — 1} and the requirement that if 2’s expansion can end
in all 0’s, we do that (to settle the ambiguity between ...a(n; — 1)(n;41 —1)...
and ...(a+1)00...). This is a standard positive measure Cantor set construction.
Define m; = 3(n; — 1). Let

A = {z | the number of j’s with a;(z) = m; is 1,4, ... or infinite},

B = {z | the number of j's with a;(z) = m; is 2,5,8,...},

C = {z | the number of j's with a;(z) = m; is 3,6,9,... }.
This is obviously a decomposition. We need only to show that each set is essentially
dense. It suffices to show that |B N J| > 0 for any interval of the form J = {z |
a1(z) = ai,...,ax(x) = ax} since every interval contains such a J. By increasing

k by 1 or 2 and shrinking J by taking ay41 = mg41 (and perhaps agi2 = mgio),
we can suppose that #{j € {1,...,k} | o5 = m;} = 2 mod 3. In that case, by
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looking at x’s with no further a;(x) = my, we have

1 1
BnJ|> 1-—
|BNJ| > H( W>>0

£=k+1

since Y n% < 00. O
§4. MIXED SPECTRA

Proof of Theorem 2. Decompose [0,1] = AU B U C into three disjoint essentially

dense sets. Pick a measure du; which is absolutely continuous with essential support

A so that G, (z) < o0 a.e. on BUC and a s.c. measure py supported on B so that

Gu,(z) <coon AUC and G, () = 0o a.e. on B. Let du = du1 + dps.
By Theorem 0 (recall X =Y means | XAY| =0),

P=CU(R\[0,1]),

L=A,
S =B.
By equation (3) and its analogs for a.c. and s.c., we have the claimed assertions
(i)—(iii). For the examples with o,.(A4)) = 0, just use du = dus. O
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