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1. Introduction

In this paper, we will primarily discuss one-dimensional discrete
SchroÈ dinger operators

�hu��n� � u�n� 1� � u�nÿ 1� � V �n�u�n� �1:1D�
on `2�Z� (and the half-line problem, h�, on `2�fn 2 Zjn > 0g� �
`2�Z��) with u�0� � 0 boundary conditions. We will also discuss the
continuum analog

�Hu��x� � ÿu00�x� � V �x�u�x� �1:1C�
on L2�R� (and its half-line problem, H�, on L2�0;1� with u�0� � 0
boundary conditions).

We will focus on a new approach to the absolutely continuous
spectrum rac�h� and, more generally, Rac�h�, the essential support of
the a.c. part of the spectral measures.

What is new in our approach is that it relies on estimates on the
transfer matrix, that is, the 2� 2 matrix TE�n;m� which takes� u�m� 1�

u�m�
�
to
� u�n� 1�

u�n�
�
for solutions u of hu � Eu (in the contin-

uum case use
� u0�x�

u�x�
�
instead of

� u�x� 1�
u�x�

�
�. We let TE�n� � TE�n; 0�.

For example, we will prove the following:
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Theorem 1.1. Let h� be the operator (1.1D) on `2�fn 2 Zjn > 0g� with
u�0� � 0 boundary conditions. Let

S � E lim
L!1

1

L

XL

n�1
kTE�n�k2 <1

�����
)(

:

Then S is an essential support of the a.c. part of the spectral measure
for h� (i.e., S � Rac�h�� and S has zero measure with respect to the
singular part of the spectral measure.

The behavior of the transfer matrix is a re¯ection of the behavior
of eigenfunctions since T is built out of eigenfunctions. Indeed, if u
and w are any two linearly independent solutions of hu � Eu nor-
malized at 0, then 1

L

PL
n�1 kT �n�k2 and 1

L

PL�1
n�1 �ju�n�j2 � jw�n�j2� are

comparable and so Theorem 1.1 relates the a.c. spectrum to the be-
havior of eigenfunctions.

That there is a connection between eigenfunctions and a.c. spec-
trum is not new. Gilbert-Pearson [15] related a.c. spectrum to sub-
ordinate solutions. Typical is the following (actually due to [26]; see
also [23, 24]): Call a solution u of hu � Eu subordinate if and only if
for any linearly independent solution w,XL

n�1
ju�n�j2

�XL

n�1
jw�n�j2 ! 0 �1:2�

as L!1. Let

S0 � fEjthere is no subordinate solutiong :
Then S0 is an essential support of the a.c. part of the spectral measure
for h� and S0 has zero measure with respect to the singular part of the
spectral measure.

The Gilbert-Pearson theory provides one-half of the proof of
Theorem 1.1. Indeed, we will show that S � S0. The other direction
is intimately related to some new eigenfunction estimates which we
discuss in Section 2. Its relation to the theory of Browder, Berezinski,
Garding, Gel'fand, and Kac is discussed in the appendix.

Related to Theorem 1.1 is the following, which also relies on the
eigenfunction estimate of Section 2:

Theorem 1.2. Let h� be as in Theorem 1.1. Let mj; kj be arbitrary
sequences in fn 2 Z j n > 0g and let

S1 � E lim
j!1
kTE�mj; kj�k <1

�����
( )

:
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Then S1 supports the a.c. part of the spectral measure for h� in that
qac�RnS1� � 0.

These two theorems allow us to recover virtually all the major
abstract results proven in the past ®fteen years on the a.c. spectrum
for ergodic SchroÈ dinger operators with the exception of Kotani's
results [30, 32] on fEjc�E� � 0g. More signi®cantly, they establish
new results and settle an important open problem. Among the
results recovered via a new proof are the Ishii-Pastur theorem
[21, 38], Kotani's support theorem [31], and the results of Simon-
Spencer [46].

In a companion paper with A. Kiselev [29], we will use Theorems
1.1, 1.2 and Theorem 1.3 below to analyze, recover, and extend re-
sults on decaying random potentials [44, 12, 11], sparse potentials
[39, 40], and nÿa�1 > a > 3

4� potentials [28].
Theorem 1.1 and Fatou's lemma immediately imply that if Q is

any subset of R and

sup
n

Z
Q

kTE�n�k2 dE <1 ; �1:3�

then Q lies in the essential support of dqac (for Fatou's lemma and
(1.3) show for a.e. E 2 Q we have that lim 1

L

PL
n�1 kTE�n�k2 <1) but

(1.3) does not seem to eliminate the possibility of singular spectrum
on Q (on the set of Lebesgue measure zero where Fatou does not
apply). In this regard, the following result, which is an extension of
ideas of Carmona [4], is of interest:

Theorem 1.3. Suppose that

lim
n!1

Zb

a

kTE�n�kp dE <1

for some p > 2. Then the spectrum is purely absolutely continuous on
�a; b�.

It is interesting to compare Theorems 1.2 and 1.3. A priori,
one might think there could be potentials so there exist
n1 < m1 < n2 < m2 < � � � (with the mj ÿ nj and nj�1 ÿ mj growing
very rapidly) so that TE�n� is bounded at the mj and unbounded at the
nj. While this could happen at a single E, by these two theorems it
cannot happen for all E in �a; b�.
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To describe our most important new result, we de®ne

De®nition. Let V ;W be bounded functions on fn 2 Z j n > 0g. We say
that W is a right limit of V if and only if there exist nj !1 so that
V �n� nj� ! W �n� as j!1 for each ®xed n > 0.

Then we will prove from Theorem 1.1 and the eigenfunction
expansion results of Section 2 that

Theorem 1.4. If W is a right limit of V and ~h�; h� are the half-line
SchroÈdinger operators associated to W ; V respectively, then
Rac�h�� � Rac�~h��.
Remark. This result is particularly interesting because it is easy to see
that ress�~h�� � ress�h�� with the inclusion in the opposite direction.

Our proof of Theorem 1.4 depends on the shift to transfer ma-
trices rather than eigenfunctions.

This theorem will have an important corollary:

Theorem 1.5. Let W be an almost periodic function on Z (resp. R). Let
h (resp. H) be the full-line operator given by (1.1). For each Wx in the
hull of W , let hx (resp. Hx) be the corresponding operator. Then the a.c.
spectrum, indeed the essential support of the a.c. spectrum, of hx is
independent of x.

Remarks. 1. The result holds more generally than almost periodic
potentials. It su�ces that the underlying process be minimally ergodic.

2. We will also recover the Deift-Simon [10] result that the mul-
tiplicity of the a.c. spectrum is 2.

3. Following Pastur [38] and others (see [5, 7]), it is known that the
spectrum and its components are a.e. constant on the hull. In 1982,
Avron-Simon [2] proved that the spectrum is everywhere constant
rather than a.e. constant in the almost periodic case. Theorem 1.5 has
been believed for a long time, but this is its ®rst proof. It is known
(see Jitomirskaya-Simon [25]) that the s.c. and p.p. components need
not be everywhere constant.

In this paper, we will also obtain rigorous spectral results on the
operator h� where V �n� � k cos�nb�, and 1 < b is not an integer.

Theorem 1.5 is reminiscent of the invariance of the a.c. spectrum
under rank one perturbations for all couplings. This is no coinci-
dence. In our development of Theorems 1.1±1.2, what distinguishes
a.c. spectrum from non-a.c. spectrum is its invariance under boun-
dary conditions.
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While the main focus of this paper is on the a.c. spectrum and
transfer matrices, we will say something about point spectrum also.
In this introduction, we will focus on the discrete case with V
bounded. In [47], using constancy of the Wronskian, Simon-Stolz
proved

Theorem 1.6 ([47]). If
P1

n�1 kTE�n�kÿ2 � 1, then hu � Eu has no so-
lution which is L2 at in®nity.

As we will see in Section 8, it can happen thatP1
n�1 kTE�n�kÿ2 <1 without there being a solution L2 at in®nity;

indeed, without there even being a bounded solution, butP1
n�1 kTE�n�kÿ2 <1 has one important consequence. Call a solu-

tion u of hu � Eu strongly subordinate if for any linearly independent
solution w we have that

�u�n�2 � u�n� 1�2���w�n�2 � w�n� 1�2� ! 0

as n!1. It is easy to see that any strongly subordinate solution is
subordinate. We will prove that

Theorem 1.7. If V is bounded and
P1

n�1 kTE�n�kÿ2 <1, then there is a
strongly subordinate solution of hu � Eu. This solution, u1, obeys the
estimate

ku1�n�k2 � kTE�n�kÿ2 � p2

4
kTE�n�k2

�X1
m�n

1

kTE�m�k2
�2

:

In particular, if

X1
n�1

�
kTE�n�k2

�X1
m�n

kTE�m�kÿ2
�2�

<1 ;

then hu � Eu has an L2 solution.

Theorem 1.7 is essentially an abstraction of a well-known argu-
ment of Ruelle [41]. We will use it in [29, 36] to prove point spectrum
in certain models, including new and simpli®ed proofs of the results
of Simon [44] and some of the results of Gordon [17].

The plan of this paper is as follows. In Section 2 we develop
eigenfunction estimates. Their relation to the BGK eigenfunction
expansions is discussed in the appendix which includes higher-di-
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mensional results. In Section 3 we use the results of Section 2 and the
Gilbert-Pearson theory to prove Theorems 1.1 and 1.2 and we will
use Carmona's formula to prove Theorem 1.3. In Section 4 we re-
cover and extend the Simon-Spencer [46] results. In Section 5 we
prove Theorem 1.4 and in Section 6 we prove Theorem 1.5 and some
other consequences of Theorem 1.4, including the Kotani support
theorem. In Section 7 we discuss k cos�nb�. In Section 8 we prove
Theorems 1.7 and 1.8.

We would like to thank Bert Hof and Svetlana Jitomirskaya for
useful discussions. B.S. would like to thank M. Ben-Artzi for the hos-
pitality of the Hebrew University where some of this work was done.

2. Eigenfunction estimates

We consider half-line problems in this section. In the discrete case for
®xed V �n� and z 2 C, de®ne uD�n�; uN �n� to be the solution of hu � zu
(h given by (1.1D)) with boundary conditions

uD�0� � 0 uD�1� � 1

uN �0� � 1 uN �1� � 0 :

We will use X to denote D or N in formulas where either is valid, and
Y for the opposite condition.

In the continuum case, uD; uN obey Hu � zu (H given by (1.1C))
with boundary conditions

uD�0� � 0 u0D�0� � 1

uN �0� � 1 u0N �0� � 0 :

Of course, u is z-dependent and we will sometimes use u� � ; z�. It is
standard that u�n; z�, u�x; z�, and u0�x; z� are entire functions of z for
real x; n.

The solutions u are related to the transfer matrix by

TE�n� � uN �n� 1� uD�n� 1�
uN �n� uD�n�

� �
�2:1D�

in the discrete case and

TE�x� � u0N �x� u0D�x�
uN �x� uD�x�

� �
�2:1C�

in the continuum case.
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For z 2 C� � fz j Im z > 0g, there is a unique solution L2 at �1
(for arbitrary V in the discrete case and for V which is limit point at
in®nity in the continuum case). Both it and its derivative (in the
continuum case) are everywhere non-vanishing. In the continuum
case, we denote the solution by uD

��x; z� if normalized by uD
��0; z� � 1

and uN
��x; z� if normalized by �uN

��0�0; z� � ÿ1, and in the discrete
case uD

��0; z� � 1, uN
��1; z� � ÿ1. This normalization is chosen so that

the Wronskian of uX
� and uX is �1.

The m-functions are de®ned by

uX
�� � ; z� � �uY � � ; z� � mX �z�uX � � ; z� �2:2�

where we take the plus sign in case X � D and minus in case X � N .
(Noting that the Wronskian of uX

� and uY
� is zero, we see that

mX �z�mY �z� � ÿ1.)
It is well known (see, e.g., [5, 27]) that the m-functions are Herglotz

(i.e., analytic with Imm > 0 on C�) and that the measures

dqX �E� � lim
�#0

1

p
Im mX �E � i�� dE �2:3�

are spectral measures for the operator HX (h or H with appropriate
boundary conditions; i.e., in the continuum case HD;N are de®ned on
L2�0;1� with u�0� or u0�0� boundary conditions, and in the discrete
case HD (resp. HN ) is de®ned on `2�Z�� (resp. `2�f2; 3; . . . ; g�) with
u�0� � 0 (resp. u�1� � 0) boundary conditions). That is, HX is unit-
arily equivalent to multiplication by E on L2�R; dqX �E��. Note that in
(2.3) (and similarly (2.8) below), the limit is intended in the weak
sense, that is, holds when smeared in E with continuous functions of
compact support.

In the discrete case and in the continuum case with X � N , we
have Z

dqX �E�
jEj � 1

<1 �2:4a�

and

mX �z� �
Z

dqX �E�
E ÿ z

: �2:4b�

In the continuum case with X � D, we only have
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Z
dqD�E�
E2 � 1

<1 �2:5a�

and a Herglotz representation

mD�z� � a0 �
Z �

1

E ÿ z
ÿ E
1� E2

�
dqD�E� �2:5b�

for a suitable real constant a0.
We are heading toward a proof of the following theorems:

Theorem 2.1D. In the discrete case, for any V and n,Z
juX �n; E�j2 dqX �E� � 1 : �2:6D�

Theorem 2.1C. In the continuum case for any V � 0 and all x,Z juX �x; E�j2
E � 1

dqX �E� � 1

2
�1� eÿ2jxj� �2:6C�a��

where � correspond to X � D=N .Moreover, for a universal constant C,
we have that for all xZ �R x�1

xÿ1 ju0X �y; E�j2 dy
�

�E � 1�2 dqX �E� � C : �2:6C�b��

Remarks. 1. In (2.6C(b)), if x < 1, interpret xÿ 1 as 0.
2. Obviously, V � 0 can be replaced by V � c for any c if

�E � 1�ÿ1 in (2.6C) is replaced by �E ÿ c� 1�ÿ1. The proof shows
that as long as ÿV � a�ÿD� � b for some a < 1, estimates similar
to (2.6C) hold (with �E � 1�ÿ1 replaced by �E � jbj � �1ÿ a�ÿ1) and
the 1

2 (resp. 1) in the inequality replaced by 1
2 �1ÿ a�ÿ1 (resp.

�1ÿ a�ÿ1). Thus, the result allows any V whose negative part is
uniformly locally L1.

As a preliminary we note that

Lemma 2.2. (a) �2jm�E � i��j ! 0 as � # 0 uniformly for E in compact
subsets of R. (b) �jRem�E � i��j ! 0 as � # 0 and is uniformly bounded
for E in compacts.
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Proof. (a) is a direct consequence of (2.4/2.5). (b) follows from those
formulas and the dominated convergence theorem. (

The resolvent, �HX ÿ z�ÿ1, of the operator HX has a continuous
integral kernel (in the continuum case). In general, this kernel
GX �x; y; z� has the form

GX �x; y; z� � uX �x<; z�uX
��x>; z� �2:7�

where x< � min�x; y�, x> � max�x; y�. This formula is easy to verify
and shows that G is continuous.

Theorem 2.3.

lim
�#0

1

p
ImGX �x; x; E � i�� dE � juX �x;E�j2 dqX �E� : �2:8�

Proof. By (2.7) and (2.2),

GX �x; x; E � i�� � �uY �x;E � i��uX �x; E � i��
� mX �E � i��uX �x; E � i��2 :

Since uX ;Y are entire and real for z real, we have that
lim�#0 Im uY �x;E � i��uX �x;E � i�� � 0. Similarly, uX �x; E � i��2 �
uX �x; E�2 � i�a�x; E� � O��2� where u2

X and a�x� are real. Thus,

Im�mX �E � i��uX �x; E � i��2� � 1 � 2 � 3

with
1 � uX �x; E�2Im mX �E � i�� ! pjuX �x;E�j2 dqX �E�

by (2.3) and
2 � �a�x; E�Re m�E � i�� ! 0

by Lemma 2.2(b) and

3 � Im�O��2�m�E � i��� ! 0

by Lemma 2.2(a). Thus, (2.8) is proven. (

Remarks. 1. (2.8) is essentially a version of the spectral theorem. We
will discuss this further in the appendix.

2. The same method shows more generally that
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lim
�#0

1

p
GX �x; y; E � i�� � uX �x;E�uX �y;E� dqX �E� : �2:80�

3. (2.8/2.80) are not new; they are implicit, for example, in Section
II.3 of Levitan-Sargsjan [37].

Proof of Theorem 2.1D. (2.8) says that juj2 dq is the spectral measure
for HX with vector dn. Thus,

R ju�n; E�j2 dqX �E� � �dn; dn� � 1. (

Proof of Theorem 2.1C. GD�x; x; z� is analytic in Cn�0;1� and goes to
zero as jzj ! 1. It follows that

GX �x; x;ÿ1� �
Z ju�x;E�j2 dqX �E�

E � 1
:

But since V � 0, �HX � 1�ÿ1 � �H �0�X � 1�ÿ1 where H �0�X is the opera-
tor when V � 0. Thus,

GX �x; x;ÿ1� � G�0�X �x; x;ÿ1� � 1
2 �1� eÿ2jxj�

by the method of images formulas for G�0�. This proves (2.6C(a)).
To prove (2.6C(b)) where x � 2, pick g a C1 function with

0 � g � 1, g supported on �ÿ2; 2�, and g � 1 on �ÿ1; 1�. Let
f �y� � g�y ÿ x�. Then

Zx�1
xÿ1
�u0�2 dy �

Z
f 2�u0�2 dy

� ÿ
Z

f 2u00u dy ÿ 1

2

Z
�u2�0�f 2�0 dy

�
Z

f �E ÿ V �u2 dy � 1

2

Z
�f 2�00u2 dy

� C�1� jEj�
Zx�2

xÿ2
u2 dy :

Thus, (2.6(b)) for x � 2 follows from (2.6(a)).
A similar calculation works for x � 1. Explicitly, pick f which is

supported on �0; 3� and f � 1 on �0; 2�. Because u�0�u0�0� � 0, the
above calculations still show that
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Z2
0

ju�y�0j2 dy �
Z

f �E ÿ V �u2 dy � 1

2

Z
�f 2�00u2 dy

� C�1� jEj�
Z3
0

u2 dy:

(2.6(b)) for x � 1 and x � 2 imply the result for all x. (

Remark. If V is uniformly locally L2, one can show that (2.6C(b))
holds without the need for integrating over y.

3. Criteria for a.c. spectrum

Our main goal in this section is to prove Theorems 1.1 and 1.2 as well
as a continuum analog of Theorem 1.2. We begin with an estimate
based on the Gilbert-Pearson theory and then apply the bounds
of Section 2. We will then provide a new proof of the Pastur-Ishii
theorem. Finally, we present a condition for purely a.c. spectrum.

Fix V and E. For each h 2 �0;p�, let Uh be the vector formed from
the solution with �sin h; cos h� boundary conditions at 0, that is,

Uh� � � � TE� � � sin h
cos h

� �
�3:1a�

and let Wh be Up=2�h, that is,

Wh� � � � TE� � � cos h
ÿ sin h

� �
: �3:1b�

De®ne uh; vh by Uh�n� � uh�n� 1�
uh�n�

� �
, Wh�n� � vh�n� 1�

vh�n�
� �

.

The Wronskian of u and v is constant, that is, hU; JWi � 1 with

J � 0 1
ÿ1 0

� �
. It follows by the Cauchy-Schwarz inequality that

kUh�n�kkWh�n�k � 1: �3:2�
Clearly, kWh� � �k � kTE� � �k by (3.1b). Let us use the symbol 1

L

R L
0 � dx

for the integral in the continuum case and for the sum 1
L

PL
n�1 � in the

discrete case. Then

1

L

ZL

0

kWh�x�k2 dx � 1

L

ZL

0

kTE�x�k2 dx: �3:3�
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By (3.2),

1 �
�
1

L

ZL

0

kUh�x�k kWh�x�k dx
�2

�
�
1

L

ZL

0

kUh�x�k2
��

1

L

ZL

0

kWh�x�k2 dx
�
: �3:4�

(3.3) and (3.4) immediately imply

Lemma 3.1. R L
0 kWh�x�k2 dxR L
0 kUh�x�k2 dx

�
�
1

L

ZL

0

kTE�x�k2 dx
�2

�3:5�

Recall the de®nitions of Gilbert-Pearson. A solution uh is called
subordinate if and only if

lim
x!1

R L
0 juh�x�j2 dxR L
0 jvh�x�j2 dx

� 0: �3:6�

To use (3.6), we must deal with the fact that U;W are not quite the
same as u; v. In the discrete case, we have that

XL�1
n�1
jvh�n�j2 �

XL

n�1
kWh�n�k2

while XL�1
n�1
juh�n�j2 � 1

2

XL

n�1
�juh�n�j2 � juh�n� 1� j2�

� 1

2

XL

n�1
kUh�n�k2

so returning to
R L
0 � dx notation for the sumR L�1

0 jvh�x�j2 dxR L�1
0 juh�x�j2 dx

� 2
R L
0 kWh�x�k2 dxR L
0 kUh�x�k2 dx

so

340 Y. Last, B. Simon



R L�1
0 jvh�x�j2 dxR L�1
0 juh�x�j2 dx

� 2

�
1

L

ZL

0

kTE�x�k2 dx
�2

: �3:7D�

In the continuum case, one can mimic the proof of Theorem 2.1C
to see that if V � 0, then

ZL

0

�uh�x�2 � u0h�x�2� dx � C�1� jE j�
ZL�1
0

uh�x�2 dx :

Thus,R L�1
0 v2h�x� dxR L�1
0 u2

h�x� dx
� C�1� jEj�

R L�1
0 kWh�x�k2 dxR L
0 kUh�x�k2 dx

� C�1� jEj�
�
1

L

ZL

0

kWh�x�k2 dx
��

1

L

ZL�1
0

kWh�x�k2 dx
�

�
��L� 1�

L

�2

C�1� jEj�
�

1

L� 1

ZL�1
0

kTE�x�k2 dx
�2

:

�3:7C�
(3.6) and (3.7) imply that

Theorem 3.2. If H has a subordinate solution at energy E, then

lim
L!1

1

L

ZL

0

kTE�x�k2 dx � 1 : �3:8�

Let Q � fE j H has a subordinate solution atenergyEg and let
S0 � RnQ. Recall S, the set of Theorem 1.1, is given by

S �
�

E

���� lim
L!1

1

L

ZL

0

kTE�x�k2 dx <1
�
:

Theorem 3.2 says that Q � RnS so S � S0. Gilbert-Pearson have
shown that S0 is the essential support of the a.c. part, lac, of the
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spectral measure of H�. Thus, S � S0 implies that if A � S and
jAj > 0, then lac�A� > 0. Theorem 1.1 thus follows from

Proposition 3.3. For a.e. E w.r.t. lac, we have that E 2 S.

Proof. In terms of the measures dqX of Section 2, let
dl�E� � min�dqD; dqN � in the discrete case and dl � �1� E2�ÿ1�
min�dqD; dqN � in the continuum case, where the min is de®ned viz.

min�l1; l2��S� � inf
A;B

S�A[B

fl1�A� � l2�B�g :

Since the singular parts of dqD and dqN are disjoint and the a.c. parts
are mutually equivalent (see, e.g., [45]), dl is equivalent to the a.c.
part of the spectral measure for H�. By (2.1) and (2.6), we have that
for each n, Z

dl�E�kTE�n�k2 � 4 �3:9D�

in the discrete case and for each x0 � 1,

Z
dl�E�

Zx0�1
x0ÿ1

kTE�x�k2 � C �3:9C�

in the continuum case. Here C is a universal constant. It follows thatZ
dl�E�GL�E� � C ; �3:10�

where

GL�E� � 1

L

XL

n�1
kTE�n�k2

in the discrete case and

GL�E� � 1

Q�L�
ZL

0

kTE�x�k2 dx ;

where Q�L� is the smallest even integer less than L (so L=Q�L� ! 1 as
L!1).
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By (3.10) and Fatou's lemma,
R

dl�E�limGL�E� <1, so
limGL�E� <1 a.e. w.r.t. dl, that is, E 2 S for a.e. E w.r.t. to dl.(

Remark. An immediate consequence of Theorem 1.1 is that if Vx is an
ergodic family of potentials and the Lyapunov exponent c�E� > 0 on a
Borel set T � R, then for a.e. x, Rac�Hx� \ T � ;. For by Fubini's
theorem for a.e. x, for a.e. E 2 T , we have lim 1

n ln kT �n�k > 0 so that a
fortiori, lim 1

L

PL
n�1 kT �n�k2 � 1 and thus, for a.e. x, S \ T has zero

Lebesgue measure. This result is the celebrated Ishii-Pastur theorem
[21, 38, 5, 7]. Note that our proof is more direct than the one that goes
through the construction of exponentially decaying eigenfunctions.

To prove Theorem 1.2 (and also Theorem 1.4), we need to extend
(3.9) from T �n� to T �n;m�. As in that equation, dl is the min of dqN

and dqD which is an a.c. measure for h�:

Theorem 3.4D. For any n m,
R kTE�n;m�k dl�E� � 4.

Proof. We have that kT �n;m�k � kT �n; 0�k kT �0;m�k � kT �n; 0�k
kT �m; 0�k, so by the Schwarz inequality,Z
kTE�n;m�k dl �

�Z
kTE�n; 0�k2 dl

�1=2�Z
kTE�m; 0�k2 dl

�1=2

� 4

by (3.9). (

An immediate consequence of this theorem and Fatou's lemma is

Theorem 3.5D (�Theorem 1.2). Let mj; kj be arbitrary sequences in
fn 2 Z j n > 0g. Then for a.e. E in the a.c. part of the spectral measure
for h�, we have that limj!1kTE�mj; kj�k <1.

The continuum versions of these results are straightforward
analogs following the above proof using (3.9C). Here dl�E� �
�1� E2�ÿ1 min�dqD�E�; dqN �E��.

Theorem 3.4C. For each x0; y0 and a universal constant C,

Z
dl�E�

� Zx0�1
x0ÿ1

dx
Zy0�1

y0ÿ1
dy kTE�x; y�k

�
< C :
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Theorem 3.5C. Let xj; yj be arbitrary sequences in fx 2 R j x > 0g.
Then for a.e. E in the a.c. part of the spectral measure for H�, we have
that

lim
j!1

Zxj�1

xjÿ1
dx
Zyj�1

yjÿ1
dy kTE�x; y�k <1 :

We will need the following variant of these ideas in Section 5:

Theorem 3.6D. In the discrete case,Z
dl�E�

�
1

L

Xn�L

m�n�1
kT �m; n�k2

�1=2

� 4 : �3:11�

Proof. Since kT �m; n�k � kT �m�k kT �n�k, we have that
�1L
Pn�L

m�n�1 kT �m; n�k2� � kT �n�k�1L
Pn�L

m�n�1 kT �m�k2�1=2, so (3.11) fol-
lows from (3.9D) and the Schwarz inequality. (

In the same way, we get

Theorem 3.6C. In the continuum case for a universal constant C,

Z
dl�E�

� Zx0�1
x0ÿ1

dx
1

Q�L�
Zx�L

x

kTE�x; y�k2 dy
�1=2

� C :

Theorem 3.7 (�Theorem 1.3). Suppose that for some xn !1,

lim
n!1

Zb

a

kTE�xn�kp dE <1

for some p > 2. Then for any boundary condition at zero, the spectral
measure is purely absolutely continuous on �a; b�. More generally, if W
is an arbitrary function on �ÿ1;1� so that

(i) W � V on �0;1�
(ii) W is limit point at both ÿ1 and 1.

Then H � ÿ d2

dx2
� W has purely a.c. spectrum on �a; b�.
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Proof. Fix a boundary condition h at zero and let uh � �cos�h�;
sin�h��. For any x, let

dlh
x�E� � pÿ1dE

�kTE�x�uhk2 : �3:12�
Then Carmona [4] proves that as x!1,

dlh
x ! dlh ; �3:13�

the spectral measure for boundary condition h (the convergence in
(3.13) is in the vague sense, i.e., it holds after smearing with contin-
uous functions in E). Since T is unimodular, kTÿ1k � kTk so
kT uhk � kTkÿ1kuhk and thus, dlh

x�E� � F h
x �E� dE with

j Fx�E�j � kTE�x�k2 : �3:14�

For the whole-line problem, Carmona proves a result similar to (3.12/
3.13), but in (3.12) kTE�x�uhk is replaced by kTEuh�E�k with h�E�
dependent on E (and x) but (3.14) still holds. The result now follows
from the next lemma. (

Lemma 3.8. Let fn�k� be a sequence of functions on �a; b� � R so that
for some q > 1, Z

fn�k�q dk � C

uniformly in n. Suppose that fn�k� dk converge to a measure dl�k�
weakly. Then dl is purely absolutely continuous.

Proof. The ball of radius C in Lq is compact in the weak-* topology,
so there exists a subsequence fn�i� and f1 2 Lp so thatR

fn�i��k�g�k� dk ! R
f1�k�g�k� dl�k� for all g 2 Lq0 with q0 dual to p.

Thus, dl � f1 dk is absolutely continuous. (

We end this section with two remarks that shed some light on
the earlier theorems in this section. The ®rst concerns an explicit
relationship between the m-function and the basic average
1
L

R L
0 kTE�x�k2 dx which is connected with Lemma 3.1:

Proposition 3.9. We have for any h that

Immh

�
E � i

1

L

�
� �5�

�����
24
p
�
�
1

L

XL�1
n�0
kTE�n�k2

�
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where kTE�0�k is short for 1.
Proof. Let u1 be the solution with h boundary conditions normalized
at n � 1 and u2 the solution with complementary �p2 ÿ h� boundary
conditions. Then Jitomirskaya-Last [23, 24] prove that if kf kL �
�PL

n�1 f �n� j2�1=2 and ��L� is de®ned by

ku1kL ku2kL � �2��ÿ1 ; �3:15�

then

jm�E � i��j � ÿ5� �����
24
p � ku2kL

ku1kL
:

If L is odd, let f � �u1�1�; u1�2�; . . . ; u1�Lÿ 1�� and let g � �u2�2�;
ÿu2�1�; u2�4�;ÿu2�3�; � � � ;ÿu2�Lÿ 1��. Then constancy of the
Wronskian implies that hf ; gi � L

2, so by the Schwarz inequality,

Lÿ 1

2
� ku1kL ku2kL �

1

2��L� : �3:16�

For L even, the inequality holds with L
2, so a fortiori, (3.16) holds.

Thus, 1
L � ��L� 1�. Since Imm�E � i��=� is monotone increasing as �

decreases

Imm�E � iLÿ1�
Lÿ1

� Imm�E � i��L� 1��
��L� 1�

� jm�E � i��j
�

� 5� �����
24
p

�

ku2kL�1
ku1kL�1

:

By (3.15), ��ku1kL�1�ÿ1 � 2ku2kL�1, so

Imm�E � iLÿ1�
Lÿ1

� 2
ÿ
5�

�����
24
p �ku2k2L�1 :

Now ju2�n�j2 � ju2�n� 1�j2 � kT �n�k2, so

XL�1
n�0
kT �n�k2 � ju�0�j2 � ju�L� 2�j2 � 2ku2k2L�1 ;

proving that 2ku2k2L�1 �
PL�1

n�0 kT �n�k2 and the claimed inequality.
(
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The second result concerns the fact that lim 1
L

PL
n�1 kT �n�k2 <1

says nothing about upper bounds. We claim that this sum cannot
grow too fast, at least for a.e. E w.r.t. dlac.

Theorem 3.10. Fix d > 0. For a.e. E w.r.t. dlac, we have that for any
L � 2, �

1

L

XL

n�1
kTE�n�k2

�
� CE�log L�1�d :

Remarks. 1. �log L�1�d can be replaced by any increasing function
f �n� with P f �2n�ÿ1 <1, for example, �log L��log�log L��1�d.

2. If we replace kTE�n�k by ku�n; E�k, this result holds for dl�E�
rather than just for dlac�E�.
Proof. Let gk�E� � 2ÿk P2k

n�1 kTE�n�k2. Then by (3.9D),R
gk�E� dlac�E�� 4 so

P1
k�1 kÿ1ÿdgk�E� 2 L1�dlac�, which, in partic-

ular, implies that

gk�E� � CEk1�d �3:17�

for a.e. E w.r.t. dlac.
Let 2kÿ1 � L � 2k. Then

Lÿ1
XL

n�1
kTE�n�k2 � 2ÿkÿ1X2k

n�1
kTE�n�k2 � 2gk�E� ;

so (3.17) completes the proof. (

4. Barriers and a.c. spectrum

Theorem 1.2, which we proved in Section 3, is ideal for showing that
barriers can prevent a.c. spectrum, an idea originally developed by
Simon-Spencer [46]. In this section, we will explain how to recover
their results using Theorem 1.2. Our techniques here allow one to go
further since they can handle the case where V goes to zero. We will
illustrate this at the end of this section. A more thorough analysis of
this case will be made in a forthcoming paper [36]. As the simplest
example of the strategy, we recover

Theorem 4.1 ([46]). Let h� be a Jacobi matrix on `2�Z��. Suppose
limjV �n�j � 1. Then h� has no a.c. spectrum.
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Proof. Pick nj so jV �nj�j ! 1. Then

TE�nj; nj ÿ 1� � E ÿ V �nj� ÿ1
1 0

� �
;

so for all E, kTE�nj; nj ÿ 1�k ! 1 as j!1. By Theorem 1.2, the a.c.
spectrum must be empty. (

To recover some of the other results of [46], we need bounds that
show if E is in the middle of a gap of size 2d, then the transfer matrix
over a length L has an a priori bound that grows as L!1 in a way
independent of the potential. We could obtain this using Combes-
Thomas estimates with explicit constants (as in [46]) or using the
periodic potential methods of [34, 35], but we will instead use the idea
of approximate eigenfunctions. Our simple estimates can be viewed as
a quantitative version of an idea of Sch'nol [42]. Basically, we will see
that any solution is found to grow exponentially at a pre-assigned
rate in some direction.

Theorem 4.2. Suppose h is a one-dimensional operator of the form
(1.1D) on a subset D of Z with Dn � fÿn;ÿn� 1; . . . ; nÿ 1; ng � D.
Suppose that there is an operator B on `2�D0� for some D0 � Z with
Dn � D0 so that

(i) spec�B� \ �E ÿ d;E � d� � ;.
(ii) Bu � hu if u vanishes outside Dn.

Then
(a) Any solution of hu � Eu obeys

ju�`�j2 � ju�ÿ`�2j � d2�1� d2�`ÿ1ju�0�j2 for ` � 1; 2; . . . ; n� 1

�4:1�

and

ju�`�j2 � ju�ÿ`�j2 � d2�1� d2�`ÿ2�ju�0�j2 � ju�1�j2

� ju�ÿ1�j2� for ` � 2; 3; . . . ; n� 1 : �4:2�

(b) For any vector u 2 R2,

kT �`; 0�uk2 � kT �ÿ`; 0�uk2 � d2�1� d2�`ÿ1kuk2 for ` � 1; 2; . . . ; n :

�4:3�

(c) We have that
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kT �ÿn; n�k � 1
2 d2�1� d2�nÿ1 : �4:4�

Remarks. 1. One remarkable aspect of these estimates is that they
(and their multidimensional case continuum analog) are independent
of V .

2. The point, of course, is that since d > 0, �1� d2�` grows to
in®nity as `!1. We show it is exponentially fast, but that is not
needed.

3. While the estimates are elegant and explicit, it is likely the
exponent is not optimal. For d small, �1� d2�n ' exp�n log�1� d2��
� exp�nd2�. One would expect that kT �n;ÿn�k � exp�2dn� for d small
(and ®xed) and n large.

Proof. Let vj be the characteristic function of fÿj; . . . ; jg. Then
��hÿ E��vju���`� � ÿdj;`�1u�`� 1� ÿ dj;ÿ`ÿ1u�ÿ`ÿ 1�

so if we de®ne

aj � ju�j�j2 � ju�ÿj�j2 for j � 1; 2; . . .

and

a0 � ju�0�j2

we have that

k�H ÿ E��vju�k2 � aj�1 : �4:5�
Clearly,

kvjuk2 �
Xj

k�0
ak : �4:6�

But by hypothesis (i), (ii), if j � 0; 1; . . . ; n,

k�H ÿ E�vjuk2 � k�Bÿ E�vjuk2 � d2kvjuk2 : �4:7�

(4.5), (4.6), and (4.7) imply that

d2
�Xj

k�0
ak

�
� aj�1 �4:8�

for j � 0; 1; 2; . . . ; n.
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It follows inductively that for ` � 1; 2; . . .

a` � d2�1� d2�`ÿ1a0 �4:9�

for (4.9) holds for ` � 1 (by 4.8), and if (4.9) holds for a1; . . . ; aj, then
by (4.8),

aj�1 � d2
�
1�

Xj

k�1
d2�1� d2�kÿ1

�
a0 � d2�1� d2�ja0 :

(4.9) is precisely (4.1).
A virtually identical inductive argument proves (4.2). (4.3) follows

from (4.1) and its translate:

ju�`� 1�j2 � ju�ÿ`� 1�j2 � d2�1� d2�`ÿ1ju�1�j2; ` � 1; . . . ; n :

To prove (4.4), let a � 1
2 d2�1� d2�nÿ1 so that (4.3) becomes

kT �n; 0�uk2 � kT �ÿn; 0�uk2 � 2akuk2 : �4:10�

If a � 1, (4.4) is trivial so suppose that a > 1. Picking any unit vector
u, we conclude that

kT �n; 0�k2 � a or kT �ÿn; 0�k2 � a :

Suppose the former. Since T �n; 0� is unimodular, we can ®nd a
unit vector u0 so that kT �n; 0�u0k � kT �n; 0�kÿ1. Thus,

kT �n; 0�u0k2 � 1
a ku0k2 � aku0k2

because we are supposing that a > 1. Thus, by (4.10),

kT �ÿn; 0�u0k2 � aku0k2 � a2kT �n; 0�u0k2 :

It follows that

kT �n;ÿn�k2 � kT �ÿn; n�k2 � a2

which is (4.4). (

Once we have Theorem 4.2, we immediately conclude by Theorem
1.2 that
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Theorem 4.3. Suppose that h has the form (1.1D) on Z� so that there
exist xn � n and Wn on ~Dn � fxn ÿ n; . . . ; xn � ng so that

(i) �a; b� \ spec�ÿ d2

dx2 � Wn� � ; for some boundary conditions on
~Dn.

(ii) Wn�j� � V �j� for j 2 fxn ÿ n; . . . ; xn � ng.
Then �a;b� is disjoint from the a.c. spectrum of h.

Proof. Fix E 2 �a;b�. Then by Theorem 4.2,

lim
n!1kTE�xn ÿ n; xn � n�k � 1 :

It follows by Theorem 1.2 that �a; b� is disjoint from the a.c. spec-
trum. (

With this result, one can recover the theorems in [46] that depend
on gaps in the spectrum.

Before leaving the subject of Theorem 4.2, we note that (4.1) has a
continuum, higher-dimensional analog.

Theorem 4.4. For any K > 0 and dimension m, there exists a universal
constant Cm�K� depending only on m and K so that if V is in the local
Kato class and there exists an operator B on L2�Rm� so that

(i) Bu � �ÿD� V �u, all u 2 C10 �Dn� where Dn � fx j jxj � n� 1g
(ii) r�B� \ �E ÿ d;E � d� � ;
(iii) kV vfxj j x j �n�1gk � K where the norm is the Km Kato class norm

[7, 43]
(iv) jEj � K

then any L2
loc distributional solution of �ÿD� V �u � Eu in Dn obeysZ

j�jxj�j�1

ju�x�j2 dx � Cm�K�d2�1� Cm�K�d2�jÿ2
Z
jxj �1

ju�x�j2 dx

�4:11�
for j � 1; 2; . . . ; n.

Proof. Let vj be the characteristic function of fx j jxj � jg. It is fairly
easy to see one can construct a sequence, fj, of C1 functions on Rm so
that

fjvj � vj

fjvj�1 � fj

and
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sup
j
kDafjk � da <1 �4:12�

for each multi-index a.
We claim that with H � ÿD� V ,

k�H ÿ E�fjuk2 � Cm�K�ÿ1k�vj�1 ÿ vj�uk2 : �4:13�

Accepting this for a moment, we will prove (4.8). We have for
j � nÿ 1,

k�H ÿ E�fjuk2 � k�Bÿ E�fjuk2 � d2kfjuk2 � d2kvjuk2 :

Thus with aj � k�vj�1 ÿ vj�uk2, we see that

Cmd
2

�Xj

1

a`

�
� aj�1

so that as in the proof of Theorem 4.2,

aj � Cmd
2�1� Cmd

2�jÿ2a1

which is (4.11).
To prove (4.13), notice that

�H ÿ E�fju � �ÿDfj�u� 2�rfj� � ru

so

k�H ÿ E�fjuk2 � 2k�ÿDfj�uk2 � 8k�rfj� � ruk2 : �4:14�

By Theorem C.2.2 of [43], we can bound krf � ruk2 by a constant
C1 (depending on K) times k�vjÿ1 ÿ vj�uk2 so by (4.14), we have the
estimate (4.13). (

Theorem 4.5. Fix a < 1
2 and let fang1n�1 be identically independently

distributed random variables with distribution 1
2 v�ÿ1;1��x� dx. Then there

exists N1 < N2 < � � � so that for any m1; . . . ;mn; � � � � 0 and a.e. fang
the potential on Z�:
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V �n� �

0 n � m1

�nÿ m1�ÿaan m1 < n � m1 � N1

0 m1 � N1 < n � m1 � N1 � m2

..

.

�nÿ m1 ÿ N1 m1 � � � � � Njÿ1 � mj < n

ÿ � � � ÿ mj�ÿaan � m1 � � � � � Nj

0 m1 � � � � � Nj < n � m1 � � � � � Nj � mj

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
has no a.c. spectrum.

Remark. The choice can be made so that by Theorem 1.6, there is no
point spectrum, that is, so the spectrum is purely singular continuous.

Proof. Let ~TE�0; n� be the transfer matrix for the power-decaying
potential nÿaan. By [44], for a.e. fang and a.e. E 2 �ÿ2; 2�,

lim
n!1k ~TE�0; n�k � 1 : �4:15�

Let A�1�` � fE j infn�` k ~TE�0; n�k � 1g. By (4.15) j�ÿ2; 2�nA`j # 0 as
`!1 so we can pick N1 so that �ÿ2; 2�njA�1�N1

j � 2ÿ1. Now induc-
tively pick Nj given N1; . . . ;Njÿ1 so if

A�j�` �
�

E

���� infn�`
k ~TE�N1 � � � � � Njÿ1;N1 � � � � � Njÿ1 � n�k � n

�
then �ÿ2; 2�njA�j�Nj

j � 2ÿj.
For this choice of Nj's, the theorem holds since for a.e. E, E 2 A�j�Nj

for all large j and thus for such E, kTE�m1 � � � � � Njÿ1
�mj;m1 � � � � � mj � Nj�k � j. Theorem 3.5 implies rac � ;. (

[29] will have a much more e�ective analysis of this type of
example.

5. Semicontinuity of the a.c. spectrum

In this section, we will prove Theorem 1.4. Consider ®rst the discrete
case. Pick nj so V �n� nj� ! W �n� as j!1 for each n. Let TV (resp.
TW ) denote the transfer matrix for the Jacobi matrix with V (resp. W )
along the diagonal. By Theorem 3.6D,
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Z
dlV �E�

�
1

L

Xnj�L

m�nj�1
kTV �m; nj�k2

�1=2

� 4 �5:1�

where dlV �E� is a measure equivalent to the a.c. part of the spectral
measure for V . Since V �n� nj� ! W �n� as j!1, we have that

TV �nj � m; nj� ! TW �m; 0�

so (5.1) implies thatZ
dlV �E�

�
1

L

XL

m�1
kTW �m; 0�k2

�1=2

� 4 : �5:2�

It follows by Fatou's lemma that for a.e. E with respect to dlV �E�,
we have

lim
1

L

XL

m�1
kTW �m; 0�k2 <1 :

Such E are thus a.e. in Rac�h0 � W �, that is, Rac�h0 � V � �
Rac�h0 �W � as claimed. (

The proof in the continuum case is similar, except that we use
Theorem 3.6C in place of Theorem 3.6D.

We note that the notion of right/left limits, which enters in
Theorem 1.4, is in the spirit of the notion of limit class introduced by
Davies-Simon [9].

6. Consequences of semicontinuity of the a.c. spectrum

Let �X; T ; l� be a metric ergodic process, that is, T is a continuous
invertible bijection from X! X with X a compact metric space (recall
that any separable compact space is metrizable) and l a probability
measure with support l � X.

De®nition. A point x0 2 X is called right prototypical if and only if
fT nx0 j n � 0g is dense in X, and left prototypical if and only if
fT nx0 j n � 0g is dense in X. If x0 is both left and right prototypical,
we say it is prototypical.

The ergodic theorem implies that a.e. x0 2 X is prototypical. Fix a
continuous function f : X! R and let hx on `2�Z� be de®ned by
�hxu��n� � u�n� 1� � u�nÿ 1� � f �T nx�u�n�.
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Theorem 6.1. The essential support of the a.c. spectrum of hx is the
same for all prototypical points and is of multiplicity 2. Moreover, for
any prototypical x0 and any x 2 X, we have Rac�hx0

� � Rac�hx�.
Proof. Let h�x be the operators on `2��n � 1� with u�0� � 0 boundary
conditions. By general principles (see, e.g., Davies-Simon [8]), the
restriction of hx to its a.c. subspace is unitarily equivalent to the
restriction of h�x � hÿx to its a.c. subspace. Thus, the theorem follows
from

(i) if x0 is prototypical and is x arbitrary, then Rac�h�x0
� � Rac�h�x�

(ii) for prototypical x0, Rac�h�x0
� � Rac�hÿx0

�
for (i) implies equality if both x0 and x are prototypical and (ii)
implies multiplicity 2.

To prove (i), pick nj !1 so T�njx0 ! x. Then, since VT�mx0
�n� �

f �T n�mx0� � Vx0
�n� m�, we have that Vx0

� � � nj� ! Vx� � � so (i)
follows from Theorem 1.4.

To prove (ii), let x0 be prototypical and x 6� x0, also prototypical.
Pick nj !1 so T�njx0 ! x. Fix L and use the fact that
kT �n;m�k � kT �m; n�k (since T is unimodular) to note that

1

L

XL

m�1
kTx�ÿ1;ÿm�k2 � 1

L

XL

m�1
kTx�ÿm;ÿ1�k2

� lim
1

L

XL

m�1
kTx0
�nj ÿ m; nj ÿ 1�k2

so by Theorem 3.6D,

Z
dlx0
�E�
�
1

L

XL

m�1
kTx�ÿ1;ÿm�k2

�
< 4

where dlx0
�E� is an a.c. measure for h�x0

. Thus, as in the last section,
Rac�hÿx� � Rac�h�x0

�. By symmetry, (ii) holds. (

Remark. That the typical a.c. spectrum is of multiplicity 2 is a result
of Deift-Simon [10] proven using Kotani theory. Our proof is
di�erent.

If V is almost periodic, then every x 2 X is prototypical. Thus,
Theorem 6.1 implies Theorem 1.5. More generally, if �T ;X; l� is
minimal (or if it is strictly ergodic which implies minimal), then every
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x 2 X is prototypical, and we see that the a.c. spectrum is constant
(rather than just a.e. constant) on X.

Example. Consider the sequence V1; V2; V3; . . . given by

0; 1; 0; 0; 0; 1; 1; 0; 1; 1; 0; 0; 0; 0; 0; 1; 0; 1; 0; . . .

de®ned as follows. For two ®nite sequences of 0's and 1's of length n,
say w1; . . . ;wn, and ~w1; . . . ; ~wn, say w < ~w, if and only if

w1 � ~w1; . . . ;wj � ~wj; wj�1 < ~wj�1 :

With this order, the sequences of length n are well-ordered, for
example,

�0� < �1�; �0; 0� < �0; 1� < �1; 0� < �1; 1�;
�0; 0; 0� < �0; 0; 1� < �0; 1; 0� < � � � :

V is obtained by placing the two sequences of length 1 in order, then
the four sequences of length 2, etc. Clearly, V is prototypical for a
Bernoulli model. By Furstenberg's theorem, that model has no a.c.
spectrum, so V is an explicit sequence for which we know that
rac�h0 � V � � ;.

Another consequence of Theorem 6.1 is a new proof of the Kotani
support theorem:

Theorem 6.2. Let X be the compact metric space of sequences Vn with
jVnj � a with the product topology. Let f : X! R by f �V � � V0 and
T : X! R by �TV �n � Vn�1. Let l1; l2 be two measures on X under
which T is ergodic. Let Ri be the essential support of the a.c. spectrum
of the prototypical hx for the process �supp�li�; T ; li�. If
supp�l1� � supp�l2�, then R1 � R2.

Proof. Let xi 2 supp�li� be li-prototypical. Since x1 2 supp�l2�,
Theorem 6.1 implies R�hx2

� � R�hx1
�. (

Remark. In a sense, Theorem 1.4 is a deterministic version of the
Kotani support theorem, so it is not surprising that it implies the
Kotani theorem.

While we have stated these theorems in this section for the discrete
case, they all extend easily to the continuum case.
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7. The potential k cos�nb�; b > 1

Jacobi matrices with potentials of the form V �n� � k cos �nb�, where
k;b are real parameters with b > 1, had been studied numerically
and heuristically by Griniasty-Fishman [18] and Brenner-Fishman
[3]. The particular case 1 < b < 2 had been studied in more detail by
Thouless [48]. The numerical evidence indicates that for b � 2, such
potentials exhibit ``localization'' with the same Lyapunov exponents
as those of random potentials (Anderson model) with the same
coupling. The case 1 < b < 2 is di�erent, and far less conclusive.
One still expects ``localization'' away from E � 0 (the center of the
spectrum) and for large k, but the Lyapunov exponents are smaller
and seem to vanish for E � 0 and small k. Mathematical results exist
for the case where b is an integer and k is large (larger than 2, to be
precise), in which case it is known [16, 22] that there is no absolutely
continuous spectrum. More precisely, for every polynomial p�n� with
a leading coe�cient that is an irrational multiple of p, it is known
that k cos �p�n�� can be obtained as a realization (an element) of an
ergodic family of potentials coming from a suitable ergodic trans-
formation on the d-dimensional torus [6] (with d the degree of p�n�);
and that the corresponding ergodic families have only positive
Lyapunov exponents as long as k > 2 [16, 22]. Further, the corre-
sponding ergodic families are minimal [14], and so it follows from
our Theorem 6.1 that every realization of such a family has no
absolutely continuous spectrum. We note that this is also true for the
case b � 1, where the absence of a.c. spectrum follows from earlier
results [2]. Our purpose in this section is to extend these results to
cases where b is not an integer. We discuss half-line problems here,
and denote by h�0 the free Laplacian on `2�Z��. The results are also
valid for full-line problems if we replace n by jnj. We shall prove the
following:

Theorem 7.1. For any k > 2 and b > 1, Rac�h�0 � k cos �nb�� � ;.
Remarks. 1. cos� � � in the above theorem can be replaced by any real
analytic function f � � � of period 2p, in which case the theorem would
hold for k ``large enough.'' This follows from the argument below
combined with the results of Goldsheid-Sorets [16]. The explicit k > 2
for the cos� � � case is due to Jitomirskaya [22].

2. The result is actually also more general in the sense that one can
replace nb by, for example,

Pk
j�1 ajnbj , where k is any positive integer,

bj > 0 for each j, and the aj's are some real numbers (except if the
largest bj is an integer, in which case we would need some further
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condition, such as that the corresponding aj would be an irrational
multiple of p).

3. For 1 < b < 2, the result also follows for k � 2, by results of
Hel�er-SjoÈ strand [20] and Last [33].

Proof. Let k > 2. We only need to consider the case where b is not an
integer. Fix k < b < k � 1, where k is an integer, and consider
�n� m�b where n is large and m� n. By writing �n� m�b �
nb�1� n=m�b and expanding �1� n=m�b as a Taylor series, we obtain:

�n� m�b �
X1
`�0

a`nbÿ`m` �
Xk

`�0
a`nbÿ`m` � O nbÿkÿ1mk�1ÿ �

; �7:1�

where a0 �1, a` � �1=`!�
Q`ÿ1

j�0�bÿ j� for ` � 1. Let b`;n � ha`nbÿ`=2pi
where h � i denotes fractional part (i.e., hxi � xÿ �x�). Since
�n� 1�bÿk ÿ nbÿk ! 0, fbk;ng1n�1 is clearly dense in �0; 1� and we can
pick a convergent subsequence fnjg so that bk;nj ! bk;1 � bk, where
bk is an irrational. Moreover, by compactness, we can ®nd a subse-
quence of that for which b`;nj ! b` for all ` � k, where the b`'s (for
` < k) are some numbers in �0; 1�. For the resulting polynomial
p�n� �Pk

`�0 b`n` we see from (7.1) that hp�n�=2pi is a pointwise limit
of translations of hnb=2pi. Thus, the potential k cos �p�n�� is a right
limit of k cos �nb�, and by Theorem 1.4, we have
Rac�h�0 � k cos �nb�� � Rac�h�0 � k cos �p�n��� � ; (where the last
equality follows from the discussion above). (

In the above proof we only needed to show that some ®xed real-
ization of a suitable ergodic process is obtained as a limit of trans-
lations of hnb=2pi. However, since the underlying ergodic systems are
minimal, it follows that translations of that realization are themselves
dense in the ergodic family. Thus, one sees that we can actually ob-
tain every realization as such a limit. We can combine this with
Kotani's result [32] ± that ergodic potentials taking ®nitely many
values have no absolutely continuous spectrum (unless they are pe-
riodic) ± to show that if f � � � is any real periodic piecewise constant
function on the line (with only ®nitely many discontinuities per pe-
riod), then for any b > 1 that is not an integer, Rac�h�0 � f �nb�� � ;.
The proof here is very similar to that of Theorem 7.1, except that we
need to choose a realization that does not take values in any of the
points where f is discontinuous.

Finally, we would like to discuss the special case 1 < b < 2 and to
explain how one could prove Rac�h�0 � k cos �nb�� � ; also for k < 2,
if one could prove that ``Hofstadter's butter¯y has wings.'' Noting
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that we could choose the largest order coe�cient bk in the proof of
Theorem 7.1 at will, we obtain for 1 < b < 2:

Proposition 7.2. Rac�h�0 � k cos �nb�� � \a2F Rac�h0 � k cos �pan�� for
any countable set F of irrational a0s.

Rac�h�0 � k cos �nb�� � ; would thus follow, if we could prove the
following:

Conjecture. Fix k 6� 0 and E0 real. Then there exists d > 0 and irra-
tional a with r�h0 � k cos �pan�� \ �E0 ÿ d;E0 � d� � ;.

Intuitively, this conjecture comes from the fact that for k small,
h0 � k cos �pan� should have a gap about the energy E � 2 cos�pa�. In
numerical drawings of Hofstadter-like butter¯ies for various values
of k [19], one indeed sees those ``stripes'' appear for small k, and then
broaden and get more structure as k increases, up to the critical point
k � 2 where they form the wings of the famous Hofstadter butter¯y.
Unfortunately, we do not know how to prove that these wings exist.

8. Transfer matrices and bound states

In this section, we will prove Theorem 1.7. As noted already, Theo-
rem 1.6 is motivation for considering

P1
n�1 kTE�n�kÿ2 as an indicator

of bound states. If it is in®nite, hu � Eu has no solution L2 at in®nity.

Example 1. Take V � 0 and E � 2. Then hu � Eu has the solutions

u�n� � c1 � c2n ;

none of which are `2. But

TE�n� � n� 1 ÿn
n 1ÿ n

� �
has kTE�n�k �

���
2
p

n� 0�1� and thus
P1

n�1 kTE�n�kÿ2 <1. We see
that

P1
n�1 kTE�n�kÿ2 <1 does not imply that there is an `2 solution.

Example 2. Let V �n� � c0nÿ2, n � 1; 2; . . . with c0 < 1
4 and E � 2.

Then standard arguments (variation of parameters) show that there
are two solutions u��n� with
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u��n� � na�

with a� the roots of a�aÿ 1� � c0 � 0, that is,

a� � 1

2
�

�������������
1

4
ÿ c0

r
:

We see that kT �n�k � Cna� , so since a� > 1
2,
P

n kT �n�kÿ2 <1. But if
c0 > 0, there is no bounded solution. Thus,

P
n kT �n�kÿ2 <1 need

not even imply that there is a bounded solution!
The following (note (8.5) and (8.7)) includes the ®rst part of

Theorem 1.7 as a special case. Its proof just abstracts Ruelle [41]:

Theorem 8.1. Let A1;A2; . . . be unimodular 2� 2 real matrices and let
T �n� � AnAnÿ1 . . . A1. Suppose that

X1
n�1

kAn�1k2
kT �n�k2 <1 : �8:1�

Then there is a unit vector u 2 R2 so that for any other unit vector
v 2 R2, we have

kT �n�uk
kT �n�vk ! 0 : �8:2�

Proof. Let t�n� � kT �n�k and a�n� � kAnk. Since jT �n�j is self-adjoint
and unimodular, it has eigenvalues t�n� and t�n�ÿ1. Thus, taking

uh � cos �h�
sin�h�
� �

we see there exists hn so that

kT �n�uhk2 � t�n�2 sin2�hÿ hn� � t�n�ÿ2 cos2 �hÿ hn� �8:3�

for pick hn so that jT �n�juhn � t�n�ÿ1uhn . Now by (8.3) for n� 1,

t�n� 1�2 sin2�hn ÿ hn�1� � kT �n� 1�uhnk2

� a�n� 1�2kT �n�uhnk2

� a�n� 1�2t�n�ÿ2 :

Since An�1 is unimodular, t�n� � kT �n�k � kT �n� 1�k kAÿ1n�1k �
t�n� 1�a�n� 1� so
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t�n�2 sin2�hn ÿ hn�1� � a�n� 1�4t�n�ÿ2 :

Since sin2�x� � �2x
p �2, we see that

jhn ÿ hn�1j � p
2

a�n� 1�2
t�n�2 : �8:4�

Thus, (8.1) implies X
n

jhn ÿ hn�1j <1 :

So if (8.1) holds, hn has a limit h1 and

jhn ÿ h1j � p
2

X1
m�n

�
a�m� 1�2

t�m�2
�
: �8:5�

Let u1 � uh1 and v1 � up=2�h1 . Since hn ÿ h1 ! 0, for n large en-
ough, we have by (8.3) that

kT �n�v1k2 � 1
2 t�n�2 : �8:6�

On the other hand, by (8.3) again,

kT �n�u1k2 � t�n�2�hn ÿ h1�2 � t�n�ÿ2 : �8:7�

(8.6) and (8.7) imply that

kT �n�u1k2
kT �n�v1k2

� 2�hn ÿ h1�2 � 2t�n�ÿ4 ! 0

since a�n� 1� � 1 and (8.1) imply that t�n� ! 1. From this, (8.2)
follows. (

The following includes the second part of Theorem 1.7 as a special
case (where a�n� is bounded):

Theorem 8.2. Under the hypothesis of Theorem 8.1, suppose that we
also have that

X1
m�1
kT �m�k2

�X1
n�m

kA�n� 1�k2
kT �n�k2

�2

<1 : �8:8�
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Then there is a unit vector u1 with

X1
n�1
kT �n�u1k2 <1 :

Proof. Using (8.7) and (8.5), we see that
P1

n�1 kT �n�u1k2 <1 if (8.8)
holds and if

P
n t�n�ÿ2 <1. But since a�n� � 1, (8.1) implies thatP

n t�n�ÿ2 <1. (

Example 3. Suppose that kA�n�k is bounded and t�n� � nc in the sense
that Cÿnc � t�n� � C�nc. Then (8.1) requires c > 1

2 while (8.4)
requires c > 3

2. Notice in Example 2, c � a� while an `2 solution re-
quires aÿ < ÿ 1

2. Since a� � 1ÿ aÿ, Example 2 provides an example
with c � 3

2 where there is no `
2 solution (namely, take c0 � ÿ 3

4). Thus,
c > 3

2 is best possible!

If one has control over the limit of ln kT �n�k, one can say more:

Theorem 8.3. Suppose that the hypotheses of Theorem 8.1 hold and
that

lim
n!1

ln kT �n�k
f �n� � 1

and

lim
n!1

ln kA�n�k
f �n� � 0 ;

where f �n�, a monotone increasing function, is such thatX
eÿ�f �n� <1

for any � > 0. Then the u1 of Theorem 8.2 obeys

lim
n!1

ln kT �n�u1k
f �n� � ÿ1 :

Proof. By (8.5) and (8.7), for any � > 0, for n large
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kT �n�u1k2 � eÿ2�1ÿ��f �n� �
�

p
2

�2�X1
m�n

e2�f �m�

e2�1ÿ��f �m�

�2

e2�1���f �n�

� eÿ2�1ÿ��f �n� �
�

p
2

�2

eÿ�2ÿ11��f �n�
�X1

m�n

eÿ�f �m�
�

lim
kT �n�u1k

f �n� � ÿ1 :

On the other hand, kT �n�uk1 � kT �n�kÿ1 implies

lim
kT �n�u1k

f �n� � ÿ1 : (

Typical cases of this theorem are f �n� � na; f �n� � n is Ruelle's
theorem. For the case f �n� � ln�n� where (8.9) fails, we have

Theorem 8.4. Suppose the hypotheses of Theorem 8.1 hold and that

lim
n!1

ln kT �n�k
ln n

� c

lim
n!1

ln kA�n�k
ln n

� 0

where c > 1
2. Then

lim
n!1

ln kT �n�u1k
ln n

� 1ÿ c �8:10�

while

lim
n!1

ln kT �n�u1k
ln n

� ÿc : �8:11�

Proof. As in the last theorem, (8.11) is a consequence of kT �n�u1k �
kT �n�kÿ1. To get (8.10), we use (8.5), (8.7) to see that for any � > 0,

kT �n�u1k2 � nÿ2c�� �
�X1

m�n

mÿ2c��
�2

n2c��

� nÿ2c�� � Cn2ÿ2c�2� : (

Example 2 shows there are cases where the limit is 1ÿ c. [29] has
examples where the limit is ÿc.

The ideas of this section can be applied to certain continuum
problems by sampling the wave function at a discrete set of points.
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Appendix: BGK eigenfunction expansions

The proofs of the estimates in Section 2 are one-dimensional, relying
on the relation between Green's functions and m-functions. Our goal
in this appendix is to discuss an alternate proof which extends to
higher dimensions. The applications of these estimates in Section 3
are intrinsically one-dimensional, so those results do not extend to
higher dimensions. Nevertheless, we believe these general estimates
may be of use elsewhere.

We recall the abstract eigenfunction expansion dubbed BGK ex-
pansions in [43] after work of Berezinski, Browden, Garding, Gel'-
fand, and Kac (see [43] for references). In the discrete case, they take
the following form. Let V be an arbitrary function on Zm. Let
�Hu��n� �Pj`j�1 u�n� `� � V �n�u�n�. Then there exist measures
fdqk�E�g1k�1 on R and a measure dq1�E� so that the dq's are mu-
tually singular [1, 13, 45]. Moreover, for a.e. E w.r.t. dqk�E�, there
exist k linearly independent functions fuj;k�n; E�gk

j�1 on Zm so that

(i)
P
j`j�1 uj�n� `� � �V �n� ÿ E�uj�n� � 0.

(ii) For any f on Zm of ®nite support, de®ne
aj;k�f ��E� �

P
n uj;k�n; E� f �n�. Then

aj;k�Hf ��E� � Eaj;k�f ��E�
and for any f ; g of ®nite support,

hf ; gi �
X``1''
k�1

Xk

j�1

Z
aj;k�f ��E� aj;k�g��E� dqk�E� �A.1�

with an explicit q1-term intended in
P``1''

k�1 .

Pick f � g � dn, a Kronecker delta function at n. Then (A.1)
becomes

X``1''
k�1

Xk

j�1

Z
juj;k�n; E�j2 dqk�E� � 1 : (A.2)

This is essentially (2.6D) except in arbitrary dimension. In the one-
dimensional case, dqk � 0 for k 6� 1. If we de®ne d ~q�E� �
ju�1; E�j2 dq1 and ~u�n; E� � u�n; E�u�1; E�ÿ1, then (A.2) is exactly
(2.6D).

In the continuum case, the situation is similar. One needs some
minimal local regularity on V (see [43]). Using the fact that
eÿtH �x; x� � 0�tÿ1=2� as t # 0, one can show that as f ! dx, a d-func-
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tion at x, �f ; �H � c�ÿ`f � stays ®nite and bounded in x so long as
2` > m. Thus, (A.2) in the continuum case becomes

X``1''
k�1

Xk

j�1

Z
juj;k�x; E�j2 dqk�E�

�1� jEj�` � C

uniformly in x where ` > m
2.

As in Section 3, from these bounds and Fatou's lemma, we get
bounds like before for a.e. E w.r.t.

P
k dqk�E�,

lim
L!1

1

�2L� 1�m
X
jnj �L

ju�n; E�j2 <1 :
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