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Abstract: Using control of the growth of the transfer matrices, we discuss the spectral
analysis of continuum and discrete half-line Satinger operators with slowly decaying
potentials. Among our results we showlif{z) = > 2 a, W (z — x,,), whereW has
compact support and, /z,+1 — 0, thenH has purely a.c. (resp. purely s.c.) spectrum
on (0,00) if 3" a2 < oo (resp.y a2 = o). For \n~%2a,, potentials, where,, are
independent, identically distributed random variables ita,,) = 0, E(a?) = 1, and

A < 2, we find singular continuous spectrum with explicitly computable fractional
Hausdorff dimension.

1. Introduction

In this paper, we will study continuum and discrete Sclimger operators on the half-
line (while we don'’t always make them explicit, given theory in [10, 26, 32], many of
our results extend to suitable whole-line problems). Explicitly, we are interested in the
spectral analysis of operatafs on L(0, oo; dz) and on?([1, cc)) given by

d2
(Hu)(x) = Tz +V(x) (1.1
in the continuum case and
(Hu)(n) = u(n + 1) +u(n — 1) + V(n)u(n) (1.2)

in the discrete case.

* Research supported in part by NSF Grant No. DMS-9022140.
** This material is based upon work supported by the National Science Foundation under Grant No. DMS-
9401491. The Government has certain rights in this material.
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Suitable boundary conditions are set:dbr n) = 0, so that is self-adjoint (since
in all our examples/ is limit point at infinity, a boundary condition is not needed
there). We are interested in the spectral properties of such operators in situations where
|V (n)| — 0asn — oo, but so slowly that the usual scattering theory will not apply. Our
main theme in this paper is that there are perturbation techniques of remarkable power
for such operators based on two ideas.

The first is that one can use the transfer matrix to analyze spectral properties. The
transfer or fundamental matrix is @22 unimodular matrix defined in the continuum
case for anyy by

neofs)- ().
where—u" + Vu = Eu, u'(0) = a, uw(0) = b. In the discrete case
e0(;) = ("l ) 8

whereu(1) =a, u(0) =b, andu(n + 1) +u(n — 1) + V(n)u(n) = Eu(n).

The second idea is that one can control the transfer matrix by controlling the norms
of two solutions of—v” + Vu = Eu and that the critical equations are ones that involve
those norms.

Two of us [22] have recently found several new criteria for singular or absolutely
continuous spectra in terms of transfer matrices, and these criteria will make some of our
results here possible. The perturbation equations we will use have notbeen systematically
used in this context except in the paper of Kotani-Ushiroya [21] whose techniques have
some overlap with this paper. But they didn't control the discrete case and their method
is so entwined with certain Martingale inequalities that it is unclear how to use them in
other contexts.

While we were writing up the work for this paper, we received a preprint from
Remling [29] that uses this two-pronged approach and has considerable overlap with
our Sects. 5 and 6. We will discuss the connection shortly.

Here are some of the theorems that we will use that relate spectral properties to
behavior ofl'(n). The first is from [22]:

Theorem 1.1. Suppose that there is a fixed sequenge— oo and S is a subset oR
so that for a.eE € S, lim;_ ||[T&(ni, 0)|| = co. ThenuadS) = 0, wherepu, is the
absolutely continuous part of the spectral measureHor

Remarks.1. The interesting aspect of this theorem is thais arbitrary. The result
actually allows a more general sequeti@é (n;, m;)|.

2. Intypical applicationsS is an interval in the essential spectrum.
In the other direction, one has the following pair of results:

Theorem 1.2. SupposeS is a set so that for a.eZ € S, lim, .., || Te(x,0)|| < co.
Thenuad@) > 0forany@ C S with |Q| > Owhere| - | = Lebesgue measure.

Theorem 1.3. Suppose there is a sequenge— oo SO thatf; | Ts(n;, 0)|*dE < oc.
Then(a,b) C specf) and the spectral measure is purely absolutely continuous on
(a, b) and 1a(Q) > 0 for any Q with |Q N (a, b)| > 0.
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Remarks.1. That Theorem 1.2 isimplied by the Gilbert-Pearson [11] theory was noted
by Stolz [36]. A simple proof can be found in [33]. Last-Simon [22] prove a stronger

variant in which||Tg(x, 0)|| is replaced byf_l1 | Te(x + y,0)|| dy andlim by lim.
(The discrete analog holds with liand without any local integration.)

2. Theorem 1.3 is from Last-Simon [22] although the method used there is not much
more than what is in Carmona [1].

As to distinguishing dense pure point from singular continuous spectrum, in one
direction we have the following elementary result from Simon-Stolz [35].

Theorem 1.4.If 3 || Tg(n, 0)|| =2 = oo in the discrete case of;” || Tg(z, 0)|| 2 dx =
oo in the continuum case, theiiu = Eu has no solution which i&? at infinity.

The paradigm of results that guarantees a solufidat oo is Ruelle’s proof [30] of
Osceledec’s theorem. His argument is abstracted in [22]. We will need the following in
Sect. 8:

Theorem 1.5. If lim,,_.[log || T (n, 0)|| /n*] exists and lies if0, co) for somen > 0,
thenHu = Eu has anL? solution.

[22] also has a general abstract result on power decay which, to détswiution,

requires

. log||T: 0 3

im 1091750 3

n—o0 logn 2

[22] also has an example where the Iimilgismd there is nd? solution. But there are
stronger results that hold a.e. in certain probabilistic situations, so we won't discuss the
power decay result here. In Sect. 8, we will discuss the probabilistic result.

As for the technique to control the growth of solutions, in the continuum case we
will use modified Piifer variables defined faf > 0 by

u'(z) = VE R(z) cosf(z)), (1.5a)
u(x) = R(x) sin(@(x)). (1.5b)

One finds these obey the differential equations (kith/E)

o _, V() _
& kT s, Lo
% - 2%: V() sin(@/(z)). w7

Two features of these equations are immediately noteworthy:

(a) They separate in the sense that (1.6) does not in®laed after solving it, one
obtainsR by integration. Thaf drops out of (1.6) and the right side of (1.7) is an
expression of the linearity of the initial equations.

(b) If V =0 in some regiond, b), then in that regiorR is constant and(x) = 6(a) +
k(xz — a). It is this fact that leads one to take the factdF in (1.5a). The addition
of this v/ E is what distinguishes this from ordinaryiRer transformations.
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There is a third significant feature which we will turn to momentarily.

Given how common these continuum equations are, we would have expected their
discrete analogs would have been rediscovered and used many times, but even after some
efforts at tracking various literature, we've found them in a single chain of four papers
(and we are a fifth in this chain, since we learned of them from the fourth paper!).

The original discoverer of the correct equation was Thomas Eggarter [9] in 1971.
He was not looking at an explicit difference equation but rather a continuum equation
with V(z) = VoY ix, 6(z — z;). By integrating modified Rifer variables across the
o-functions, he was led to the transfornis € 2 cosk)),

u(n) — cosf)u(n — 1) = R(n) cos@(n)), (1.8b)
sin(k)u(n — 1) = R(n) sin@@(n)), (1.8b)

in which case we have, after some calculation (see Sect. 2),

cot@(n + 1)) = cotf + 6(n)) — (sin(k)) "2V (n), (1.9)
R(n+1y _ V(in) . V(n)? .
O T sin((n) + 2k) + ST sSin?(8(n) + k). (1.10)

Actually, he had only an equation of the form (1.9). The definitiod(af) and precise
(1.9) is in a 1975 paper of Gredeskul-Pastur [13] who followed up on Eggarter’'s work.
[9, 13] focus on (1.9) because they use the transform to study the integrated density
of states. Pastur-Figotin [26] definddl and exploited (1.10) to study the Lyapunov
exponent. In recognition of these seminal works, we call (1.8) the EFGP transform.
Their approach was further exploited in Chulaevsky-Spencer [2]. It will often be useful
to use an equivalent form of (1.9) that appears as (2.14).
Notice that (1.9), (1.10) have the two critical properties (a), (b) mentioned for (1.6),
(1.7) in the continuum case. In particularVif{n) = 0 for n in some interval g, n1],
then in that regiom?(n) is constant and

0(n) = 6(no) + k(n — no).

While the EFGP transform was obtained by integrating a contindtfomction
model, it could also be found by looking for a transform with property (b). We will
explain this in Sect. 2.

[9, 13, 26, 2] all considel’s with no decay as — oo but with a small coupling
so that any calculations are only asymptotic in coupling constant. It turns out that the
methods are especially well suited whEn) — 0 at infinity and one obtains results
that are exact for a fixed. For example, in Sect. 8, we will find exact formulas for the
local Hausdorff dimensions of certain singular continuous spectral measures.

The third critical factor of the modified Bfer and EFGP transforms is a major theme
of this paper, namely, that first-order termslinare oscillatory while the second-order
term has a strong tendency to be strictly positive. This idea is already seen in [26, 2],
wherev(E) is O(¢%) with ¢ a coupling constant because the first-order terms drop out.

Let us be explicit about this idea. In (1.6), one might think the positivity comes via
the square in sft{¢(z)) but that is wrong! Indeed, in writing sf(9) = % — % cos(d), it
is the cos(®) that is critical! Formally, (1.6) says
V(x)

k

0(z) = ka + 6y — sin?(kxz + 6g) + O(V?) = ka + 6y + 50 + O(V?),
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and then using
sin(29) = sin(Zkx + 20) + 2 cos(Zx + 200)66 + O(V?),
we get

|
a9k _, +i,+ 03,

where

1

b = zik V(@) sin(2 + 60)) ~ 55

(V) [ iy ) costat +6c)
o
is the oscillatory term that is often unimportant, while

1 d

th= % —
27 42 dz

T 2
[/ V(y) cos(Zy + 26p) dy]

has a positive integral, second ordeiin

In explicit cases, it is more subtle to prove the second order is strictly positive
and, indeed, for examples liké(z) = z7¢, o < % where the spectrum is absolutely
continuous (by Weidmann [37]), the second-order terms do not cause divergences. This
means that results that depend on a finite second-order term should hold more generally
than those that depend on an infinite second-order term. Indeed, we

Conjecture.If V is bounded and i ?(R, dz) (or £?(Z.)), then the essential support of
the a.c. part of the spectrum is all of (®) (or (—2, 2) in the discrete case).

Our idea is that for almost all (but not all; see, e.g., [24, 25, 34lhe oscilla-
tions should kill the first-order term, and so thé condition should suffice to give a
bounded transfer matrix for a.e.and so the stated conclusion about the a.c. spectrum
by Theorem 1.2.

After discussing the modified Bier and EFGP transforms and their relation to the
growth of the transfer matrix in Sect. 2, we turn to two warm-up problems in Sects. 3
and 4. In Sect. 3, we show these transforms can replace the Harris-Lutz [15] method
in many cases where that method is applicable. In Sect. 4, we look at poténtials
with lim |V (z)| finite and show that for such potentials their positive eigenvalues can
only coalesce al/ = 0. Since examples are known with countable many eigenvalues
embedded in (0x), this result is interesting.

In Sects. 57, we study sparse potentials.

Definition. A Pearson potential is one of the form

V(z) = i an W(x — xy,), (1.12)

n=1

whereW is a bounded, non-negative function of compact suppgrt— 0, and1 <
< ro<az<---,
Tn

— 0. (1.12)

Tn+l
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The name is in honor of David Pearson who considered potentials of the form (1.11)
whereY"°?. a2 = oo andz,, went to infinity sufficiently fast. To make things precise,

n=1"n

think of the example:,, = n!.
Our major goal in Sects. 5-6 is to prove the following:

Theorem 1.6. LetV be a Pearson potential. Then

(1) 1f 3207, a2 < oo, the spectrum o#dd—; + V(z) is purely absolutely continuous on

n=1"n

(0, 00) for any boundary condition dl.

(2) If Y02, a? = oo, the spectrum 01f—dd—::2 + V(z) is purely singular continuous on
(0, 00) for any boundary condition &.

In Sect. 5, we will actually prove a stronger version of (1):

Theorem 1.8. LetV have the forn{1.11)where

T

im <1 (1.13)

Tn+l
Then(1) holds.

Pearson [27, 28] proved a weak version of (2) in tha{)fZ, a? = oo, there exists
some set ofr,,’s so that the spectrum is purely singular continuous. In [27], there are
hints that a result of type (1) (again with, sufficiently large) should hold, but nothing
explicit.

As noted at the end of Sect. 5, for (1) the buripér — x,,) can ben-dependent.

At the end of Sect. 6, ford, ] = S C (0, o), we construct Pearson-like potentials
(bumps whose width grows with) so that there is purely a.c. spectrum®and purely
S.C. spectrum on (@o)\S.

In a recent paper, coincident with our work, Remling [29] obtained results related
to Theorem 1.6(1) using similar methods. He only obtains the existence of absolutely
continuous spectrum (his results are consistent with simultaneous singular continuous
spectrum while we prove there is none), and he needs at Iea%trdxm(n) growth on
thex,, (whereas, iff (n) is a monotone function witli(m) — oo no matter how slowly,
thenx,, = exp{.f(n)) obeys (1.12) and,, = expn) obeys (1.13)).

After this manuscript was completed, we obtained a preliminary version of a preprint
of Molchanov [23] with considerable overlap with our results in Sects. 5 and 6.

In Sect. 7, we will prove

Theorem 1.7. Letx,, € Z obeyz,, /z,+1 — 0. LetV be the potential with
V(xn) = a7l7
V(x)=0 x # x, foranyn.
Then,

(1) If S a2 < oo, the discrete Sclidinger operator with potential” has purely
a.c. spectrum fof—2, 2).

(2) If 3" a2 = oo, the operator has purely singular continuous spectrung-eg, 2).
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In Sects. 8 and 9, we discuss models with randomness and decay, first studied by
Simon [31] and then by Delyon, et al. [7], Delyon [6], and Kotani-Ushiroya [21]. Typical
of the models discussed in these sectiong is positive constant)

V(n)=gn=“an,
where theu,, are independent, identically distributed random variables, uniformly dis-
tributed in -1, 1]. We prove
N Ifa> % the spectrum is almost surely purely absolutely continuous ) 2).
(i) fo <ax< % the spectrum is almost surely dense pure pointi, ).

(i) If « = % the spectrum is almost surely purely singular continuous in the region
|E| < (4 — $¢%)%? and dense pure point in the region{4:¢?)*/2 < |E| < 2 (if
9% > 12, interpret (4- £¢%)Y/? as 0).

(iv) Incasea = 1 andg? < 12, in the regior{E| < (4 — ¢?)Y/2, the spectrum has
fractional Hausdorff dimension with local dimension-{4£? — 9—32)/(4 — F?).

Section 8 handles the discrete case, and Sect. 9 the continuum case.

For sparse potentials, we give the details in the continuum case and sketch the
discrete case; while for random decaying potentials, we give details in the discrete case
and sketch the continuum case.

A.K. would like to thank the hospitality of I.H.E.S., and B.S. the hospitality of
Hebrew University where some of this work was done.

2. Modified Prifer and EFGP Transforms

We will be interested in solutions of

—u" () + V(z)u(z) = k2u(z). (2.1)

Change variables to
u'(x) = kR(z) cos@(x)), (2.2a)
w(x) = R(x) sin@(x)). (2.2b)

These are called modified ifer variables. The2 ambiguity inf is fixed by choosing
0(0) € [0, 27) and demanding(zx) be continuous ir.
Then a straightforward calculation shows (2.1) is equivalent to the pair of equations

R e ) (2.3)
dx k
w . i V(z) sin(@(x)). (2.4)

This change of variables is so very useful becausé # 0, thend(x) = 6y + kx,
R(x) = Ro. We will be able to study as a perturbation about this solution.

As explained in the introduction, one needs to study the asymptotic behavior of the
norm of the transfer matrif’(x, 0). For anyfy in [0, 7), let 8(x, 6y) solve (2.3) with
initial conditiond(0) = 0y. Then letR(zx, fy) solve (2.4) withR(0, 6p) = 1. Then
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Theorem 2.1. For anya, 8 € (0, 0c0) and6; Z 0, there exists non-zero, finite constants
C1 andC; (independent of and V) so that

Cymax(R(x, 01), R(z, 62)) < || T(x,0)|| < Cr max@R(x, 01), R(z, 62)) (2.5)
for all k € («, 5).

Proof. Define||(a,b)|| = (ka)? + b. Then min(1k)||(a, b)|| < ||(a,b)||x < max(l k)
|| (a, b)||. So defining operator norms in terms|of||., we see mink, k=) (| T(z, 0)|| <
| T(z,0)|| < max, k~1)||T(z,0)|x, so it suffices to prove (2.5) with- |, rather than
|- But

IT(z,0)[[x = max(R(z, 01), R(x, 02))

is trivial and
HT(I7 O)Hk < {mln[SIn(% |91 - 92‘)7 COS(% |01 - 92|)]}71 maX(R(I’, 91)3 R($, 62))
by the lemma below. [

If |01 — 62| < 5 (which can be done by replacirtg by 7 + 6, if need be), then this
proof shows we can take

Cl = min(avﬁ_l)a
Cy = max(@, o )[sin(3 |61 — 62])] .

Lemma 2.2. Let A be aunimodular matrix. Lety = (cos@), sin(®)). Thenifid,—02| <
%l

|A[| < sin(5 |61 — 62])~* max(| Aug, ||, || Aua, ).
Proof. There exist®, so that
| Aug||® > ||A||sin(6 — 6o).

If 01 — 02| < 7, for anyfp at least one ofsin(f — 6;)| is larger than or equal to
| sinG3(61 — 62). U

Remark.One might worry that the lemma involvéls- || and not|| - ||x but || A|x =
-1
kO kO

For the discrete case, we are interested in solutions &f f0< x)

and this product is also unimodular.

u(n + 1) +u(n — 1) +V(n)u(n) = 2 cosk)u(n). (2.6)

EFGP variables(n), 6(n) are defined by
R(n) cosP(n)) = u(n) — cosE)u(n — 1), (2.7a)
R(n)sin(@(n)) = sin(k)u(n — 1). (2.7b)

A priori 8(n) is only determined mod 2. We will fix this ambiguity later. Noticing
that
R(n) sin(k + 0(n)) = sink)u(n), (2.8)
u(n) _ sin(k +0(n))
un —1)  sin@(n))

(2.9)
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Similarly,

R(n) cosf + 6(n)) = cosE)u(n) — u(n — 1). (2.10)
Thus,
cosk)u(n) — u(n — 1)

cot(k +60(n)) = sin(k)u(n) 7

where by definition,

cos)u(n) — u(n + 1)

—cot@(n + 1)) = sin(k)u(n)

Thus, (2.6) is equivalent to

V(n)
sin(k)

cot@(n + 1)) = cotk + 0(n)) — (2.12)

Writing 9_(n) = 0(n) + k, we see, using first (2.7) and then (2.8)/(2.9):

R(n + 1) = sirf(k)u(n)? + (u(n + 1) — cos)u(n))?
= sirf(k)u(n)? + (u(n — 1) — cos)u(n) + V(n)u(n))?

V(n)

. _ _ 2
= R(n)? sir(8(n)) + R(n)? <cos(9(n)) S sin(e(n)))
V(n)

sin(k)

V(n)?

sin(2(n)) + sinz(k)

= R(n)*|1—

sin2(0_(n))} .

We can summarize with the EFGP equations:
V(n)
sin(k) ’
cot@(n + 1)) = cotf(n)) + vi(n), (2.12b)

ve(n) = — 0(n) = 6(n) + k, (2.12a)

R(n + 1Y

O Sin(@(n)) + v, (n)? sir(9). (2.12¢)

We will fix the ambiguity ind by demanding(n + 1) — 6(n) € [—m, 7). EQuation (2.12)
can be regarded as analogs of modifieaf@requations in that i = 0, R(n) = constant,
andf(n) = 6(0) + kn.

As noted in the introduction, Eggarter arrived at the first version of the EFGP trans-
form by looking at continuum models withtfunction potential ((2.12b) is especially
transparent in this mode). But one could have arrived at it by noting that When= 0,

the transfer matrix is powers z€f2 cost) *01) . This matrix has eigenvalue$* and so it

cosk) sin(k)

must be similar tc( " sin(k) cos)

simple. Indeed,
(1 ) T )= (50 ww) (0 o)

so the transform (2.7) precisely realizes the similarity.
There is an analog of Theorem 2.1. Defié, ) by requiringR(1) = 1,6(1) =6
in [0, ). Then

) . That similarity transformation will make the powers
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Theorem 2.3. For anya € (0, 5) and 6y ¥ 65, there exists non-zero, finite constants
C1 andC; (independent of and V) so that for allk € (o, 7 — @),

Crmax(R(n, 1), R(n, 62)) < [T(n — 1,0)|| < Comax(R(n, 01), R(n,02)). (2.13)

Because of the arccot, (2.12b) is somewhat awkward to deal with. Pastur-Figotin
[26] have noted an equivalent form of (2.12b) which is straightforward from

1 1

2ip — 1+ ——
¢ 2 1 +icot(p)
viz., _
_ . 2i6(n 2
p2i0(n+1) = 2i0(n) 4 ivg(n) (e ( )f_l) . (2.14)
2 1— zwcz(’ﬂ) (eZzG(n) _ 1)

As an application of (2.14) we have

Proposition 2.4. If |v,(n)| < 3, then
0(n + 1) — 0(n)| < 7lvi(n)]. (2.15)
Proof. If |v(n)| < 3, then (2.14) implies that

) Y 4
|6216(n+1) _ e216(71)| < |Vk§n’)| - — 4‘Vk(n)‘
2

Sincele™” — 1] > 24l e get
‘e(n + 1) B 9_(17,)| < % |62i0(n+1) B 621'«9_(n)|7

and so the claimed result. O

Note. Kiselev, Remling, and Simon [20] present a way of defini@ that makes the
analogy to the continuum case transparent, makes (2.14) transparent, improves (2.15),
and extends to more generg.

3. Conditional Integrals and A.C. Spectrum

It follows from [11, 16, 17] that for both continuum and discrete $climger operators
on [0, c0), we have (see also [33] for a quick proof):

Proposition 3.1. If S'is a set of reals so that for each € S, sup, ||Tx(z,0)|| < oo,
then H has purely a.c. spectrum dhin the sense that

(i) Forany boundary conditiod and anyI’ C S with |T'| > 0, we havep39(T") > O.
(i) For any boundary conditios, pzi”g(S) =0.

Thus, bounded transfer matrices have important spectral consequences. By Theo-
rems 2.1 and 2.3, if we can shadi( - , ) remains bounded for two initi#'s, we have
boundedness d&f. From this and (2.4), (2.12c), one easily obtains the well-known re-
sult that if [ |V (z)| dz < oo, (resp.y_ |V (n)| < c0), then the spectrum is purely a.c. in
(0, o) (resp. (2, 2)). Here is aresult allowing more general decay, first in the continuum
case.
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Theorem 3.2. Fix k # 0. Suppose thdim 5_, o ff V (y)e®*¥ dy exists and that

W)= [ Vet dy (3.1)

obeys
/|V(x)Wk(x)| dxr < 0. 3.2)

Then
@ |7 (2, 0)|| < oo. (3.3)

Remarks.1. This result is not new; it is essentially due to Harris-Lutz [15]. This is a
new proof.

2. This resultimplies that iV (z) = Zﬁzl am, SiN(emx)/2°, 3 > 3, andk # £1k,, for
anym, then (3.3) holds, and so by Proposition 3.1, the spectrum is purely a.c. except
for possible positive eigenvalues pik;}.

3_

3. In[19], Kiselev provedthat ¥ (x) = O(xz~2~¢), then (3.2) holds off a set of Lebesgue
measure zero.

Proof. We will show for anyfy, R(z, 6p) is bounded, and then one can appeal to Theo-
rem 2.1 to complete the proof of (3.3). Writ€r) = kxz + p(x), so by (2.3)« obeys

%f - _@ sir(kz + ). (3.4)

By (2.4) (andR(0) = 1),
_ [T AWk \ 2ip
log R(x) —/0 T Im K . >e ] dx
— i 2ip(x) 2i001 _ & /CE dﬁ 2ip
=1Im {Zk[Wk(x)e Wi (0)e™™°] 2% s Wi 7s € dz
if we integrate by parts. By hypothesid/;(x) is bdd so using (3.4),

log R(w)| < bdd +1 [ W)Vl dy

is bounded by (3.2). O
Remark. A similar argument proves that

. 1 /7
lim Q—k:x——/ V(y)dy
k Jo

Tr—00 2

exists. This in turn lets one prove there are complex solutiars, ) with

neteyen(i(ke- o [ Vo)) -1

0’y (k, ) exp(ﬂ (kx _ 1 V(y) dy)) — k.
2k Jo
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Notice that ifV € L2,

I .wV(y)dy=/OI\/1€27V(y)dy+Q(I)a

2k Jo

where lim,_ . Q(x) exists. Soifl’ € L?, this says that WKB-type solutions exist. This
is also what the Harris-Lutz method gives [19].

We are heading toward a proof of

Theorem 3.3. Fix k # 0, . Supposé/(n) is a discrete potential with

B
H 2ikm —
Bllnoo mgzn V(m)e = Wi(n)

exists and that
> IV@Win)] + [V()Wi(n + 1)| < oo. (3.5)
n=1
Then
lim ||T(n,0)|| < oco.

Given a functionf on{1,2,...}, define ¢ f)(n) = f(n + 1) — f(n) and note that
summation by parts takes the form

b b
> gm)Ef)m) == fm+1)Eg)m) + (Fg)(b+ 1) — (f9)(a).

m=a m=a

Lemma 3.4. If (3.5)holds for somé;, then>_>2, [V (n)|? < oco.

Proof. SinceW exists,V — 0 atoo and soV is bounded. Thus, writing’(n) =
—e~2kn(§T},)(n), and summing by parts,

B B+1 B
Z V(n)? = bdd +Z V(n)Wy(n)e=2+m — Z V(n)Wi(n + 1)e=2kn
n=1 n=2 o

is bounded by (3.5). O

Lemma 3.5. Suppose thafa,, }52, is a real sequence so that

an, — 0 asn — oo (3.6)
and
N
> an s bounded (3.7)
n=1

Then][_,(1 +a,,) is bounded.

Proof. By (3.6),|a,| — 0, sowithoutloss we can suppose tha| < 1. Thenl+a,| <
1+a, <e% and (3.7) implies the result. O
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Proof of Theoren3.3 By (2.12c), Lemma 3.4, and Lemma 3.5, it suffices to prove that
Z v (n)e29™ = G(N) (3.8)
n=1

is bounded. Define
0(n) = 0(n) — k(n — 1) =6(n) —

Proposition 2.4 and Lemma 3.4 imply that fotarge

[(6p)(n)| < mlvi(n)]. (3.9)
By the definition (3.8),
N
G(N) = =) 6Wi(n)(sink) *e*# )
n=1

N
= bdd + (sink) 3 Wi (n + 1)5(c2#)(n).

n=1
But |§(e?%)| < 2|5¢|, so by (3.9)

N
GV — bdd < C1 3 (Wil + ()|
n=1
N

< | S W) + o)

n=1

O

Sometimes it is better to use slightly differentifar variables. For example, i, 6
are defined by

W'(z) = \/E — V(z) R(z) cosf(x)),
u(z) = R(x) sin@(x)),

then
dlog(R) 10V
“dr 2 0» cos(6(x)),
from which we see iV (x) — 0 at infinity and‘g" € L%, then solutions are bounded.
(This is essentially the proof of Weidmann’s theorem [37] in [33] ) If one tries out an
integration by parts argument, one needs bﬁihe LtandV e L2
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4. Bound States forO(xz—1) Potentials

If |V (x)| = o(x~1), Eastham-Kalf [8] s;howthafedd—;2 +V (x) has no positive eigenvalues;
more generally, ilim z|V (z)| = C' < oo, they show any eigenvaluemust obey\ < C2.

On the other hand, Naboko [24] and Simon [34] have construktad decaying
arbitrarily slower than:—* with eigenvalues dense in [6). In fact, Simon [34] con-
structedV () with V(z) = O(z~?) so that there are infinitely many eigenvalues with
i — 0aslong a$_ v/A; < oco. In this section, we will handle the borderline case and

improve Eastham-Kalf [8] by showing:

Theorem 4.1. Let V(x) obeyC' = lim,_.., x|V (z)| < oo. Then there are at most
countably many positive eigenvalugsfor which there are solutions,, of

—ull + V(2)un = Mty
andu,, € L2. Moreover,
02
Z An < - (4.1)

Remarks.1. We donot specify boundary conditions o, that is, (4.1) is a bound on
all possible boundary conditions at once.

2. There are\,, so that (4.1) holds, buf_ /A, = ~ (e.g.,\, = j%) so there is
a gap between Simon’s examples and what our bounds allow. We believe the optimal
result would be to prove that, /A, < C.

Without loss of generality by slightly increasirtg and looking at f, o), we can
suppose that

V()| < O +|z))~ (4.2)

which we henceforth do.
The following is standard (see, e.g., Eastham-Kalf [8]):

Lemma 4.2. If V is bounded and solves—u” + Vu = Au andu € L?, thenu’ € L2.
In particular, R(x, 6g) € L? for that 6y with (w(0), u’(0)) = (Ro sin(Bo), kR cosfy)).

N
U/ ZdLU = u/u
| |
0

-,/
—uu

Proof.
N

N
—/ u'udx
o Jo

N N
+/ O\ — V)u? da,
0 0

SO if My oo [y [0/|2dz = o0, then limy_..c u'u = oo, but that impliesu®(N) =
u(0)? + 2fON w'udx — oo, contradicting the fact that € L2. O

Lemma 4.3. Let f andg be C* functions or{1, cc) so that
g'fI+1f'| € L*.

ThenfON f(x)ei*=*9(=) 4z is bounded asV — oo for anyk # 0.
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Proof. Write e?*® = 1 & ¢ik= and integrate by parts to see that
N N
. N 1 1
1 |K| [kl [k 1

Noting that| f(N)| = | f(1)] +le |f'(v)| dy, we see that the integral is bounded. O

Remark.If f(z) — O atinfinity, this argument shows that Immlef(x)ei(k”+g(”)) dx
exists.

Lemma 4.4. Let {e;} ¥, be a set of unit vectors in a Hilbert spag¢éso that

a = Nsuple;,ej) < 1. (4.3)
ik
Then
N
> g e 2 < (@ +a)lg)? (4.4)
=1
foranyg € H.

Proof. Let A be then x n matrix with a;; = (e;, e;). Note that the Hilbert-Schmidt
norm of A — 1 is bounded by, (e, e;)?)"/2? < a so (4.3) says that is invertible.
If Bisitsinverse, then

fi = Z Bijej (45)
obeys(fi,e;) = d;;, and thus
Z(g, e;) f; = Proj of g to the span of the’s,

and so
2

lol? > [ ta. s

By (4.5),(f;, f;) = Bij and sincgh, A=*h)cn > || A||71(h, h)cn, we see that

Z g, e P < IAIY (g ea) (i f) g, €5)

=1 ,j
< |14l lg1?,

whichis (4.4). O

Proof of Theorend. 1 It obviously suffices to show for each fixéd < oo that

Define R, (z) to be theR corresponding to thé&? solutionu(z, \,,). Normalizeu
soR,(0) =1. By Lemma 4.2,
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N

> [Ru(@)? € L*

n=1

SO

N
lim 2 " [Ry(x)[> = 0

n=1

(for if not, eventually>"™ |R,,(z)[? > Cz~1is notLY). Thus, we can find; — oo
sothatforn=1...,N

)

Ru(B;) < B;?

or

/Bjdao Ro)dy < —~ InB,

| dz 9hRny))dy < —3 s

so by (2.4),

B;

| V@ sin@, @)y < -/, log B (4.6)
0
Now consider the Hilbert spaces
H; = L((0, B;), (1 +x) dx).

In H;, we have

B;
V1%, < /0 C?(1 +|x))~?(1 + ) dz = C%log(B;) + O(2). 4.7
-t n@,0) 1
en (y) (1 + ‘y|) \/Nigiy) X[O,B;](y)v
where

Bi o
o= [ Sir’(20,,(y))
Vo= [ Sy

Notice that 4,,(y) — 4/ )\, and 20,, £ 60,,,) — 2(v/ M\, =/ \y,) have derivatives that
areO(z~1) by (2.3). Thus by Lemma 4.3,
/ Bisin(2,,(y)) SiN(@,n (y)) — 30nm
0 (1 +]yl)

dy

are bounded. We conclude that

N9 =11og B, +0(1), (4.8)
(€D Dy =0((logBy)™Y) i Fk. (4.9)

Equations (4.6) and (4.8) imply that
(V, ey, < —/20, (log Bj)*2 + O(2). (4.10)

Since the numbeW of eigenfunctions is fixed, but; — oo for j large, Lemma 4.4
applies and
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N
> Ve, 2 < (@ +0((log By) V3, (4.11)

J
n=1

But (4.10) and (4.7) then say that

N
z( 3 An) l09(B,) < C?log(B,) + O(1),
n=1

SO

5. Sparse Potentials: The Continuum, Absolutely Continuous Case

Our goal in this section is to prove assertion (1) in Theorem 1.6 and Theorénthes
idea will be to control|T'(z)||* and then use Theorem 1.3. As explained in Sect. 1, the
key is oscillations in sin(@(x)) for 6(x) ~ kx,+1 for z nearx,.1. We will realize this

using an integration by parts so we need a priori control on objectﬁlﬂ%"—)”.

Fix a Pearson potentiatj,, is assumed to obey,, — 0 andx,+1 > x, + 2A.
Fix 6y and solve the modified Bfer equations for each € (0, o) to get functions
0(z, k) and R(x, k) (with initial conditionsf(z = 0, k) = 6y, R(z = 0, k) = 1). Fix A so
suppV) C [-A, A].

We need two propositions to prepare for bounds in an integration by parts:

Proposition 5.1. Suppose thaim z,,+1/x,, > 1. For eacha,b > 0, there exists a
constant”' so that for eachk € (a, b),

’gz (z, + A)‘ < Czxy, (5.2)
and )
% (z, + A)’ < Cz?. (5.2)

Moreover, uniformly fok € (a, b),

ggli_(noo ~ (z) =1, (5.3)
1 6%
Proof. Let
3 = inf ”3;*1 >1 (5.5)
by hypothesis.

As a preliminary, note that i, ¢, f are functions ond, b], h is C* and

h(z) = f(2) + g(@)h(x). (5.6)
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Then
Ih(®)] < (|(@)] + (b — @) f]]oo)e™PNall= (5.7)

as follows from the exact solution of (5.6):
h(x) = h(x)efa g(y) dy +/ f(y)efv g9(z) dz dy.

Now leth(z) = %(x). From (2.3),

( ) ( )
3x =1+ (5.8)
This means for € (x,_1 + A, z, — A), we have that
oh
oL (5.9)
By (5.7) and (5.8),
|h(zn + A)| < 2198 |h(z,, — A)| + 2A + 2C|an|A] (5.10)

< eZC‘“"lAHh(xn_l + A)| +(Tp — Tp_1) + ZC’|an‘A]7 (5.11)

where we used (5.9) to go from (5.10) to (5.11). In these equativissa constant only
depending ond, b). Throughout this proof¢’ is such a constant whose value can vary
from one equation to the next.

Let 5 > 1 be given by (5.5). Pickg so large that fon > ng:

gLe2lanlCs < %(1 +37Y (5.12)
and 1
2 A 1-p5~
(1 +C|an|>62@n0A <1+ ( 2ﬁ ) (5.13)
T,

Since > 1 anda,, — 0, such amg exists. Next, pickD > 2 so
|W(Zpy—1+ A)| < Dpy_1. (5.14)
We claim inductively that fon, > ng — 1, we have that
|h(zy, + A)| < Dy, (5.15)
for by (5.14), this holds for. = ng — 1, and if it holds forn — 1, then by (5.11) and

Tn—1 S ﬂ71$n1
[z, + A)| < [Dy_1 + 2 — 21 + 2Ca, |A]e2C10n 1
W} eZC\an\A

Ln

<:cn[(D—1)61+1+

<z, [(D - 1)(2) (L+pH+1+ (1 _25_1)} (by (5.12)/(5.13))

— 2, [D - (D—z)(l_zﬁ_lﬂ < Dy,
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sinceD > 2. Thus, we've proven (5.15).
Next, letH(x) = h(x) — z, so (5.8) implies that

H
| < clania + ) (5.16)
ox
on (x, — A, x,+A).Using (5.7) and (5.15), we conclude (recall the constachanges
from one equation to the next!)

|H(z,, + A) — H(z,, — A)| < Clag|xn.

SinceH (z,—1 + A) = H(x,, — A), we have that fof, > no,

+ n
H(I‘n A) g C + Z a Tm
Tp+ A +A (zn, +A)

m=ng

O n
—(n—m) _,
Tt D amB 0

m=ngo

<
Tn

asn — oo sinceg > 1 anda,, — 0. From this and (5.16), we see thé@%ﬁ\ — 0as
x — o0, which proves (5.1).

To prove (5.2), ley = 22 = 26 Then differentiating (5.8) with respecttowe see

ok ~ 9k2*
that
% =0 on Cna+ Az, —A) (5.17a)
ox
%9 - 4(a) + Ba)hte) + D) + EIE) on (o — A, + ) (.170)

where A, B, D, E are uniformly bounded b¢’a,, on this interval withC' uniformly
bounded a% runs throughd, b).
Now use (5.7) and (5.1) to see that

|g(@n + A)| < 294 A[g(@n—1 + A) + Cana’ Al
As above, ifn is so large that
ﬁ—262CaHA S % (1 +ﬂ_1) and CanA)eZCanA S % (1 o ,6_1)

then inductively,
g(wn + A) < C2?

for n large. This is (5.2). Plugging this into (5.17b), we see that
glxn +A) < C <1 + Z amxfn) , (5.17¢)
m=1

which yields lim, ., g(x,, + A)/z2 = 0 from which (5.4) is immediate. O
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Proposition 5.2. For anya, b > 0, there is aC' so that for allk € (a, b),

log R(z, + A) < C > |am, (5.18)
m=1
dlogR -
% (zn, +A) < C;|ammm|. (5.19)

Proof. By (2.4), logR(x) is constant forr € (z,_1 + A,z, — A) and
109 Rz + &) ~ log Bz, — )| < 2k~ a,| [ Wis)dy,

s0 (5.18) holds withC' = 2min()~ [ W (y) dy.
From (2.4), we have

99
ox Ok
so that the bound (5.1) implies (5.9). O

(klog R) = V(x) cos(d(x)) %,

As a final preliminary, we note that

Lemma 5.3. Suppose thdim z,,+1/x,, > 1. Then for a constant’,

(o] T o0
S fananl T <O
n n=1

n=1m<n

Proof. Let 8 = lim z,,+1/2,. Pick 1< v < §. Then form < n, ,, /z, < Cy~Im="1,
Thus, the lemma follows from Young’s inequality that

(@, = Y 7" "a,

m

is bounded fromf? to ¢2 for any~y > 1. O

Proof of Theoreni.6. Let g be a non-negativé€’>°-function compactly supported on
(0, o0). We will prove that

sup / g(k)R(k, z,, + A dk < 0. (5.20)

Proving this for two values ofy and appealing to Theorem 2.1 gets a uniform bound
on [ g(k)||T(0, z,, + A)||* dk. Theorem 1.3 then proves pure absolute continuity of the
spectrum on (00).
Let B, = [ g(k)R(z,, + A)*dk. Notice that by (2.4)R(z,—1 + A) = R(z,, — A)
and
R(xn + A)4 = R(xn - A)4 eXp(Qn)a (521)

where

A
Q=7 [ W) sin@ (e, + ) dy

Sincek~! anda,, are boundedy,, is uniformly bounded im, and so
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exp@Qn) <1+Q, +CQ?

5.22
<1+Q,+Cad? 522
(where agairC' is a constant that varies from formula to formula).
Fory € (—A, A), we have by (2.3)
0 +y) = 0u ()| < Cay,
where ~
en(y) = e(xn—l + A) + k(xn ty—xp_1— A),
so
2 [ ~
‘Qn - / an W (y) sin@n () dy| < Ca,. (5.23)
J—A
By (5.21)—(5.23),
B, < By a(1+Cal) + By, (5.24)

where
—q A Zg(k) T 4 Pyt
En = an [ dy / I R(ra 4 AL RYW () sin@ () di

Notice that we're implementing our basic strategy: We separate out the second-order
terms (which will present no problem sinf§’, (1 + Ca2) < oo) and need to control
the first-order terms where we have an explicit highly oscillatory factor glpee kx.,,.

Now .
90, N 00(x,,_1+ A) S 1

n - ) + _ = A "
ok (y) Tn TY — Tp-1 ok ZTn

for n large by the bound (5.3).
Thus, we can write

(5.25)

SN, ) = 57— - (~ <05l w)
Ok

and integrate by parts.
After integration by parts, we have three terms

Ok~ tg(k)]
ok ’
4

: OR
E®@  coming from——
2 coming fro %

0 (1
©) i
£ coming fromak (g(;).
k

E®  coming from

For theEY term, we can boun&* as follows using (5.18) and
2, > OF™ (5.26)

By (5.10), forn large,
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R*<C exp<(} Z am>

m=1
n
<C exp<2 ln(ﬁ))
sincea,, — 0. Thus, by (5.19) and (5.26),
EQ <cprrg=cp/. (5.27)

For the £ term, we us@% = RY29E (5.19), and (5.25) to see that
E? < CBy-1bn,

where
n—1

Tm
b, = g ApQyy — .
x

m=1 n

Note now that by~ a2 < oo and Lemma 5.3, we have
> by < o0, (5.28)
n=1

For the E® term, we use (5.25) and (5.17c) to see that

E»ELS) S Bn—lcrm

where . ,
cn = Cay, Ch Z";zl i) .
As in the proof of Lemma 5.3, '
D en < o0, (5.29)
By (5.24) and the above estimates BfY,
max(B,, 1) < (1 +Ca2 + Cb, + Ce, + CH~2) max(B,_1, 1). (5.30)

By hypothesis)_ a? < oo, and by (5.28-5.29)} " b,, + ¢, < co. Thus

N
[[@+ca? +Cb, +Ce, +Cp7?)

n=1
is bounded and consequently, sd3s. O
It is easy to see that the methods of this section extend to prove:
Theorem 5.4. Supposé/(z) = > W, (z — x,), where

(i) limaz, /. <1,
(i) suppW, C[—A, A] for some fixed\,
(i) 3=, [ [Way)|?dy < 0.

Then—dldl,—;2 + V(x) has purely a.c. spectrum df, o).
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6. Sparse Potentials: The Continuum, Singular Continuous Case

In this section, we will prove assertion (2) in Theorem 1.6. The idea will be to force
| T(k?, 2,,)| to infinity for almost allk and suitabler,,. To do this, we will need to
isolate a strictly positive second-order term and show that these second-order terms then
dominate the first-order terms because of oscillations.

Here is a warm-up problem to show this cancellation mechanismXl,die inde-
pendent, identically distributed random variables taking the vatiewith probability

%. Lete > 0 and leta,, be a sequence going to zeroras~ co. Finally, let

Y, = Z(eafn +amXm)-
m=1

Suppose tha}_ a2 = co. We claim there exists a subsequen¢s — oo, So with
probability 1,
_Iim Yn(i) = 00. (6.1)

The reason (6.1) holds is that by the central limit theobell)_, a,, X, is typically
not more negative thaf( — /3" a2 ) and, because of the square root, this is smaller
thane """ _, 2.

To make a proof, notice that sin¢g” _, a®, — oo, we can choose(i) so that

. m=1""m
5@ 42, > 2, By a Tschbechev inequality,
n(i) ¢ n(4) I Zn(i) o Xom ”2 4 1 4
Pfob(Zame>zZafn>< AToprErai Aol R
1 1 (52217 a%) 21 ag,

> }2 < 00, SO by the Borel-Cantelli lemma, with probability 1, eventually

S X< Sy el
1 1

and thus eventually,

€ 2
Yoe = > Zl:am

diverges.

The usual Kolmogorov stopping argument that lets one prove things without sub-
sequences isn't obviously applicable here in a situation where we assume no regularity
on thea,,,’s (see Sect. 8 for the casg, = m~). Since a subsequence suffices for our
application, we have not tried to push the argument through to géfJimoo, even in
the toy problem.

Notice that independence of th€,’s was not needed; rather, it suffices to have
enough control of2(X,, X,,,) to show that the first-order term is small compared to the
second-order term. In the case at hand, we will use integration by pattasrwe did
in the last section to get this control.

We summarize the key to the above argument with

Lemma6.1. Let P,,, Q,, be random variables so that
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(i) P.(x) > «a, > 0fora.e.x and positive realsy,,,

(i) 32 0, *Exp(Qul) < o0,

(i) 1im ;00 = 00.
ThenP,(z) + Q,(z) — oo for a.e.x. If (ii) is replaced with

(i") lim,,_ . a;*Exp(Q.]) = 0, then there exists a subsequengd so thatP,,;(z) +
Qni)(z) — oo fora.e.z.

Proof. If (ii") holds, we can find a subsequence so that (ii) holds. Thus, it suffices to
prove the result assuming (ii).

By (ii), " a;,;1|Q.(z)| < o< for a.e.z. In particular;,;1Q,.(z) — 0soP, +Q,, >
anl — ;Y Qn(2)]] — oo. O

We will also need the following lemma:
Lemma 6.2. Suppose thaB,,, a.,, 3, > 0 are real numbers and that
B, < B, 1+20y\/Bn 143, (n>1) (6.2)
Then,

VBn <VBo+ Y i+ |> B (6.3)
k=1

Proof. We give a proof by induction. Equation (6.2) holdsfor 0. Leta,, = Y _,_; o,
bn = > =1 Bk- By the induction hypothesis,

VBrn1 < VBotan_1++/by_1. (6.4)

Equation (6.2) implies that

Bn S (\/ anl + an)z +ﬁn-
So by (6.4),

By < (VBotant\/hi1) + 0,
< (\/B>o+an)2+bn+2\/bn7_1(\/3>o+an>
< (VBoran+ Vo)

proving (6.3) inductively. O

So fix a Pearson potential witl a2 = co. Fix 6y and letR(z, k) be the solution of
(2.3/12.4). Let

Y (k) = log R(zn + A, k)

and
5Yn(k) = Yn(k) - Y—nfl(k)'

By (2.4),



Modified Piiifer and EFGP Transforms 25

Y, (k) = ‘sz [ AA W (y) sin 2(z,, +v) dy. (6.5)
As in Sect. 5, we write
Bu(y) = 0(zn—1+ &) + k(wy +y — 201 — A).
But we expand to the next order by letting
o) =22 [ wesit@,o)a (©6)

Then by (2.3),
0(wn +y) = On(y) + 0 (y) + O(a2),

so by (6.5),
8Y (k) = an X + a2 S, + O(ad), (6.7a)
X0 = / W (y) sin(@, (1)) dy. (6.7b)
(1)
=1 [ wwcos@,on il (670)
In the formula fordY, use
Sin (0 (y)) = 3(1 — cos(@n(y))).
The cos term from this formula when plugged into (6.7c) gives
A . Yy "
312 [ weos@,o( [ wieos@. ) dy
-8 (6.8)

4k2( / W (y) cos(@.. (1)) dy>2.

We lump the contribution of thé term with the first-order term. Defining (y) =
[?  W(s)ds, we find
8 (k) = [ah Zn (k) + an X (k)] + O(a3), (6.9)

where

709 g5 | W cos@ o)

anW ()X (y)

o cos(,,(y)) | dy.

A
X092 5 [ [ sin,n -

In (6.9), theO(a3) means an error bounded By:3, whereC is a finite constant for
k € [a, b] any compact subinterval of (80).
Define

A
W(k) = /_A W (y)e?*Y dy.
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Then, L
- W 2 %
Zn(k) = gz W) + X (h), (6.10)
where 1
K0 = gz W cos(40, (0, k) + o(k)), (6.11)

wherep(k) = SArg(W (k)).
For letf,,(y) = 6,,(0) +ky. If W (k) = |[W(k)|e2*®, then

A 2
Zn(k) = 47;'{;2 <Re/ W(y)62i((§n(0)+ky) dy>
—A
1
= w2
Proof of Theoreni..6, Part (2)Let

W (K)[? co2(2(0,.(0, k) + ¢(k))).-

1 . n
Pa(k) = gz WP Y,

m=1

S0 .
5Qn(k) = a% X, (k) + an X, (k) + O(ad).

Let g be aC*°-function compactly supported ik € (0, co) | W(k) Z 0}. Let

n 2
Ba= [ 9B)] Y- anXn(®)| dk,

m=1

n 2
Bu= [ o) Y a2 %) d

m=1

We will prove that

\/Bj/iafn -0 (6.12)
m=1

asn — oo, and similarly forB,,. Sinced_, _jad,/> " _ a2, — 0 (on account of

m=1"m

an — 0and}_" _, a? — o00), (6.12) and the Schwartz inequality imply that

[ swieuwiar/ S 0

m=1
so by Lemma 6.1 and infsupp, v > 0 implies that there is a subsequend)
so thatY,,;)(k) — oo for a.e.k in suppg. By doing this for two values ofy and using
Theorem 2.1 and Theorem 1.1, we conclude there is no a.c. spectrum o supp

SincelV is an entire function, it has isolated zeros and thus, this argument shows
is empty. By Theorem 1.45,, N (0, co) is empty, and an elementary argument proves
thato(H) D [0, 00). So the spectrum on (B0) is purely singular continuous. It thus
suffices to prove (6.12) (the proof f@t,, is essentially identical).
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Let M,,_1(k) = 3.7 1 apm X,n(k). Then

Bn < Bn—l +

/ G0 Mi—2(K)an X ()| + Ca2

for a suitable constardi. Now X,, has cos(Bn(y)) and sm(ﬂ (y)) terms. As in the last
section, we write those as a suitablé,[(y, k) /dk]~ 1 ..] and integrate by parts and
get three terms:

One coming fromM dk. Noting that|M,, (k)] < Cn, we have that this is
bounded by:™.
One coming from?2=(®) Using (5.1), this term is bounded by

n—1

Tm
C g AnQp — .
xr
m=1

n

One coming froni,, = 8832"]/ %:12, As in the last section, thik,, is bounded by

con amxm) /x2. We can use the Schwartz inequality to contfal(k)| M, (k)| dk,
and so bound this term by\/B,,_1a, > lamxz /22 . The net result is the bound

B,<B, 1%+ ZOén V Bp1+ ﬁna (613)
where
CZ |anam|
m=1
and

- x
Bn = C’{az + —+ g Gy O, m}
T x

m=1 n

By the argument in Lemma 5.3 with, _;/z,, — 0 and>.">"_, a2 — oo, we see

m=1"n

that .
Z am/ Zam — 0, (6.14)
m=1
and that
Z B < 0(1 +Z )
m=1
SO

En:ﬂm / iafn — 0. (6.15)
m=1 m=1

Lemma 6.2 and (6.13-6.15) imply (6.12). O

One can modify this construction to make examples of decaying potentials for which
the associated Sabalinger operator has regions of a.c. spectrum and regions of s.c. spec-

trum. The idea is to arrange thidf(k) vanishes in a whole interval so that even though
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an ¢ £2, we have a.c. spectrum for thdseDf course}¥V (k) cannot vanish it¥” has com-
pact support, so we will take the bump functions of increasing support converging toward
a function whose Fourier transform vanishes in an interval. S, tefa, b] C (0, o).
Let f be an even Schwartz class function that vanishg$ & S and is strictly positive
on [0, co)\S.
Leta, =n~Y2, z, = (n))?, A,, = n~/12 Notice that) " a2 = co. Define

fr)= 4 / exp(—2ikz) f (k) d:,

W) = F@)x(-a,,a0()
and
V(z) = Z anWyh(x — x,).
We are heading toward:

Theorem 6.3. The half-axis Sclidinger operator—d‘f—;2 + V(x) has purely singular
spectrum or{0, c0)\\S and purely a.c. spectrum dfi.

Lemma 6.4. For anym > 0, there exists a constant,, with

’ fk) — / 2k W, (2) dx| < Crn™™. (6.16)

Proof. Let f,,(k) = [ e~2**W,,(z) dz. Then

_ 1 [fsinAn(E—K)) L0 0
£y = 5 [ SRS ayar

so the left side of (6.16) is

1 / sinA,(k — k')

> LF(R) = JGD) d

)

k—FK

which has the form

/ gy, k)sinAyy dy’7

whereg(y, k) is Schwartz space ig with bounds (including bounds on derivatives)
uniform in k. If we integrate by parts 12 times, we will get (6.16). O

Proposition 5.1 extends with no change. In the region wiiékg # 0, the analysis
earlier in this section shows that |64z, + Ang) — oo for a.e.k and a suitable
subsequence,;), S0 we know the spectrum in(80)\ S is purely singular continuous.

On the other hand, if is C*° supported inS, we claim that

sup / g(k)R(k, z, + Ay)* dk < oo. (6.17)

The proof is similar to that in the last section. In place of (5.22), we need to use

exp@n) < 1+Qn +3Q +0(a3),
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As in this section()2 has a termu2 |W,,(k)|2/8k? and oscillatory terms that we can
integrate by parts. Noting that

n—1 . n—1

g Gy, —= < n2p~1/2 E m /2 < On~2
Tn

m=1

m=1

is still summable and that a2 |W,,(k)|2 is summable by Lemma 6.4, we obtain (6.17).
O

7. Sparse Potentials: The Discrete Case

In this section, we will sketch the proof of Theorem 1.7. The proof follows closely that
in the last two sections with (2.12) replacing (2.3/2.4). We will make use of (2.14), the
Pastur-Figotin form of (2.12b).

Fix o > 0and pickk € («, m—«) and thenV so large that for all such, |v(n)| < %
forn > Np. Equation (2.14) can then be effectively used to prove the analogs of (5.1/5.2),
that is,

’gz (z)| < Cxy, ’g:ﬁ (zn)| < C22. (7.1)
Equation (2.12c) can be rewritten
log R(n + 1) — log R(n) = 1 log(1 +v;,(n) sin(2) + v, (n)? sir?(6)). (7.2)
This implies the bound
log R(z,) < C En: ) (7.3)
m=1

Next notice that
1 +asin(2) + a?sinf(9) = (1 +1 asin(2))? + o? sin(6).

This provides a uniform bound on the argument of the-)ag((7.2), and so allows one
to prove

<C i G Lo, - (7.4)

m=1

0
—
57 0ae)
With these tools, the proof of assertion (1) of Theorem 1.6 is similar to that in Sect. 5,
only a little simpler since (2.12c) implies
R(n+1)* < R(n)*(L +vi(n) sin(@(n)) + Cra?).

The same integration by parts used in Sects. 5 and 6 shows that
/ g(k)R(n, k)*vi(n) sin(@(n)) dk = C(by, + ¢, + B~"/?) (1 + / g(k)R(n, k)* dk)

with b,, = E"mjll UG, T /T, @Nde,, is like b, with 22, /22 replacingz™ /z". As in
Sect. 5, this proves assertion (1) in Theorem 1.7.
To prove assertion (2), we must identify a strictly positive second-order term. We

write
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log(1 +a:sin() + o2 sin?(0))
= asin(2) + a’(sinf(9) — 1 sin?(20)) + O(a®) (7.5)
= asin(d) + 3 a® cos(¥) — 3 a®cos(P) + 3 a® + 0(A). (7.6)

This lets us write
log R(n +1) — log R(n) = % a? + a,, X,

and, as in Sect. 6, use the integration by parts machine to prove

(/ (ZN; “an)zg(k) dk) " / > a2—0

and complete the proof as there. .
In this case, we don’t need to worry about zero8ig(fk) since the analog d here
iS 00 and soW (k) = 1.

8. Random Decaying Potentials: The Discrete Case

In this section, we consider discrete situations wherétfe are independent random
variables of zero mean and decaying variance. The results that imply a.c. spectrum
require no regularity i2(V(n)?), while those for singular spectrum require some kind
of regular decay, as we will explain.

The results for a.c. spectrum are so general yet so simple to prove that they are a
paradigm of the usefulness of the EFGP transform.

Theorem 8.1. Supposé/,,(n) are independent random variables wit(V,,(n)) = O
and

> BV, (n)°) + E(V,(n)*) < oo. (8.1)

Then for a.ew, h,, has purely a.c. spectrum @r-2, 2).

Remarks.1. For E(V2)Y2 < Cn~ with V bounded and > 1, we get a.c. spectrum
recovering results of Delyon, et al. [7].

2. If the V,(n) are uniformly bounded, theB(V,,(n)*) < CE(V,,(n)?) and so (8.1)
becomes ", E(V,,(n)?) < oo; we state the general bound because unbouhdedre
S0 easy to accommodate.

3. The case?(V,,(n)?)Y? = n=Y2log(n)~! is of some interest. This sequence is
2 so0 if V is bounded, the theorem proves a.c. spectrum. Kotani-Ushiroya [21] cannot
handle such borderline cases.

Proof. Fix 6. ThenR,,(n) andd,,(n) become random variables which are measurable
functions of{V,,(j)} <n—1 and so independent ¢¥/,(j)} j>n.
By (2.12c),

Vio(n)

sink

R(n + 1) = R(n)* (1 + sin(,,(n)) + O(V2 + Vj)) ‘

SinceV,,(n) is independent od_(n) andR(n), we have

E(Ry,(n)*V,,(n) sin(@,,(n))) = E(V,,(n))E(R% (n) sin(®,,(n))) = 0.
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Using independence to boudt{R(n)*V?) by E(R(n)*) E(V.), we see that
E(Ry(n+1)") <[1+CE(VZ(n) + Vi) E(RS(n)),

whereC is uniformly bounded fok: in any (@, 7 — «) with o > 0. It follows that

E(/ Rw(n,k)“dk) < o0.

By Fatou’s lemma, for a.ev,
m [ Rkt dk < o

and by Theorem 1.3, the spectrum is purely a.c.-eAos(x), 2 cos)). O

For the case wherg 2, E(V(n)?) = oo, we need some regularity of the fall-off.
Rather than try to find complicated general conditions, we consider the case where
E(V(n)?) ~ n~2> with o < 3. The same method can handle a case iK& (n)?) =
[n log(n+1)]~* (which always has singular continuous spectrum of Hausdorff dimension
1) by the kind of arguments we will discuss in the case %; in this case for typical
energieg|T'(0, n)|| grows like log).

Explicitly, we suppose

(i) EWV,(n)ADY2=x " O<a< %; A>0,

(i) E(V.(n) =0,

(i) For somee > 0, sup, |V,,(n)] < Cn~/3)=¢,

(iv) V. (n)is independent of V,(j)} 75"

Remarks.1. Think of the case discussed in [26, 7], wh&lgn) = n~“ X, (w) with X,
identically distributed bounded, independent random variablgs(X) = 0 andX is
bounded, then (i)—(iv) hold.

2. With some extra effort, we could allow unbounded distributions, and only require
that lim,, .. n**E(V,,(n)?)/? exists and be non-zero.

Theorem 8.2. Supposéi)—(iv) hold. Fix% in (0, 7) with &k # =, 2= 3= Then for a.ew,

44 4
im |Og||T2cosQ~c)(n70)|| — N2 )
oo (Ujmd ) 8sirf(k)
Remark.In casex < 3, this says|T(n, 0)|| ~ exp(Cn'~®) with C = st"‘z(’f)' g

. . 2
a = 3, this sayd|T|| ~ n® with C' = gors.

Proof. By Theorem 2.3, we need only prove this result wittr) replacing?” for each
0. So fixk andfy, and letd,,(n), R, (n) solve (2.12). By (2.12c),

log R(n + 1) — log R(n) = 1 log(1 +3,(n) sin(2(n)) + vi.(n)? sir(9(n))). ~ (8.2)

Since sup v (n) — 0 asn — oo, we can use

log(1+z) =2 — %2 +0(zd). (8.3)
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We also use
H 1 il — 1 1 1
sinf 0 — 3 sin*(20) = 1 — 1 cos() + 1 cos(4).

The net result is
E(V,,(n)?)
logR(n) = E + O+ Cr+ O3+ Cy,
g()81sm2(l<:) Lre e

where the corrections have the form

—_ 1 - - H 0 -
C’1 - _m Z Vw(]) Sln(29w(])),

Cr =

— nz(k) Z[v ) - EVLG))] [sm GG - 5 i@, (y»}

n

— 1 2 L
Cs= 2520 JZ E(V,(j) ){ cos(D.,(j)) — = 005(4%(]))}

Ca=>_ OV, +VL()H).

J=1
The theorem follows if we prove that for eagh= 1,2, 3,4 and a.ew,

Equation (8.4) fok = 4 is an immediate consequence of hypothesis (iii).

C1, C; clearly have zero expectation values and variances that decay properly for us
to hope (8.4) holds; the key to the proof will be a Martingale inequaligywill depend
on the fact that cosj has zero average and the slow variatiog¥/, (n)?).

We break the proofto present some needed lemmas. For the first two of these lemmas,
let Xo, X1, ..., Xy be independent random variables, wh&kgecan be vector valued.
Suppose thatfof =1,..., NV,

Zi = X; [i(X1, ..., Xj-1; Xo) (8.5)
with f; a measurable function, and that
E(X;)=0. (8.6)

The following is a variant of a standard Martingale inequality; we provide a proof for
the reader’s convenience:

Lemma 8.3.

1 2
E(n_sup |Zl+...+Z,L|Zr>§r2E<ZZj). (8.7)

=1,2,....N
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Proof. Define
n N
Yoz Z  Qu= )7
7j=1 j=n+l

and let
Aj={w || <n Y| <r,... |Y;] >}

Theny,,, the characteristic function of,,, is a function only ofXy, X4,..., X,, and
thus, ifk > n,

E(Z,Ynxa,) = E(X)E(f(Xy, ..., Xk—1, X0)Ynxa,) = 0.

Thus,
E(xnY,2) < EQin(Yn + Q1))

since the cross term has zero expectation when we expand the square. Thus,

n N N
Y B(y) < S E(GYD) < 3 E(YR) < E(YR),
j=1 j=1 j=1

which is (8.7). O
Lemma 8.4. Supposez(Z2) < Cn=2*. Then for a.ew:
(1) If o < 2 andB > 3(1 — 2a), then

lim Y z;|n " =0.
n—oo le
(2) If a=%andj > 3, then
lim >~ Z;|(logn)~ =0.
n—oo j:l
@) Ifa > 3,
n
lim "7, =Y,
n—oo j:l
exists, and for ang < o — 1,
lim n*? |3 7| =0.
Jj=n

Remark. Naively, fluctuations should behave &s{_, j~22)1/2 Thislemmashows they

are not much worse. Since we only need that they are small compaEg?:'q_Qj‘za,
the lemma sulffices.
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Proof. (1) Pick/3; s03 > 1 > (1 — 2a). By Lemma 8.3,

2n,—1+j
E( sup | Y. Zi| > 2”51> < ¢ 2722l
I (8.8)

< O 2~ (n=1)2a+26,-1)

is summable im by the choice ofj;. Therefore, by the Borel-Cantellilemma, for a.e.
there is amg(wo) so that the sup inside (8.8) is less th&faf n > no. Letj be larger
than 2°~1 and pickn so that 2=1+ 1 < j < 2". Then

n

|Z1+"'+Zj‘S‘Zl+"'+22no|+22kﬁl

k=1
2161
g\Zl+---+Zzn,0|+m
261 )
<|Zo+ -+ Zong +mﬁl.

Thus,lim j=%1|Zy + - - + Z;| < 0o. Sincel > f34, the limit for 3 is 0.
(2) Pick 3y with 8 > 8, >  and define
> nﬁl}.

Kn:{w

.
1
E(K,) <n~ % § = <n ?(1+nlog2) < Cn' ¥,
J
1

J

> %

m=1

sup
j=1,...,2n

Then by Lemma 8.3,

since> s ]l < 1+logk.
Pick an integern som(28; — 1) > 1. Then

i E(K,m) < oo.

n=1

So by the Borel-Cantelli lemma, for aw, there isng(w), SO ifn > ng, thenw ¢ K, m.
If 7 > 2™, pickn so that
21" <o

Then
| Zy+ -+ Z;] < (0™ < 2P (n — 1) < 2™P1(log 2) P (log 5)7.
(3) Pick31 5083 < f1 < a — 3. Then

E< sup
j=1,...,2n-1

2n—1+j

>

k=2n—1+1

> 2n[j1> < 0272nﬁ12n71272(n71)a

< ( 22619—2(n—1la—-1/2—-p1]
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is summable. Thus, for a.e, there is amg(w) so that fom > ng(w), the sup is bounded
by 2-7%1, Thus, if j; > j, > 272~1 > 2n0—1,

<ZZ "0

k=j1 n=nz

asn, — oo. So the sum is convergent (i.e., the partial sums are Cauchy). Moreover, if
j > 2™~Landn is picked so 271 < j < 27, then

22| <
k=j

and thus, if we multiply byj”, the limit is 0. O

P —nfB1 j*ﬂl
mpP1r —
ZZ B 1 2—51 < 1—2-8°

Lemma 8.5. Suppose that € R is notinZx. Then there exist integegs — oo so that
foranyéy, ..., 0,

qe
)| <1+ 16, — o — Kjl.

Remark.In essence, we sho@:gzl coslp+kj)| < 1astronger result than the ergodic
theory result that% Z;?:l cosfp + kj)| — 0. The weaker ergodic theory result suffices
for our application, but the proof of this lemma is easy so we give it.

Proof. By general number theory considerations [14], we caning, so that

<1 (8.8)

b — £
a4

‘ TPe
qe

andpe/qe ¢ Z if k ¢ Zr. Foranyp/q ¢ Z and anyd,

q .
> cos(eo + ﬂj) =0. (8.9)
Thus

qe
= Z cosp;) — cos<9 + ﬂ;”) ‘
=1 4

Sou )

<Z\0 eokJ|+Zj‘km

qe

+l
qe(Qﬁ )+Z‘9 —90—/6]|

qe
> " cosb;)
J=1
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Conclusion _of the Proof of TheoreB12 We need to verify (8.4) foy = 1,2, 3.
V.,(n) sin(&,,(n)) = Z, has the form (8.5) an@(Z2) < Cn~2*, so by Lemma 8.4,

for a.e.w,
|C1(w)] = O(Zj_2a> .

J=1

[V..(n)% — E(V,(n)?)][sin®(d) — 1 sin?(26)] also has the form of (8.4) sincB(V2 —
E(V?)) = 0. SinceV is bounded,

E((V? - E(V?)) < CE(V?).
Thus, for a.ew,

|Ca(w)| = o(ZjZO‘)
=1

also.
Finally, we will show

> 57 cos(@,.(j)) = o( Zr“),
Jj=1 =1

which proves (8.4) foy = 3. By hypothesis ot, 4k ¢ Zm so Lemma 8.5 applies. Let
qe be as in that lemma. Note next that by hypothesis (iii) and Proposition 2j4doge,

10, +1) = 0,(7) — k| < Coj~2*/3. (8.10)
Pickng so
no > ¢ (8.11)
and
4Cong 2% < g2 (8.12)

SupposeV =ng+ Kq,. Then

N K @
i cos(%(j))‘ - ’Z > (o +mae + 5) > cos(@.,(mge + 7))

J=no+l m=0 j=1

= A1+ Ay,

whereA; is what we get by replacingif + kq, + j) 2 by (no + kq,)~?~ and A, is the
difference. By Lemma 8.5, (8.10), and (8.12),

K
Ar < (no+kge) 2L +1],
k=0
while using
(o + kqe + §) %% — (no + kqe) >*| < (no + kqe) **jng *

and (8.11),
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K K
A2 <Y (no+kg) **gingt <Y (no+kar) >
k=0 k=0
Thus for anyN,
N N
>0 cos(%(j))‘ SCr+3g. ) i
1 j=1
and so

N -1
lim § -—2x
j=

uniformly in w. Since we can takg, — oo by Lemma 8.5, théim is 0. O

N
3 cos(%(j»‘ <3g°
1

Theorem 8.6. Suppose thaf)—(iv) hold witha < % but we considei’ (1) as a contin-
uous parameter. Then for a®:

(1) For a dense&s;s of values oV (1), H,, has purely singular continuous spectrum in
(-2,2).

(2) For Lebesgue a.e. value bf(1), H,, has dense pure point spectrum(in2, 2) and
the eigenfunctions obey ,u = 2 cosg.,,,)u with

log(lu(n)? +u(n + 1PY3) (11— 20)\?
nlﬁnoo |n|1—2a - 8S|n2(km) . (813)

Ifwe consider awhole-line problem with independeéptr), where botH V,,(n) } 02,
andV/,, (n) =V,(—n),n=12,... obey hypothesdg—(iv) andV,,(0) has a purely
a.c. density, then for a.e,, H,, has dense pure point spectruni(in2, 2) and(8.13)
holds asln| — cc.

Remark. This strengthens the result originally proven in [31] and improved in [7] in two
ways. First, we get the explicit constant in (8.13). Second, we only requirg gné to
have an a.e. distribution.

Proof. By Theorem 8.2 and Fubini’s theorem for axe.we have for a.ek € (0, ),
log [|T(n)]] _ (1 —2a)\?

lim =
n—oo  pl-2e 8sirf (k)

Thus by Theorem 8.3 of[22], there is &R-solution obeying (8.13). The theorem follows
from general principles on rank one perturbations [12, 4, 5, 28].0J

The casex = % has an extra subtlety we will need to deal with, using an argument
modeled on Kotani-Ushiroya [21]. The following replaces an explicit but complex for-
mula they use for the projection onto a decaying solution (and fills in a gap in their
argument):

Lemma 8.7. Letuy = (cosf, sind) in R2. For any unimodular matrix4 with || A|| >
1, let 6(A) be the uniqued € (—3%, %] with ||Aug| = |[|Al|7*. Define p(4) =
|| Auo|| /|| Aur 2| Let A, be a sequence of unimodular matrices Wjth,,|| — oo
and|| A1 Ay /| An | Anea]l — 0@sn — oo. Letp, = p(An), b, = 8(A,,). Then:
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(i) 0, has alimitd, if and only iflim,, ., p, = poo EXIStS P, = o0 is allowed, but
then we only havi,,| — 7).

(i) Supposé,, has alimitd,, 7 0, 5 (equivalentlyp., 7 0, 00). Then
log || Anuco|| - _

lim 1 (8.14)
n—oo IOgHAn”
if and only if
im 10g[pn — poc| < -2 (8.15)

n—co  log || A, |

Remark. Consider

_ coshf) (=1)" sinh(n)
An = ((—1)”sinh(n) coshg) . ) :

Thenp(A,,) = 1and|| A, || — oo buté,, = (—~1)"*}(Z) does not have a limit. This shows
that the condition| A,,+1 4| /|| A ||| An+1| — O is required. Indeed, in this case that
limit is 1. Kotani-Ushiroya miss this issue.

Proof. (i) Note first that
| Anugl|? = || An||? SINP(0 — 6,) + || An || 72 cOS(0 — 6,,). (8.16)

Thus,
_ tarf(0,) + ||A, ||

T T A tar(@,)
It follows that p,, has a finite limitp if tan?(4,,) has a finite limit. By writing

1 _ COtz(on) + ||An||74
P = 14 A, |4 cot(6,)

(8.17)

this is true also fop,, — co and tar(6,,) — co.

Pickn € [0, 5] so tarf(6,,) — tarf(n). If n = 0, thend,, — 0, and ify — 7, then
|0,| — 5 because of the continuity of taf)(on [-7, 5]. If 0 < n < 7, we only have
|6..| — n and have to worry about the sign (see the remark above).

In (8.16), taked = 0,,+1 and see that

Sinz(9n+1 - en) < HAnH_ZHAnAr;ll“Z”An+1u9n+1
= | A 72 At 21 Ansn A2

‘ 2

sinceA,, AL is unimodular, and thugA,, A~ 1 || = || An+14;,Y]|. Thus by hypothesis,
Sin? (041 — 6,) — O.

This, together with¢,,| — 7 € (0, 3), implies thatd,, has a limit.
(ii) By (8.16), we have that (8.14) holds if and only if

2. 8.18
A ~log [An] (8.18)

Sincef, # 0, , this is true if and only if
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log | tar?(6,,) — tarf(f.)|

< 2.
LN 09[4, :

By (8.17) and, # ,
|| tarf(6,,) — tarf(8so)| — [pn — pool| < CllAn] .
Thus, (8.18) holds if and only if (8.15) holds. [

Lemma 8.8. Suppose the hypotheses of TheoBe2mold witha = 1 andk # Z, &, 3¢
is fixed. Then for a.ev, there exists an initial conditiony,,) so that

i log ||T2 cosk)(m O)Ue(w) H _ A2
im = )
n— 00 |Og(n) 8 Slnz(k’)

Remark.As noted in [22] (and gotten incorrectly in [21]), Ruelle’s deterministic argu-
ment doesn’t ever suffice in thigl'|| ~ n” case. IfA,, is a sequence of unimodular
matrices with lim,_ . log||A4,]|/log(r) = v, then [22] has explicit examples (even
coming from deterministic Schdinger operators) for each > % where the decay-
ing solution only obeys lim_,. 10g||4,ux||/l0g(n) = —v + 1. It also appears one
needsy > % to be sure of the existence of decaying solutions. But following [21], the

probabilistic argument here can replace Ruelle’s argument.

Proof. Let 5 = Aiz Let R1(n) and R,(n) be theR’s associated t6 = 0 andd = 1.
8sirP(k) 2

By the proof of Theorem 8.2 for a.e,

. log | Ri(n)]| _
nlinoO “logl) 8. (8.19)
Let 6;(n) be the corresponding EFGP angles. By (2.7),

Ry(n)Ra(n) sinB1(n) — 62(n)) = sin)[ua(n)ua(n — 1) — us(n — Nuz(n)] = -1

(by the initial conditionsi?1(1) = R2(1) = 0,01(1) = 0,62(1) = 7) and constancy of the
Wronskian. Thus by (8.19) for a.e,

im log|01(n) — O2(n)| _

lim_ 090 23. (8.20)

Letp, = 744 Then by (2.12c),

L,(n) = [log p(n + 1) — log p(n)] = log(1 + Ax(n)) — log(1 + Az(n)),

where
Ve (n)

sin(k)

Vi (n)z

Aim) == Sire(k)

sin’(6;..(n)).

sin(; ..(n)) +

Define
F(a, ) = log(1— asin() + a? sin’(6)).

By a finite Taylor expansion,

J-1

F(a,0) =) a’ P;(6) + O(a”)

i=1
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with P1(f) = sin(%) and theP’s, C* in 6. Fix e > 0 so forn large, use (8.20) to see
that|fy — 62| = o(n=2%*¢). ChoosingJ son~"/3 = o(n=2%~1), we see that

Vio(n)
sin(k)

Ly(n) =~ [SiN(201(n)) — SiN(2(n))] + O(n—27=1*).

Sinced;(n) depend only o V,,(k)}r<»—1, we can apply part (3) of Lemma 8.4 (with
2a =1+ 25 — ¢) to see that for a.ev,

N
lim > Ly (n) (8.21)
1

N—oo

exists and

< C,N~2P*, (8.22)

‘Z Ly(n)
N

By (8.21), lim gzgzg = poo exists and is different from 0 angb. Moreover, by (8.22),

i log |p(r) — p(o0)| <2
log(n)

Lemma 8.7 completes the proof. O

3.

Theorem 8.9. Supposéi)—(iv) hold witha = % Then,
(1) For a.e.w, the essential spectrum éf,, is [—2, 2] and the absolutely continuous
spectrum off,, is empty.
(2) If |\| > 2andV,,(1) has an absolutely continuous distribution, then for a:eH,,,
has dense point spectrum and only dense point spectrim2rR).
(3) If |\| < 2andV,,(1) has an absolutely continuous distribution, then for axeH,,,
has purely singular continuous spectrun{il | |E| < (4— X?)1/2} and only dense
pure point spectrum igE | (4 — \)Y/2 < |E| < 2.
In either case(2) or (3), in the region of point spectrum, there are almost surely
eigenvectors of power decay ” with

)\2
8- 2F2°
Remark. This theorem extends results of Delyon, et al. [7], Delyon [6], and Kotani-

Ushiroya [21]. In particular, [7] conjectured that there is a region of point spectrum near
E = +2 no matter how small is.

B= (8.23)

Proof. By Theorem 8.2, lim_... ||7.,,(0,n)| = oo for a.e. E for a.ew, so by The-
orem 1.1, we conclude (3). By Lemma 8.8, for a.e. pairsK), there is a unique

decaying solution with rate of decay * with 3 = Sf—ZZEZ If 8> 3, this is¢? and we
have potential point spectrum. ff < % there is no/? solution. The general theory of

rank one perturbations ([32, 5]) then yields (2) and (3). O

We can compute the precise Hausdorff dimension of the singular continuous spectral
measures in this case:
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Theorem 8.10. Fix A < 2 and a model obeyin@)—(iv) with o = % In the region
|E| < (4 — \?)Y2, define

4 - E%2 - )?

C4-—E?2

Supposé/,,(1) has an absolutely continuous density. Then for@,éhe spectral mea-
sure, 1, has dimensiori(E, \) at E in the sense that for any, there is ad so that
1(A) = 0if Ais asubset ofE — ¢, F + ) of Hausdorff dimenion less thdd — ¢), and
there is a subseB of Hausdorff dimension less théh+e¢), sou((E — §, E+6)\B) = 0.

d(B,\) =

Proof. Let ||ul|, = (Zf:1 u(j)?)Y2. By the general theory of rank one perturbations,
Theorem 8.2, Lemma 8.8, and the assumptiol qfl) for a.e.w, i is supported on the
set of energies where most solutions growdsind one decays as ?, where3(E, \)
is given by (8.23). The hypothesis for singular spectrum is prec'[ﬁeiy%.

SinceB < 3, |Ju|z ~ L=PLY? while ||uy||;, ~ LPLY2, wherea ~ b is shorthand
for lim 1296 = 1. The Jitomirskaya-Last version [16, 17] of the Gilbert-Pearson [11]
theory says that the Borel transform of the spectral measure is supported on the set of
E’s, where

[|uzl|

|m(E + i€)| ~ , (8.26)
[[uallz
andF is given by
1
luallzlfuzllz = 5 (8.27)

(the~ in (8.26) holds in the strong sense that the ratio lies in the intervaly®4,5 +
V24)). Thusge ~ L1 and (8.26) says that

|m(E +i€)| ~ e 2P,

Sinceg is continuous, the theory in [3] then says that the local dimension is given
by 1-23asclaimed. O

9. Random Decaying Potentials: The Continuum Case

Having done the discrete random case, we will only sketch the continuum case. We will
specialize to a situation whef{& (x)},,<.<n+1 are independent for differents. Using

ideas from [21], one can presumably use Martingale methods to control asymptotically
independent situations.

Theorem 9.1. Let{V,,(x) }o<z<oo be a family of random variables and let

n+l
an(w) = / V() dy. (9.1)

Suppose

() E(V,(x)) = 0foreachz,

(i) >, E(a?ef ) < o forall C >0,

(i) {V(2)}n<wz<n+1 are independent for different’s.
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Then for a.ew, —dd—;z +V,,(x) on L?(0, o) has purely absolutely continuous spectrum
on (0, co) for any boundary condition.

Remarks.1. Our methods imply for alE > 0 and a.ew, Tr(n) is bounded, and that

implies— dd—;z +V,,(x) is limit point at infinity, so we need not worry about self-adjointness
issues.

2. Asimple example where (i) holds is if sup |V.,(z)| < cc andE( [, V (y)? dy)
< Q.

Proof. By (2.4),

RYn + 1) = R*(n) exp(B,.(w)), (9.2)
where —
B,(w) = z /n Vo (x) sin(X,,(z)) dx. (9.3)
By (2.3),
|0, (x) — 0,(n) — k(z —n)| < %an(w). (9.4)
Using

le” —1—z| < %xzew,
we obtain from (9.2)—(9.4),
RYn+1) < R (n)(L +Cale®™) +Qn, (9.5a)

2 n+l
Qn =7 R'(n) / V() Sin(@,(n) + 2k(z — n)) dz (9.5b)

for some constar@ uniformly bounded fok in any compact of (0cc).

SinceV,,(z) is independent of V,,(y) }y<», itis independent aR(n) andd,, (n), and
S0 E(Q,) = 0.

Moreover,a,, is independent of?(n), so (9.5) implies that

E(R*n +1)) < E(R*n))E@ +Ca2efn).
By condition (i), we see that
lim E(R*n)) < oo
with bounds uniform ink on compacts of (0x). Thus by Fatou’s lemma, for a.e,

“ﬂff R23(n, k) dk < oo and so the spectrum is purely absolutely continuous by Theo-
rem 1.3. ]

Theorem 9.2. Let f be supported o0, 1) and let

Vi(2) =) (n+ 1) * X, (w) f(z —n),

n=0

Where{Xn(w)E are independent, identically distributed bounded variables of mean zero
and0 < o < 3. Then fordk ¢ Z,

2

2
im 109100 _ BCXR)

1
: f)e™ dy
n— oo Ej:l-]_a 8k2 /O

(9.6)
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Remarks.1. This implies pure point spectrum for aweif o < %
2. fa= % we get singular continuous spectrum for laftgand pure point spectrum

for small £ (assuming[ol fly)dy #0 orfo1 yf(y) dy # 0) and no a.c. spectrum.
Sketch.Defined,,(y) = 6(n) + ky and

Yy
50,(y) = —(n+1)"°X,, /0 F() S0, () dy. 9.7)

By (2.3),
10n(n + ) — 6 (y) — 66, (y)| = O(n™>*)

fory € (0, 1).
Plugging this into (2.4), we find that

log R(n + 1) — log R(n) = YV + Y@ + O(n=2%),

where

o 1
v = D) /0 f @) sin(2,,(v)) dy
and

o 1
Y@ = W /0 2f(y) cos(D,,(1))(30,,)(y) dy.

By using Lemmas 8.2 and 8.3, one sees that
(L) v
J=0 Jj=0

for a.e.w. The same lemmas let us repla¥g(w)? by E(X2(w)) in ;2. So if we let=
indicate equal up to(zyzo(j +1)~2%) terms, we see that

—0

n—1
log R(n) = > (V@ +Y®),
=0

where we use sfitd,,(y)) = 1 — 1 cos(2,,(y)) and let;? indicate the- 3 cos(2) terms

andy,® the% terms. By an argument analogous to the one in the proof of Theorem 9.2

that used Lemma 8.5, ;¥ = 0 becausé ¢ Z.
As in (6.5), we get

n—1,. _ 2
o (+1) ZQE(XTL(W)Z) !
g =3~ -z ([ soreos@na) .

As in the proof of Lemma 6.2, this last square is

1t
4 e

plus a term that has cog{4y)), which we can handle using Lemma 8.5. O

2
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