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This is a comprehensive exposition of the classical moment problem using
methods from the theory of finite difference operators. Among the advantages of
this approach is that the Nevanlinna functions appear as elements of a transfer
matrix and convergence of Pade� approximants appears as the strong resolvent con-
vergence of finite matrix approximations to a Jacobi matrix. As a bonus of this, we
obtain new results on the convergence of certain Pade� approximants for series of
Hamburger. � 1998 Academic Press

1. INTRODUCTION

The classical moment problem was central to the development of
analysis in the period from 1894 (when Stieltjes wrote his famous memoir
[38]) until the 1950's (when Krein completed his series on the subject
[15, 16, 17]). The notion of measure (Stieltjes integrals), Pade� approxi-
mants, orthogonal polynomials, extensions of positive linear functionals
(Riesz�Markov theorem), boundary values of analytic functions, and the
Herglotz�Nevanlinna�Riesz representation theorem all have their roots
firmly in the study of the moment problem.

This expository note attempts to present the main results of the theory
with two main ideas in mind. It is known from early on (see below) that
a moment problem is associated to a certain semi-infinite Jacobi matrix, A.
The first idea is that the basic theorems can be viewed as results on the self-
adjoint extensions of A. The second idea is that techniques from the theory
of second-order difference and differential equations should be useful in the
theory.

Of course, neither of these ideas is new. Both appear, for example, in
Stone's treatment [39], in Dunford�Schwartz [5], and in Akhiezer's
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brilliant book on the subject [1]. But, normally, (and in [1], in par-
ticular), these ideas are presented as applications of the basic theory rather
than as the central tenets. By placing them front and center, many parts of
the theory become more transparent��in particular, our realization of the
Nevanlinna matrix as a transfer matrix makes its properties (as an entire
function of order 1 and minimal type) evident (see Theorem 4.8 below).

Two basic moment problems will concern us here:

Hamburger moment problem. Given a sequence #0 , #1 , #2 , ... of reals,
when is there a measure, d\, on (&�, �) so that

#n=|
�

&�
xn d\(x) (1.1)

and if such a \ exists, is it unique? We let MH(#) denote the set of solutions
of (1.1).

Stieltjes moment problem. Given a sequence #0 , #1 , #2 , ... of reals, when
is there a measure, d\ on [0, �) so that

#n=|
�

0
xn d\(x) (1.2)

and if such a \ exists, is it unique? We let MS(#) denote the set of solutions
of (1.2).

We will not attempt a comprehensive historical attribution of classical
results; see Akhiezer [1] and Shohat�Tamarkin [35] for that.

We will always normalize the #'s so that #0=1. By replacing #n by #n �#0 ,
we can reduce general #'s to this normalized case. We will also demand that
d\ have infinite support, that is, that \ not be a pure point measure sup-
ported on a finite set. This eliminates certain degenerate cases.

One immediately defines two sesquilinear forms, HN and SN , on CN for
each N by

Hn(:, ;)= :
n=0, 1, ..., N&1
m=0, 1, ..., N&1

:� n;m#n+m (1.3)

Sn(:, ;)= :
n=0, 1, ..., N&1
m=0, 1, ..., N&1

:� n;m#n+m+1 (1.4)

and corresponding matrices HN and SN so that HN(:, ;)=(:, HN;) and
SN(:, ;)=(:, SN;) in the usual Euclidean inner product. Our inner
products are linear in the second factor and anti-linear in the first.

A standard piece of linear algebra says:
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Lemma 1.1. An N_N Hermitean matrix A is strictly positive definite if
and only if each submatrix A[1, J]=(aij)1�i, j�J has det(A[1, J])>0 for
J=1, 2, ..., N.

Proof. If A is strictly positive definite, so is each A[1, J], so their eigen-
values are all strictly positive and so their determinants are all strictly
positive.

For the converse, suppose that A[1, N&1] is positive definite. By the min-
max principle, the (N&1) eigenvalues of A[1, N&1] interlace the N eigen-
values of A[1, N]#A. If all the eigenvalues of A[1, N&1] are positive, so are
the N&1 largest eigenvalues of A. If the N th eigenvalue were non-positive,
det(A)�0. Thus, A[1, N&1] strictly positive definite and det(A[1, N])>0
imply A[1, N] is, strictly positive definite. An obvious induction completes
the proof. K

This immediately implies

Proposition 1.2. [HN]�
N=1 are strictly positive definite forms if and

only if det(HN)>0 for N=1, 2, ... . Similarly, [SN]�
N=1 are strictly positive

definite forms if and only if det(SN)>0 for N=1, 2, ... .

Suppose that the #n obey (1.1). Then by an elementary calculation,

| } :
N&1

n=0

:n xn }
2

d\(x)=HN(:, :) (1.5)

| x } :
N&1

n=0

:n xn }
2

d\(x)=SN(:, :). (1.6)

Taking into account that if � | P(x)|2 d\(x)=0, \ must be supported on the
zeros of P, we have:

Proposition 1.3. A necessary condition that (1.1) holds for some
measure d\ on (&�, �) with infinite support is that each sesquilinear form
HN is strictly positive definite. A necessary condition that there be a d\ sup-
ported on [0, �) is that each HN and each SN be strictly positive definite.

Suppose now that each HN is strictly positive definite. Let C[X] be
the family of complex polynomials. Given P(X )=�N&1

n=0 :nXn, Q(X )=
�N&1

n=0 ;n Xn (we suppose the upper limits in the sums are equal by using
some zero :'s or ;'s if need be), define

(P, Q)=HN(:, ;). (1.7)

This defines a positive definite inner product on C[X], and, in the usual
way, we can complete C[X] to a Hilbert space H(#) in which C[X] is
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dense. C[X] can be thought of as abstract polynomials or as infinite
sequences (:0 , :1 , ..., :N&1 , 0, ...) which are eventually 0 via :t�N&1

j=0 : jX j.
We will start using some basic facts about symmetric and self-adjoint

operators on a Hilbert space��specifically, the spectral theorem and the
von Neumann theory of self-adjoint extensions. For an exposition of these
ideas, see Chapters VII, VIII, and X of Reed�Simon, volumes I and II [33,
34] and see our brief sketch at the start of Section 2.

Define a densely defined operator A on H(#) with domain D(A)=C[X]
by

A[P(X )]=[XP(X )]. (1.8)

In the sequence way of looking at things, A is the right shift, that is,
A(:0 , :1 , ..., :N , 0, ...)=(0, :0 , :1 , ..., :N , 0, ...). This means that

(P, A[Q]) =SN(:, ;) (1.9)

and, in particular,

(1, An1) =#n . (1.10)

Since HN and SN are real-symmetric matrices, A is a symmetric operator,
that is, (A[P], Q) =(P, A[Q]) . Moreover, if we define a complex con-
jugation C on C[X] by C(�N&1

n=0 :nXn)=�N&1
n=0 :� nX n, then CA=AC.

It follows by a theorem of von Neumann (see Corollary 2.4 in Section 2)
that A has self-adjoint extensions.

If each SN is positive definite, then (P, A[P])�0 for all P, and it
follows that A has a non-negative self-adjoint extension AF , the Friedrichs
extension (discussed further in Section 3). We thus see:

Proposition 1.4. If all HN are positive definite, then A has self-adjoint
extensions. If all SN are positive definite, then A has non-negative self-adjoint
extensions.

Let A� be a self-adjoint extension of A. By the spectral theorem, there is
a spectral measure d+~ for A� with vector [1] # H(#), that is, so that for any
bounded function of A� ,

(1, f (A� ) 1)=| f (x) d+~ (x). (1.11)

Since 1 # D(AN)/D(A� N), (1.11) extends to polynomially bounded func-
tions and we have by (1.10) that,

#N=| xN d+~ (x).
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We see therefore that a self-adjoint extension of A yields a solution of the
Hamburger moment problem. Moreover, a non-negative self-adjoint exten-
sion has supp(d+~ )/[0, �) and so yields a solution of the Stieltjes moment
problem. Combining this with Propositions 1.2, 1.3, and 1.4, we have the
first major result in the theory of moments.

Theorem 1 (Existence). A necessary and sufficient condition for there to
exist a measure d\ with infinite support obeying (1.1) is that det(HN)>0 for
N=1, 2, ... . A necessary and sufficient condition that also d\ be supported on
[0, �) is that both det(HN)>0 and det(SN)>0 for N=1, 2, ... .

Historically, existence was a major theme because the now standard
tools on existence of measures were invented in the context of moment
problems. We have settled it quickly, and the bulk of this paper is devoted
to uniqueness, especially the study of cases of non-uniqueness. Non-unique-
ness only occurs in somewhat pathological situations, but the theory is so
elegant and beautiful that it has captivated analysts for a century.

Henceforth, we will call a set of moments [#n]�
n=0 with det(HN)>0 for

all N a set of Hamburger moments. If both det(HN)>0 and det(SN)>0 for
all N, we call them a set of Stieltjes moments.

We will call a solution of the moment problem which comes from a self-
adjoint extension of A a von Neumann solution. The name is in honor of the
use below of the von Neumann theory of self-adjoint extensions of densely-
defined symmetric operators. This name, like our use of Friedrichs solution
and Krein solution later, is not standard, but it is natural from the point
of view of self-adjoint operators. As far as I know, neither von Neumann
nor Friedrichs worked on the moment problem per se. While Krein did, his
work on the moment problem was not in the context of the Krein exten-
sion we use to construct what we will call the Krein solution. What we call
von Neumann solutions, Akhiezer calls N-extremal and Shohat�Tamarkin
call extremal. This last name is unfortunate since we will see there exist
many solutions which are extreme points in the sense of convex set theory,
but which are not von Neumann solutions (and so, not extremal in the
Shohat�Tamarkin sense).

Given the connection with self-adjoint extensions, the following result is
reasonable (and true!):

Theorem 2 (Uniqueness). A necessary and sufficient condition that the
measure d\ in (1.1) be unique is that the operator A of (1.8) is essentially
self-adjoint (i.e., has a unique self-adjoint extension). A necessary and suf-
ficient condition that there be a unique measure d\ in (1.1) supported in
[0, �) is that A have a unique non-negative self-adjoint extension.
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This result is surprisingly subtle. First of all, it is not obvious (but true,
as we will see) that distinct self-adjoint extensions have distinct spectral
measures d+~ , so there is something to be proven before multiple self-adjoint
extensions imply multiple solutions of the moment problem. The other
direction is even less clear cut, for not only is it not obvious, it is false that
every solution of the moment problem is a von Neumann solution (Reed�
Simon [34] has an incorrect proof of uniqueness that implicitly assumes
every solution comes from a self-adjoint extension). As we will see, once
there are multiple solutions, there are many, many more solutions than
those that come from self-adjoint extensions in the von Neumann sense of
looking for extensions in D(A). But, as we will see in Section 6, there is a
sense in which solutions are associated to self-adjoint operators in a larger
space.

We also note we will see cases where the Stieltjes problem has a unique
solution but the associated Hamburger problem does not.

The Hamburger part of Theorem 2 will be proven in Section 2
(Theorems 2.10 and 2.12); the Stieltjes part will be proven in Sections 2
and 3 (Theorems 2.12 and 3.2). If there is a unique solution to (1.1), the
moment problem is called determinate; if there are multiple solutions, it is
called indeterminate. It is ironic that the English language literature uses
these awkward terms, rather than determined and undetermined. Stieltjes
was Dutch, but his fundamental paper was in French, and the names have
stuck. Much of the interesting theory involves analyzing the indeterminate
case, so we may as well give some examples that illuminate non-uniqueness.

Example 1.1. Let f be a non-zero C� function on R supported on
[0, 1]. Let g(x)= f� (x), with f� the Fourier transform of f. Then

|
�

&�
xng(x) dx=- 2? (&i)n d nf

dxn (0)=0.

Let d\1(x)=(Re g)+(x) dx, the positive part of Re g, and let d\2=
(Re g)&(x) dx. By the above,

|
�

&�
xn d\1(x)=|

�

&�
xn d\2(x)

for all n. Since d\1 and d\2 have disjoint essential supports, they are
unequal and we have non-unique solutions of the moment problem. (We
will see eventually that neither is a von Neumann solution.) The moments
from \1 , \2 may not be normalized. But we clearly have non-uniqueness
after normalization.
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This non-uniqueness is associated to non-analyticity in a Fourier trans-
form and suggests that if one can guarantee analyticity, one has unique-
ness. Indeed,

Proposition 1.5. Suppose that [#n]�
n=0 is a set of Hamburger moments

and that for some C, R>0,

|#n |�CRnn ! (1.12a)

Then the Hamburger moment problem is determinate.
If [#n]�

n=0 is a set of Stieltjes moments and

|#n |�CRn(2n)! (1.12b)

then the Stieltjes moment problem is determinate.

Proof. Let d\ obey (1.1). Then x2n # L1(R, d\), and by the monotone
convergence theorem,

|
�

&�
cosh \ x

2R+ d\(x)= lim
N � � |

�

&�
:
N

n=0
\ x

2R+
2n 1

(2n)!
d\(x)

�C lim
N � �

:
N

n=0
\1

2+
2n

=
4
3

C<�.

Thus, e:x # L1(R, d\(x)) for |:|<1�2R. It follows that F\(z)#� eizx d\(x)
has an analytic continuation to [z | |Im z|<1�2R]. If + is a second solu-
tion of (1.1), F+(z) is also analytic there. But &i n(d nF\ �dz)(0)=#n , so the
Taylor series of F\ and F+ at z=0 agree, so F\=F+ in the entire strip by
analyticity.

This implies that +=\ by a variety of means. For example, in the
topology of bounded uniformly local convergence, (i.e., fn � f means
sup & fn&�<0 and fn(x) � f (x) uniformly for x in any [&}, }]), linear
combinations of the [eiyx | y # R] are dense in all bounded continuous
functions. Or alternatively, G+(z)=� d+(x)�(x&z)=i �0

&� e&iyzF+( y) dy
for Im z>0, and + can be recovered as a boundary value of G+ .

The (2n)! Stieltjes result follows from the n! result and Proposition 1.6
below. K

We will generalize Proposition 1.5 later (see Corollary 4.5).

Proposition 1.6. Let [#n]�
n=0 be a set of Stieltjes moments. Let

12m=#m , m=0, 1, ...

12m+1=0, m=0, 1, ... .
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If [1j]�
j=0 is a determinate Hamburger problem, then [#n]�

n=0 is a deter-
minate Stieltjes problem.

Proof. Let d\ solve the Stieltjes problem. Let

d+(x)= 1
2 [/[0, �)(x) d\(x2)+/(&�, 0](x) d\(x2)].

Then the moments of + are 1. Thus uniqueness for the 1 problem on
(&�, �) implies uniqueness for the # problem on [0, �). K

Remark. We will see later (Theorem 2.13) that the converse of the last
assertion in Proposition 1.6 is true. This is a more subtle result.

Example 1.2. This example is due to Stieltjes [38]. It is interesting for
us here because it is totally explicit and because it provides an example of
non-uniqueness for the Stieltjes moment problem. Note first that

|
�

0
uku&ln u sin(2? ln u) du=0.

This follows by the change of variables v=&(k+1)�2+ln u, the peri-
odicity of sin( } ), and the fact that sin is an odd function. Thus for any
% # [&1, 1],

1

- ? |
�

0
uku&ln u[1+% sin(2? ln u)] du=e1�4(k+1)2

(by the same change of variables) so #k=e1�4(k+1)2
is an indeterminate set

of Stieltjes moments. Notice for % # (&1, 1), if d\% (u) is the measure with
these moments, then sin(2? ln(u))�1+% sin(2? ln(u)) is in L2(d\%) and
orthogonal to all polynomials, so d\% (u) is a measure with all moments
finite but where the polynomials are not L2 dense. As we shall see, this is
typical of solutions of indeterminate moment problems which are not
Neumann solutions.

Looking at the rapid growth of the moments in Example 1.2, you might
hope that just as a condition of not too great growth (like Proposition 1.5)
implies determinacy, there might be a condition of rapid growth that
implies indeterminacy. But that is false! There are moments of essentially
arbitrary rates of growth which lead to determinate problems (see the
remark after Corollary 4.21 and Theorem 6.2).

Example 1.3. There is a criterion of Krein [18] for indeterminacy that
again shows the indeterminacy of Example 1.2, also of the example of the
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moments of exp(&|x|:) dx (on (&�, �)) with :<1 and also an example
of Hamburger [8], the moments of

/[0, �)(x) exp \&
? - x

ln2 x+?2+ dx.

Proposition 1.7 (Krein [18]). Suppose that d\(x)=F(x) dx where
0�F(x)�1 and either

(i) supp(F )=(&�, �) and

|
�

&�
&

ln(F(x))
1+x2 dx<� (1.13a)

or

(ii) supp(F )=[0, �) and

|
�

0
&

ln(F(x))
(1+x)

dx

- x
<� (1.13b)

Suppose also that for all n:

|
�

&�
|x| n F(x) dx<�. (1.13c)

Then the moment problem (Hamburger in case (i), Stieltjes in case (ii)) with
moments

#n=
� xnF(x) dx

� F(x) dx

is indeterminate.

Remarks. 1. Hamburger's example is close to borderline for (1.13b) to
hold.

2. Since ��
&� x2n exp(&|x|:) dx=2:&11(2n+1)�:t(2n�:)! and

(1.13a) holds for F(x)=exp(&|x|:) if :<1, we see that there are examples
of Hamburger indeterminate moment problems with growth just slightly
faster than the n ! growth, which would imply by Proposition 1.5 that
the problem is determinate. Similarly, since ��

0 xn exp(&|x| :) dx=
:&11(n+1)�:t(n�:)! and (1.13b) holds for F(x)=exp(&|x|:) if :< 1

2, we
see there are examples of Stieltjes indeterminate problems with growth just
slightly faster than the (2n)! of Proposition 1.5.
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3. Since F(x)= 1
2e&|x| has moments #2n=(2n)! covered by Proposi-

tion 1.5, it is a determinate problem. The integral in (1.13a) is only barely
divergent in this case. Similarly, F(x)=/[0, �)(x) e&- x is a Stieltjes deter-
minate moment problem by Proposition 1.5 and the integral in (1.13b) is
barely divergent. This says that Krein's conditions are close to optimal.

4. Krein actually proved a stronger result by essentially the same
method. F need not be bounded (by a limiting argument from the bounded
case) and the measure defining #n can have an arbitrary singular part.
Moreover, Krein proves (1.13a) is necessary and sufficient for [ei:x]0�:<�

to not be dense in L2(R, F(x) dx).

5. Krein's construction, as we shall see, involves finding a bounded
analytic function G in C+#[z # C | Im z>0] so that |G(x+i0)|�F(x).
From this point of view, the fact that F(x) cannot decay faster than e&|x|

is connected to the Phragme� n�Lindelo� f principle.

6. The analog of Krein's result for the circle instead of the half plane
is due to Szego.

Proof. Suppose we can find G with Re G�0 with |G(x)|�F(x) so that

| xnG(x) dx=0.

Then both F(x) dx�� F(x) dx and ([F(x)+Re G(x)] dx)�� F(x) dx solve the
#n moment problem, showing indeterminacy.

In case (i), define for z # C+ (see (1.19) and the definition of Herglotz
function below),

Q(z)=
1
? | \ 1

x&z
&

x
1+x2+ [&ln(F(x))] dx,

which is a convergent integral by (1.13a). Then, Im Q(z)�0 and by the theory
of boundary values at such analytic functions [13], lim= a 0 Q(x+i=)#
Q(x+i0) exists for a.e. x # R and Im Q(x+i0)=&ln F(x).

Let G(z)=exp(iQ(z)) for z # C+ and G(x)=exp(iQ(x+i0)). Then the
properties of Q imply |G(z)|�1, lim= a 0 G(x+i0)=G(x) for a.e. x in R,
and |G(x)|=F(x). A standard contour integral argument then shows that
for any =>0 and n>0,

| xn(1&i=x)&n&2 G(x) dx=0.

Since (1.13c) holds and |G(x)|�F(x), we can take = a 0 and obtain
� xnG(x) dx=0.
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In case (ii), define

Q(z)=
2z
? |

�

0
&

ln F(x2)
x2&z2 dx.

Again, the integral converges by (1.13b) and Im Q(z)>0. Moreover,
Q(&z� )=&Q(z). We have for a.e. x # R, Im Q(x+i0)=&ln F(x2). Thus, if
H(z)=exp(iQ(z)) for z # C+ and H(x)=exp(iQ(x+i0)) for x # R and
G(x)=Im H(- x) for x # [0, �), then, as above,

|
�

&�
x2n+1H(x) dx=0,

so since H(&x)=H(x), ��
0 x2n+1G(x2) dx=0 or ��

0 ynG( y) dy=0. Since
|H(x)|=F(x2), we have that |G(x)|�F(x). K

Additional examples of indeterminate moment problems (specified by
their orthogonal polynomials) can be found in Refs. 9 and 10.

One point to note for now is that in all these examples, we have non-
uniqueness with measures d\ of the form d\(x)=G(x) dx (i.e., absolutely
continuous). This will have significance after we discuss Theorem 5 below.

To discuss the theory further, we must look more closely at the operator
A given by (1.8). Consider the set [1, X, X2, ...] in H(#). By the strict
positivity of HN , these elements in H (#) are linearly independent and they
span H(#) by construction. Thus by a Gram�Schmidt procedure, we can
obtain an orthogonal basis, [Pn(X)]�

n=0 , for H(#). By construction,

Pn(X)=cnnX n+lower order, with cnn>0 (1.14a)

(Pn , Pm) =0, m=0, 1, 2, ..., n&1 (1.14b)

(Pn , Pn) =1. (1.14c)

These are, of course, the well-known orthogonal polynomials for d\ deter-
mined by the moments [#n]�

n=0 . Note that often the normalization condi-
tion (1.14c) is replaced by cnn #1, yielding a distinct set of ``orthogonal''
polynomials. There are explicit formulae for the Pn(X ) in terms of deter-
minants and the #'s. We discuss them in Appendix A.

By construction, [Pj]n
j=0 is an orthonormal basis for the polynomials of

degree n. The realization of elements of H(#) as ��
n=0 *n Pn(X ) with

��
n=0 |*n |2<� gives a different realization of H (#) as a set of sequences

*=(*0 , ...) with the usual l2([0, 1, 2, ...]) inner product. C[X] corresponds
to these *'s with *n=0 for n sufficiently large. But we need to bear in mind
this change of realization as sequences.

Note that span[1, ..., Xn]=span[P0 , ..., Pn(X )]. In particular, XPn(X )
has an expansion in P0 , P1 , ..., Pn+1 . But (XPn , Pj) =(Pn , XPj) =0 if
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j<n&1 since then XPj is of degree at most n&1, and (1.14b) holds. Thus
for suitable sequences, [an]�

n=0 , [bn]�
n=0 , and [cn]�

n=0 (with P&1(X )#0),

XPn(X )=cn Pn+1(X )+bn Pn(X )+an&1Pn&1(X ) (1.15)

for n=0, 1, 2, ... . Notice that by (1.14a), cn>0 and

cn=(Pn+1 , XPn)=(Pn , XPn+1)=an .

(1.15) thus becomes

XPn(X )=anPn+1(X )+bn Pn(X )+an&1Pn&1(X ) (1.15$)

Since [Pn(X )] are an orthonormal basis for H (#), this says that in this
basis, A is given by a tridiagonal matrix, and D(A) is the set of sequences
of finite support.

Thus, given a set [#n]�
n=0 of Hamburger moments, we can find b0 , b1 , ...

real and a0 , a1 , ... positive so that the moment problem is associated to self-
adjoint extensions of the Jacobi matrix,

b0 a0 0 0 } } }

a0 b1 a1 0 } } }

A=\ 0 a1 b2 a2 } } }+ . (1.16)

0 0 a2 b3 } } }

} } } } } } } } } } } } } } }

There are explicit formulae for the bn 's and an 's in terms of the deter-
minants of the #n 's. We will discuss them in Appendix A.

Conversely, given a matrix A of the form (1.16), we can find a set of
moments for which it is the associated Jacobi matrix. Indeed, if $0 is the
vector (1, 0, ..., 0, ...) in l2 , then

#n=($0 , An $0).

Thus the theory of Hamburger moments is the theory of semi-infinite
Jacobi matrices.

So far we have considered the Pn(X ) as abstract polynomials, one for
each n. It is useful to turn this around. First, replace the abstract X by an
explicit complex number. For each such z, consider the semi-infinite
sequence ?(z)=(P0(z), P1(z), P2(z), ...). (1.15$) now becomes (with P&1(z)
interpreted as 0):

anPn+1(z)+(bn&z) Pn(z)+an&1Pn&1(z)=0, n�0 (1.17)
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so Pn(z) obeys a second-order difference equation. If, for example,
?(x0) # l2, then x0 is formally an eigenvalue of the Jacobi matrix A. (Of
course, ? is never a finite sequence because it obeys a second-order dif-
ference equation and ?0(z)=1. Thus, ? � D(A). It may or may not happen
that ? # D(A� ), so the formal relation may or may not correspond to an
actual eigenvalue. It will always be true, though, as we shall see, that if
?(x0) # l2, then (A*&x0) ?(x0)=0.)

For convenience, set a&1=1. For any z # C, the solutions of the equation

an un+1+(bn&z) un+an&1un&1=0, n�0 (1.18)

are two-dimensional, determined by the initial data (u&1 , u0).
Pn(z) corresponds to taking

u&1=0, u0=1.

There is a second solution, Qn(z), taking initial conditions

u&1=&1, u0=0.

We will also define !(z)=(Q0(z), Q1(z), ...). It can be seen by induction
that for n�1, Qn(X ) is a polynomial of degree n&1. We will see later
(Proposition 5.16) that the Q's are orthogonal polynomials for another
moment problem.

As we will see, this normalization is such that if some combination
'(z)#t?(z)+!(z) # l2, then (A*&z) '=$0 and ($0 , ')=t. Here $n is the
Kronecker vector with 1 in position n and zeros elsewhere. We will have
a lot more to say about Qn(z) in Section 4.

There is a fundamental result relating the solution vectors ?, ! to deter-
minacy of the moment problem. In Section 4 (see Proposition 4.4 and
Theorem 4.7), we will prove

Theorem 3. Fix a set of moments and associated Jacobi matrix. Then
the following are equivalent:

(i) The Hamburger moment problem is indeterminate.

(ii) For some z0 # C with Im z0 {0, ?(z0) # l2 .

(iii) For some z0 # C with Im z0 {0, !(z0) # l2 .

(iv) For some x0 # R, both ?(x0) and !(x0) lie in l2 .

(v) For some x0 # R, both ?(x0) and �?��x (x0) lie in l2 .

(vi) For some x0 # R, both !(x0) and �!��x (x0) lie in l2 .

(vii) For all z # C, both ?(z) and !(z) lie in l2 .
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Remarks. 1. Appendix A has explicit determinantal formulae for
�N

n=0 |Pn(0)| 2 and �N
n=0 |Qn(0)| 2 providing ``explicit'' criteria for deter-

minacy in terms of limits of determinants.

2. Theorem 3 can be thought of as a discrete analog of Weyl's limit
point�limit circle theory for self-adjoint extensions of differential operators;
see Ref. 34.

This implies that if all solutions of (1.18) lie in l2 for one z # C, then all
solutions lie in l2 for all z # C.

A high point of the theory, discussed in Section 4, is an explicit descrip-
tion of all solutions of the moment problem in the indeterminate case in
terms of a certain 2_2 matrix valued entire analytic function. It will suffice
to only vaguely describe the full result in this introduction.

Definition. A Herglotz function is a function 8(z) defined in C+#
[z # C | Im z>0] and analytic there with Im 8(z)>0 there.

These are also sometimes called Nevanlinna functions. It is a fundamen-
tal result (see, e.g., Ref. 2) that given such a 8, there exists c�0, d real, and
a measure d+ on R with � d+(x)�(1+x2)<� so that either c{0 or d+{0
or both, and

8(z)=cz+d+| _ 1
x&z

&
x

1+x2& d+(x). (1.19)

Theorem 4. The solutions of the Hamburger moment problem in the
indeterminate case are naturally parametrized by Herglotz functions together
with the functions 8(z)=t # R _ [�]. This later set of solutions are the von
Neumann solutions.

If the Stieltjes problem is also indeterminate, there is t0>0 so that the
solutions of the Stieltjes problem are naturally parametrized by Herglotz
functions, 8(z), which obey 8(x+i0) # (t0 , �) for x # (&�, 0) together
with [t0 , �) _ [�]. The later set of solutions are the von Neumann solutions.

We will prove Theorem 4 in Section 4 (see Theorems 4.14 and 4.18).
From the explicit Nevanlinna form of the solutions, one can prove (and we
will in Section 4; see Theorems 4.11 and 4.17)

Theorem 5. In the indeterminate case, the von Neumann solutions are all
pure point measures. Moreover, for any t # R, there exists exactly one von
Neumann solution, +(t), with +(t)([t])>0. Moreover, for any other solutions,
\, of the moment problem, \([t])<+(t)([t]).
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Remark. The parametrization +(t) of this theorem is inconvenient since
t [ +(t) is many to one (in fact, infinity to one since each +(t) has infinite
support). We will instead use a parametrization t [ +t given by

|
d+t(x)

x
=t,

which we will see is a one-one map of R _ [�] to the von Neumann
solutions.

Examples 1.1 and 1.2 revisited. As noted, the explicit non-unique
measures we listed were absolutely continuous measures. But there are, of
necessity, many pure point measures that lead to the same moments.
Indeed, the measures +t associated to the von Neumann solutions are each
pure point. As we will see, there are many other pure point measures with
the given moments. If & is a Cantor measure, then it can be proven that
� +t d&(t) will be a singular continuous measure with the given moments.
In the indeterminate case, the class of measures solving (1.1) is always
extremely rich.

Given a set of moments [#n]�
n=0 and c # R, one can define a new set of

moments

#n(c)= :
n

j=0
\ n

j+ c j#n& j . (1.20)

For the Hamburger problem, the solutions of the [#n]�
n=0 and each

[#n(c)]�
n=0 problem are in one-one correspondence. If p solves the [#n]�

n=0

problem, then d\(x&c)=d\c(x) solves the [#n(c)]�
n=0 problem, and vice-

versa. But translation does not preserve the condition supp(\)/[0, �), so
that as c decreases, the set of solutions of the Stieltjes problem shrinks.
We will show that for any indeterminate Stieltjes moment problem, there
is always a c0 , so that for c>c0 , [#n(c)]�

n=0 is an indeterminate Stieltjes
problem. For c<c0 , [#n(c)]�

n=0 has no solution d\ with supp(d\)/
[0, �), and [#n(c0)] is a determinate Stieltjes problem (but, of course, an
indeterminate Hamburger problem). This means there are lots of examples
of moments which are determinate Stieltjes but indeterminate Hamburger.
The existence of c0 is intimately connected to Theorem 5. Among all the
von Neumann solutions, there is a distinguished one, d+F (the Friedrichs
solution), with f0=inf (supp(+t)) maximal. One just takes c0=& f0 . That
f0 is a pure point of d+F is important in the analysis.

Another topic in the moment problem concerns the theory of Pade�
approximants, or what is essentially the same thing��continued fractions.
Typical is Theorem 6 below, which we will prove in Section 5.
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Consider a sequence of numbers [}n]�
n=0 ,

}n=(&1)n |
�

0
xn d\(x)

for some \. We are interested in ``summing'' the formal series (called a
series of Stieltjes)

:
�

n=0

}nzn, (1.21)

which is formally

|
�

0

d\(x)
1+xz

. (1.22)

If the series (1.21) converges, then (1.22) is analytic in a circle, |z|<R,
which implies that \ is supported in [0, 1�R]. Thus, if d\ does not have
compact support, then the series (1.21) will not converge for any z{0.

Definition. The [N, M] Pade� approximant to the series (1.21) is the
unique rational function of the form

f [N, M](z)#
A[N, M](z)
B[N, M](z)

, (1.23)

where A is a polynomial of degree N and B is a polynomial of degree M,
and (as z � 0)

f [N, M](z)& :
N+M

n=0

}nzn=O(zN+M+1). (1.24)

Note that A�B has (N+1)+(M+1)&1=N+M+1 free parameters
and [}n]N+M

n=0 is N+M+1 free numbers. There is an explicit solution for
A, B in terms of determinants; see Baker and Graves�Morris [4]. we will
say more about the definition of Pade� approximants in Section 5.

Theorem 6. Let � }n zn be a series of Stieltjes. Then for any z # C"
(&�, 0), limN � � f [N&1, N](z)# f&(z) exists and limN � � f [N, N](z)=
f+(z) exists. The convergence is uniform on compact subsets of C"(&�, 0].
Moreover, f+= f& if and only if the associated Stieltjes problem is deter-
minate. If the problem is indeterminate and \ is any solution of the associated
Stieltjes problem, then

f&(x)�|
�

0

d\( y)
1+xy

� f+(x) (1.25)
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for any x # [0, �). In any event, for x>0, f [N, N](x) is monotone decreasing
in N and f [N&1, N](x) is monotone increasing.

In terms of the language of Section 3, f& is associated to the Friedrichs
solution and f+ to the Krein solution. For an interesting application of
Theorem 6, see Refs. 22, 36. In Section 5, we will also discuss series of
Hamburger and prove the new result that the f [N, N](z) Pade� approximants
always converge in that case.

As a by-product of the proof of Theorem 6, we will find

Theorem 7. Let [#n]�
n=0 be a set of Stieltjes moments. Then the Stieltjes

problem is indeterminate if and only if

:
�

n=0

|Pn(0)|2<� (1.26)

and

sup
n }Qn(0)

Pn(0) }<�. (1.27)

Theorem 8. Let [#n]�
n=0 be a set of Stieltjes moments. Then the Stieltjes

problem is determinate while the Hamburger problem is indeterminate if and
only if

:
�

n=0

|Qn(0)|2<� (1.28)

and

lim
n � � }Qn(0)

Pn(0) }=�. (1.29)

We will see that (1.26)�(1.27) are equivalent to a criterion of Stieltjes.
Theorem 6 is proven in Section 5 as parts of Theorem 5.2, Proposition

5.6, Proposition 5.8, and Proposition 5.11. Theorem 7 is Theorem 5.21 and
Theorem 8 is Proposition 5.22.

In Section 6, which synthesizes and extends results in Akhiezer [1], we
will study when the closure of the polynomials has finite codimension, and
among our results proven as part of Theorem 6.4 is

Theorem 9. Let \ lie in MH(#) and let H0 be the closure of the set of
polynomials in H\ #L2(R, d\). Then H=

0 has finite dimension if and only if
the Herglotz function, 8, in the Nevanlinna parametrization of Theorem 4 is
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a real rational function (i.e., a ratio of real poynomials). Equivalently, if and
only if the measure + of (1.19) has finite support.

In fact, we will see that dim(H=
0 ) is the degree of the rational

function 8.
One consequence of this will be the following, proven in Appendix B (see

Theorems B.1 and B.4).

Theorem 10. MH(#) is a compact convex set (in the weak topology as
a subset of the dual of C(R _ [�])). Its extreme points are dense in the set.

Remark. Do not confuse this density with the fact that the Krein�
Millman theorem says that the convex combinations of the extreme points
are dense. Here we have density without convex combinations, to be com-
pared with the fact that in many other cases (e.g., probability measures on
a compact Hausdorff space), the extreme points are closed.

Here is a sketch of the contents of the rest of this paper. In Section 2,
we review von Neumann's theory of self-adjoint extensions and use it to prove
the uniqueness result (Theorem 2) in the Hamburger case. In Section 3, we
review the Birman�Krein�Vishik theory of semi-bounded self-adjoint
extensions and use it to prove the uniqueness result (Theorem 3) in the
Stieltjes case. In Section 4, we turn to a detailed analysis of the polynomials
P and Q in terms of transfer matrices for the difference equation associated
to the Jacobi matrix and prove Theorems 3, 4, and 5. In Section 5, we dis-
cuss Pade� approximations and prove Theorems 6, 7, and 8. In Section 6,
we discuss solutions, \, where the closure of the polynomials has finite
codimension in L2(R, d\). Appendix A is devoted to a variety of explicit
formulae in terms of determinants of moments, and Appendix B to the
structure of MH(#) as a compact convex set. Appendix C summarizes nota-
tion and some constructions.

2. THE HAMBURGER MOMENT PROBLEM AS A
SELF-ADJOINTNESS PROBLEM

Let us begin this section with a brief review of the von Neumann theory
of self-adjoint extensions. For further details, see Refs. 2, 5, 33, 34. We start
out with a densely defined operator A on a Hilbert space H, that is, D(A)
is a dense subset of H and A : D(A) � H a linear map. We will often
consider its graph 1(A)/H_H given by 1(A)=[(., A.) | . # D(A)].
Given operators A, B, we write A/B and say B is an extension of A if and
only if 1(A)/1(B).
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One defines a new operator A* as follows: ' # D(A*) if and only if
there is � # H so that for all . # D(A), (�, .)=(', A.). We set A*'=�.
In essence, A*, called the adjoint of A, is the maximal object obeying

(A*', .) =(', A.) (2.1)

for all ' # D(A*), . # D(A).
An operator is called closed if and only if 1(A) is a closed subset of

H_H and it is called closable if and only if 1(A) is the graph of an
operator, in which case we define A� , the closure of A, by 1(A� )=1(A).
Thus, D(A� )=[. # H | _.n # D(A), so that .n � . and A.n is Cauchy]
and one sets A.=lim A.n .

Adjoints are easily seen to be related to these notions: A* is always
closed; indeed,

1(A*)=[(A., &.) # H_H | . # D(A)]=. (2.2)

A* is densely defined if and only if A is closable, in which case (by (2.2)),
A� =(A*)*.

An operator is called symmetric if A/A* (equivalently, if (., A�) =
(A., �) for all ., � # D(A)), self-adjoint if A=A*, and essentially self-
adjoint if A� is self-adjoint (equivalently, if A* is self-adjoint). Notice that
symmetric operators are always closable since D(A*)#D(A) is dense. Note
also that if A is symmetric, then A* is symmetric if and only if A is essen-
tially self-adjoint.

Von Neumann's theory solves the following fundamental question:
Given a symmetric operator A, when does it have self-adjoint extensions,
are they unique, and how can they be described? If B is a self-adjoint exten-
sion of A, then B is closed, so A� /B. Thus, looking at self-adjoint exten-
sions of A is the same as looking at self-adjoint extensions of A� . So for
now, we will suppose A is a closed symmetric operator.

Define K\=ker(A*�i), that is, K+=[. # H | A*.=i.]. They are
called the deficiency subspaces. Using &(A\i) .&2=&A.&2+&.&2, it is
easy to see that if A is closed, then Ran(A\i) are closed, and since
ker(A*�i)=Ran(A�i)=, we have

Ran(A\i) K=
\ . (2.3)

Let d\=dim(K\), the deficiency indices of A.
Place the graph norm on D(A*), that is, &.&2

A*=(., .) +
(A*., A*.). This norm comes from an inner product, (., �) A*=
(., �)+(A*., A*�).
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Proposition 2.1. Let A be a closed symmetric operator. Then

D(A*)=D(A)�K+ �K& , (2.4)

where � means orthogonal direct sum in the ( } , } ) A* inner product.

Proof. If . # K+ and � # K& , then (., �) A*=(., �)+(i., &i�) =0
so K+ =A* K& . If . # D(A) and � # K\ , then (A*., A*�) =
(A., \i�)=(., \iA*�) =&(., �) , so D(A) =A* K+�K& .

Let ' # D(A*). By (2.3), Ran(A+i)+K+=H so we can find . # D(A)
and � # K+ , so (A*+i) '=(A+i) .+2i�. But then (A*+i)
['&.&�]=0, so '&.&� # K& , that is, ' # D(A)+K++K& . K

Corollary 2.2. (i) Let A be a closed symmetric operator. Then A is
self-adjoint if and only if d+=d&=0.

(ii) Let A be a symmetric operator. Then A is essentially self-adjoint
if and only if d+=d&=0.

If A/B, then B*/A*, so if B is symmetric, then A/B/B*/A*.
Thus, to look for symmetric extensions of A, we need only look for
operators B with A/B/A*, that is, for restriction of A* to D(B)'s with
D(A)/D(B). By Proposition 2.1, every such D(B) has the form D(A)+S
with S/K++K& . On D(A*)_D(A*), define the sesquilinear form
(sesquilinear means linear in the second factor and anti-linear in the first)

Q(., �)=(., A*�) H&(A*., �) H .

Proposition 2.3. Let A be a closed symmetric operator. Then

(i) The operators B with A/B/A* are in one-one correspondence
with subspaces S of K++K& under D(B)=D(A)+S.

(ii) B is symmetric if and only if Q � D(B)_D(B)=0.

(iii) B is symmetric if and only if Q � S_S=0.

(iv) B is closed if and only if S is closed in K+�K& in D(A*) norm.

(v) . # D(A*) lies in D(B*) if and only if Q(., �)=0 for all
� # D(B).

(vi) Let J : K+ �K& � K+�K& by J(., �)=(., &�). If D(B)=
D(A)+S, then D(B*)=D(A)+J[S]=, where = is in K+ �K& in the
D(A*) norm.

(vii) K+(B)=K+ & S=, K&(B)=K& & S = (with = in the ( , ) A*

inner product).

Proof. We have already seen (i) holds and (ii) is obvious. (iii) holds
since if . # D(A) and � # D(A*), then Q(., �)=0 by definition of A* and
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symmetry of A. Thus, if .1 , .2 # D(A) and �1 , �2 # S, then Q(.1+�1 ,
.2+�2)=Q(�1 , �2). (iv) is immediate if one notes that 1(B)=1(A)�
[(., A*.) | . # S] with � in H_H norm and that the H_H norm on
[(., A*.) | . # S] is just the D(A*) norm. (v) follows from the definition
of adjoint.

To prove (vi), let '=('1 , '2), .=(.1 , .2) # K+�K& . Then, direct
calculations show that

Q(', .)=2i[('1 , .1)H &('2 , .2) H ] (2.5)

(', .)A*=2[('1 , .1) H +('2 , .2) H ]. (2.6)

Thus, Q(', .)=0 if and only if ' = J.. (v) thus implies (vi).
To prove (vii), note that by (vi), K\(B)=K\ & D(B*)=K\ &

J[S]==K\ & S = since . # K\ lies in J[S]= if and only if J. lies in S =

if and only if . lies in S= by J.=\. if . # K\ . K

With these preliminaries out of the way, we can prove von Neumann's
classification theorem:

Theorem 2.4. Let A be a closed symmetric operator. The closed sym-
metric extensions B of A are in one-one correspondence with partial
isometries of K+ into K& , that is, maps U : K+ � K& for which there are
closed subspaces U+ /K+ and U& /K& so that U is a unitary map of
U+ � U& and U#0 on U =

+ . If B corresponds to U, then D(B)=D(A)+
[(.+U. | . # U+]. Moreover, K\(B)=K\ & U=

\ (H orthogonal comple-
ment). In particular, A has self-adjoint extensions if and only if d+=d& and
then the self-adjoint extensions are in one-one correspondence with unitary
maps U from K+ to K& .

Proof. Let B be a symmetric extension of A. Let . # D(B) &
(K+ �K&), say .=(.1+.2). By (2.5), Q(., .)=2i(&.1&2&&.2&2),
so B symmetric implies that &.1 &=&.2&, so D(B) & (K+�K&)=
[some(.1 , .2)], where &.1&=&.2&. Since D(B) is a subspace, one cannot
have (.1 , .2) and (.1 , .$2) with .2 {.$2 (for then (0, .2&.$2) # D(B) so
&.2&.$2 &=0). Thus, D(B) & (K+ �K&) is the graph of a partial
isometry. On the other hand, if U is a partial isometry, Q(.+U.,
�+U�)=2i((., �) &(U., U�) )=0 so each U does yield a symmetric
extension.

That K\(B)=K\ & U=
\ follows from (vii) of the last proposition if

we note that if . # K+ , then . =A* [(�+U�) | � # U+] if and only if
. =A* [� | � # U+] if and only if . =H U+ (by (2.6)).

Thus B is self-adjoint if and only if U is a unitary from K+ to K& , which
completes the proof. K
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Recall that a map T is anti-linear if T(a.+b�)=a� T(.)+b� T(�) for
a, b # C, ., � # H; that T is anti-unitary if it is anti-linear, a bijection, and
norm-preserving; and that a complex conjugation is an anti-unitary map
whose sequence is 1.

Corollary 2.5. Let A be a symmetric operator. Suppose there exists a
complex conjugation C : H � H so that C : D(A) � D(A) and CA.=AC.
for all . # D(A). Then A has self-adjoint extensions. If d+=1, every self-
adjoint extension B is real, that is, obeys C : D(B) � D(B) and CB.=BC.
for all . # D(B). If d+�2, there are non-real self-adjoint extensions.

Proof. C is an anti-unitary from K+ to K& so d+=d& .
We claim that if B is self-adjoint and is associated to U : K+ � K& ,

then B is real if and only if CUCU=1 for it is easy to see that C : D(A*) �
D(A*) and CA*.=A*C., so B is real if and only if C maps D(B) to itself.
Thus, C(.+U.) must be of the form �+U�. Since � must be CU., this
happens if and only if C.=UCU., that is, CUCU.=.. This proves our
claim.

If d+=1 and . # K+ , CU.=ei%. for some %. Then (CUCU) .=
Cei%U.=e&i%CU.=. showing that every self-adjoint extension is real.

If d+�2, pick ., � # K+ with . = � and let U.=C�, U�=iC.. Then
CUCU.=CUCC�=CU�=CiC�=&i., so CUCU�1. Thus, the B
associated to this U will not be real. K

Next we analyze a special situation that will always apply to indeter-
minate Hamburger moment problems.

Theorem 2.6. Suppose that A is a closed symmetric operator so that
there exists a complete conjugation under which A is real. Suppose that
d+=1 and that ker(A)=[0], dim ker(A*)=1. Pick . # ker(A*), C.=.,
and ' # D(A*), not in D(A)+ker(A*). Then (., A*') {0 and �=
['&[(', A*')�(., A*')].]�(., A*') are such that in ., � basis,
( } , A*} ) has the form

( } , A*} ) =\0 1
0 1+ . (2.7)

The self-adjoint extensions, Bt , can be labelled by a real number or � where

D(Bt)=D(A)+[:(t.+�) | : # C] t # R

=D(A)+[:. | : # C] t=�.

The operators Bt are independent of which real � in D(A*) D(A) is chosen
so that (2.7) holds.
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Proof. If (., A*') =0, then the ( } , A*} ) matrix with basis ., ' would
have the form ( a 0

0 0) with a # R, in which case Q#0 on the span of . and
', which is incompatible with the fact that d+=1. Thus, (., A*'){0 and
(2.7) holds by an elementary calculation.

Once (2.7) holds, it is easy to see that the subspaces S of D(A*) with
D(A)/S, dim(S�D(A))=1, and Q � S_S=0 are precisely the D(Bt).

If �� is a second � for which (2.7) holds, then Q(�&�� , \)=0 for all
\ # D(A*), so �&�� # D(A) and the D(Bt)'s are the same for � and �� . K

Remarks. 1. It is easy to see that if ker(A)=[0], then dim ker(A*)�
d+ , so if d+=1 and ker(A)=[0], dim ker(A*) is either 0 or 1. The exam-
ple of A=&(d 2�dx2) on L2(0, �) with D(A)=C �

0 (0, �) shows that it can
happen that A is real, d+=1, but dim ker(A*)=0.

2. One example where this formalism is natural is if A�:>0 (for
: # R), in which case dim ker(A*)=d+ . One takes '=A&1

F . where AF is
the Friedrichs extension. We will discuss this further in Section 3. A second
example, as we will see, is the indeterminate moment problem, in which
case one can take .=?(0), �=!(0).

We can now turn to the analysis of the symmetric operator A on H(#)

described in Section 1. In terms of the explicit basis Pn(X ) in H(#), we
know A has the Jacobi matrix form (1.16). We will first explicitly describe
A* and the form Q. Given any sequence s=(s0 , s1 , ...), we define a new
sequence F(s) (think of F for ``formal adjoint'') by

F(s)n={b0 s0+a0s1

an&1sn&1+bnsn+ansn+1

if n=0
if n�1.

Given any two sequences, sn and tn , we define their Wronskian,

W(s, t)(n)=an(sn+1 tn&sn tn+1). (2.8)

The Wronskian has the following standard property if

an sn+1+cnsn+an&1sn&1=0 (2.9)

and

an tn+1+dn tn+an&1 tn&1=0. (2.10)

Then multiplying (2.9) by tn and subtracting (2.10) multiplied by sn , we see
that

W(s, t)(n)&W(s, t)(n&1)=(dn&cn) sn tn . (2.11)

In particular, if d=c, then W is constant.
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Theorem 2.7. Let A be the Jacobi matrix (1.16) with D(A)=[s | sn=0
for n sufficiently large]. Then

D(A*)=[s # l2 | F(s) # l2] (2.12)

with

A*s=F(s) (2.13)

for s # D(A*). Moreover, if s, t # D(A*), then

lim
n � �

W(s� , t)(n)=(A*s, t) &(s, A*t). (2.14)

Proof. Since the matrix (1.16) is a real-symmetric matrix, it is easy to
see that for any t # D(A), and any sequences

(s, At)=(F(s), t). (2.15)

Since t and At are finite sequences, the sum in ( } , } ) makes sense even if
s or F(s) are not in l2 . Since D(A) is dense in l2 , (2.15) says that s # l2 lies
in D(A*) precisely if F(s) # l2 and then (2.13) holds. That proves the first
part of the theorem.

For the second, we perform a calculation identical to that leading to
(2.11):

:
N

n=0

[Fsn tn&sn (Ftn)]=W(s� , t)(0)+ :
N

n=1

W(s� , t)(n)&W(s� , t)(n&1)

=W(s� , t)(N). (2.16)

If s, t # D(A*), then the left side of (2.16) converges to (A*s, t) &(s, A*t)
as N � �, so (2.14) holds. K

Lemma 2.8. If . # D(A*), (A*&z) .=0 for some z and .0=0, then
.#0.

Proof. Essentially, this is so because (A*&z) s=0 is a second-order
difference equation with s&1 #0, so solutions are determined by s0 .
Explicitly, suppose A*s=zs and s0=0. Then

sn+1=a&1
n [(&bn+z) sn&an&1 sn&1], n�1

=a&1
0 [(&b0+z) s0], n=0.

By a simple induction, s#0. K
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Corollary 2.9. The operator A associated to a Hamburger moment
problem always has either deficiency indices (1, 1) or deficiency indices (0, 0).

Proof. We have already seen that d+=d& so it suffices to show that
ker(A*&i) has dimension at most 1. By Lemma 2.8, the map from
ker(A*&i) to C that takes s [ s0 is one-one, so ker(A*&i) is of dimension
0 or 1. K

We are now ready to prove the more subtle half of the Hamburger part
of Theorem 2.

Theorem 2.10 (one quarter of Theorem 2). Let A be essentially self-
adjoint. Then the Hamburger moment problem has a unique solution.

Proof. Pick z with Im z>0 and a measure \ obeying (1.1). Since A is
essentially self-adjoint, (A&i)[D(A)] is dense in l2, and by an identical
argument, (A&z)[D(A)] is dense in l2. Thus, there exists a sequence
R(z)

n (X) of polynomials so that

&(X&z) R (z)
n (X )&1& � 0

in H(#), and thus

| [(x&z) R (z)
n (x)&1]2 d\(x) � 0

since d\(x) realizes H(#) on polynomials. Now 1�(x&z) is bounded for
x # R since Im z>0. Thus

| }R (z)
n (x)&

1
x&z }

2

d\(x) � 0.

It follows that

G\(x)#|
d\(x)
x&z

= lim
n � � | R (z)

n (x) d\(x)

is independent of \. Since G\(x) determines \ (because \([a])=
lim= a 0 = Im G\(a+i=) and \((a, b))+\([a, b])=2�? lim= a 0 �b

0 Im G\

( y+i=) dy), all \'s must be the same. K

Theorem 2.11. Let A be a Jacobi matrix with D(A) the sequences of
finite support. Suppose A is not essentially self-adjoint and B, F are distinct
self-adjoint extensions of A. Then

\$0 ,
1

B&i
$0+{\$0 ,

1
F&i

$0+ . (2.17)
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Remarks. 1. The proof shows for any z # C"R, ($0 , (B&z)&1 $0){
($0(F&z)&1 $0). It also works for z # R as long as z is in the resolvent set
for both B and F.

2. In Section 4, we will have a lot more to say about the possible
values of ($0 , (1�B&z) $0) as B runs through the self-adjoint extensions
of A.

Proof. We first claim that $0 � Ran(A&i). For suppose on the con-
trary that there exists ' # D(A) and $0=(A&i) ' and that (A*+i) .=0.
Then ($0 , .)=((A&i) ', .)=(', (A*+i) .)=0. By Lemma 2.8, .#0.
Thus, if $0 # Ran(A&i), then ker(A*+i)=[0], so A is essentially self-
adjoint. By hypothesis, this is false, so $0 � Ran(A&i).

Thus, (B&i)&1 $0 and (F&i)&1 $0 are in D(A*)"D(A) Since
dim(D(B)�D(A))=dim(D(F )�D(A))=1, if these vectors were equal, D(B)
would equal D(F ), so B=A* � D(B) would equal F=A* � D(F ). Thus,
(B&i)&1 $0 {(F&i)&1 $0 .

Let '=(B&i)&1 $0&(F&i)&1 $0 . Then

(A*&i) '=(A*&i)(B&i)&1 $0&(A*&i)(F&i)&1 $0=$0&$0=0,

so '{0 implies '0 {0 by Lemma 2.8. Thus, ($0 , ')=($0 , (B&i)&1 $0)&
($0 , (F&i)&1 $0){0. K

As a corollary of Theorem 2.11, we have

Theorem 2.12 (two quarters of Theorem 2). A Hamburger moment
problem for which A is not essentially self-adjoint is indeterminate. A Stieltjes
moment problem for which A has multiple non-negative self-adjoint exten-
sions is indeterminate.

Proof. Theorem 2.11 implies that distinct self-adjoint extensions lead to
distinct spectral measures since

($0 , (B&i)&1 $0)=|
d+B(x)

x&i
,

where +B is the solution to (1.1) associated to B. Positive self-adjoint exten-
sions yield solutions of the Stieltjes moment problem. K

With this machinery available, we can prove the converse of Propo-
sition 1.6:
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Theorem 2.13. Let [#n]�
n=0 be a set of moments for which the Stieltjes

problem has solutions. Let

12m=#m , m=0, 1, ... (2.18a)

12m+1=0, m=0, 1, ... . (2.18b)

Then [1j]�
j=0 is a determinate Hamburger problem if and only if [#n]�

n=0 is
a determinate Stieltjes problem.

Proof. The proof of Proposition 1.6 shows there is a one-one corre-
spondence between solutions of the Stieltjes problem for # and those
solutions d\ of the Hamburger problem for 1 with d\(&x)=d\(x). We
will call such solutions symmetric. Thus it suffices to show that if the
Hamburger problem for 1 is indeterminate, then there are multiple sym-
metric solutions.

Let U map C(X ) to itself by U[P(X)]=P(&X). By 12m+1=0, U is
unitary, and so extends to a unitary map from H(1 ) to itself. Clearly, U
maps D(A)=C(X) to itself and UAU&1=&A.

Thus, U maps D(A*) to itself and UA*U&1=&A*. This means that U
maps K+ to K& .

Let C be the complex conjugation under which A is real. Then UC=CU
is an anti-unitary map of K+ to itself. So if . is a unit vector in K+ , then
UC.=ei%. for some real %. Thus, UC(e i%�2.)=e&i%�2UC.=ei%�2. so there
exists �{0 in K+ with UC�=�.

In particular, since UC=CU, U(�\C�)=\(�\C�) and therefore, if
B=A* � D(B) and F=A* � D(F ), where D(B)=D(A)+[�+C�] and
D(F )=D(A)+[�&C�], then U leaves both D(B) and D(F ) invariant,
and so B and F are distinct extensions with UBU&1=&B and
UFU&1=&F. Their spectral measures thus yield distinct symmetric
extensions. K

Remark. Since U(�+ei%C�)=ei% (�+e i%C�), we see that if %{0, ?,
then U does not leave D(B%) invariant. Thus among von Neumann solu-
tions of the 1 problem, exactly two are symmetric.

As a consequence of our identification of A*, we can prove one small
part of Theorem 3. Recall that ?(x0) is the sequence [Pn(x0)]�

n=0 and !(x0)
is the sequence [Qn(x0)]�

n=i .

Theorem 2.14. Let [#n]�
n=0 be a set of Hamburger moments. If either of

the following holds, then the Hamburger moment problem is indeterminate.

(i) For some x0 # R, ?(x0) and �?��x (x0) lie in l2 .

(ii) For some x0 # R, !(x0) and �!��x (x0) lie in l2 .

108 BARRY SIMON



File: DISTL2 I72828 . By:CV . Date:11:06:98 . Time:10:44 LOP8M. V8.B. Page 01:01
Codes: 2057 Signs: 803 . Length: 45 pic 0 pts, 190 mm

Remark. Since Pn(z) is a polynomial, �?��x makes sense as a sequence.

Proof. In terms of the formal adjoint F, we have

F(?(x0))=x0?(x0) (2.19)

F \�?
�x

(x0)+=?(x0)+x0

�?
�x

(x0) (2.20)

F(!(x0))=$0+x0 !(x0) (2.21)

F \�!
�x

(x0)+=!(x0)+x0

�!
�x0

(2.22)

Thus, if (i) holds, we conclude ?, �?��x are in D(A*) and

(A*&x0) ?(x0)=0, (A*&x0)
�?
�x }x=x0

=?(x0).

If A* were self-adjoint, then

&?(x0)&2=�?, (A*&x0)
�?
�x }x=x0

�=�(A*&x0) ?,
�?
�x }x=x0

�=0,

which is impossible since P0(x0)=1. Thus, A* is not self-adjoint and the
problem is indeterminate.

If (ii) holds, !, �!��x are in D(A*) and

(A*&x0) !(x0)=$0 , (A*&x0)
�!
�x }x=x0

=!(x0).

If A* were self-adjoint, then

&!(x0)&2=�!(x0), (A*&x0)
�!
�x }x=x0

�
=�(A*&x0) !(x0),

�!
�x }x=x0

�
=

�Q0(x)
�x }x=x0

=0

since Q0(x0)#0. This is impossible since Q1(x0){0 and so again, the
problem is indeterminate. K
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While we have used the theory of essential self-adjointness to study the
moment problem, following Nussbaum [30], one can turn the analysis
around:

Definition. Let B be a symmetric operator on a Hilbert space H and
let . # C�(B)=�n D(Bn). . is called a vector of uniqueness for B if and
only if the Hamburger moment problem for

#n=
(., Bn.)

&.&2 (2.23)

is determinate.

Theorem 2.15 (Nussbaum [30]). Let B be a (densely defined ) sym-
metric operator on a Hilbert space H. Suppose that D(B) contains a dense
subset of vectors of uniqueness. Then B is essentially self-adjoint.

Proof. Let U be the vectors of uniqueness for B. Let . # U and let A.

be the restriction of B to the closure of the space spanned by [Bn.]�
n=0 .

A. is unitarily equivalent to the Jacobi matrix for the moment problem
(2.23). Thus, A. is essentially self-adjoint on H. , the closure of the
span of [Bn.]�

n=0 . Therefore, (A.+i)[D(A.)]=H. and, in particular,
. # (A.+i)[D(A.)]/(B+i)[D(B)]. It follows that U/(B+i)[D(B)]
and thus, Ran(B+i)=H. Similarly, Ran(B&i)=H, so B is essentially
self-adjoint by Corollary 2.2. K

The motivation for Nussbaum was understanding a result of Nelson
[28].

Definition. Let B be a symmetric operator. . # C� is called

analytic if &Bn.&�C Rnn !

semi-analytic if &Bn.&�C Rn(2n)!

quasi-analytic if :
�

n=1

&B2n.&1�2n<�.

Stieltjes if :
�

n=1

&Bn.&1�2n<�.

Corollary 2.16. If B is a symmetric operator, then any analytic or
quasi-analytic vector is a vector of uniqueness. If B is also bounded from
below, then any semi-analytic or Stieltjes vector is a vector of uniqueness. In
particular,
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(i) (Nelson [28]). If D(B) contains a dense set of analytic vectors,
then B is essentially self-adjoint.

(ii) (Nussbaum [31], Masson�McClary [23]). If D(B) contains a
dense set of semi-analytic vectors and is bounded from below, then B is essen-
tially self-adjoint.

(iii) (Nussbaum [30]). If D(B) contains a dense set of quasi-
analytic vectors, then B is essentially self-adjoint.

(iv) (Nussbaum [31], Masson�McClary [23]). If D(B) contains a
dense set of Stieltjes vectors and is bounded from below, then B is essentially
self-adjoint.

Proof. The first two assertions follow Proposition 1.5, Corollary 3.4,
and Corollary 4.5. Theorem 2.14 completes the proof. K

3. THE STIELTJES MOMENT PROBLEM AS A
SELF-ADJOINTNESS PROBLEM

One goal in this section is to prove the remaining part of Theorem 2,
namely, that if the operator A has a unique non-negative self-adjoint exten-
sion, then the Stieltjes problem is determinate. In the indeterminate case,
we will also introduce two distinguished non-negative von Neumann solu-
tions: the Friedrichs and Krein solutions.

The name Friedrichs and Krein for the associated self-adjoint extensions
is standard. We will naturally carry over the names to the measures d+F

and d+K that solve the Stieltjes problem. Those names are not standard.
Krein did important work on the moment problem, but not in the context
of what we will call the Krein solution because of his work on self-adjoint
extensions.

We begin with a very brief summary of the Birman�Krein�Vishik theory
of extensions of strictly positive operators (see Ref. 3 for a complete exposi-
tion). Suppose A is a closed symmetric operator and for some :>0,
(., A.)�: &.&2 for all . # D(A). One closes the quadratic form analo-
gously to closing the operator, that is, . # Q(AF ) if and only if there is
.n # D(A) so that .n � . and (.n&.m , A(.n&.m)) � 0 as n � �. One
then sets (., AF .)=lim(.n , A.n). The quadratic form (., AF .) on Q(AF)
is closed, that is, Q(AF) is complete in the norm - (., AF.).

Not every quadratic form abstractly defined is closable (e.g., on
L2(R, dx), the form with form domain C �

0 (R) given by . [ |.(0)| 2 is not
closable), but it is not hard to see that if a quadratic form comes from a
non-negative symmetric operator, it is closable (see Theorem X.23 in
Ref. 34 or 12, Chapter VI).
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While a closed symmetric operator need not be self-adjoint, it is a deep
result (see Ref. 12, 34) that a closed positive quadratic form is always the
quadratic form of a self-adjoint operator. It follows that AF is the quadratic
form of a self-adjoint operator, the Friedrichs extension of A. It follows that
inf spec(AF)=:>0.

Define N=ker(A*) which is closed since A* is a closed operator. Then
D(A*)=D(A)+N+A&1

F [N], where + means independent sum. In par-
ticular, N{[0] if A is not self-adjoint (which we suppose in the rest of this
paragraph). The Krein extension is the one with D(AK)=D(A)+N. Then
Q(AK)=Q(AF)+N. Since N/D(AK), we have that inf spec(AK)=0 so
AK{AF . The set of non-negative self-adjoint extensions of A is precisely
the set of self-adjoint operators B with AK�B�AF (where 0�C�D if
and only if Q(D)/Q(C) and (., C.)�(., D.) for all . # Q(D); equiv-
alently, if and only if (D+1)&1�(C+1)&1 as bounded operators). These
B's can be completely described in terms of closed but not necessarily
densely defined quadratic forms, C, on N. One can think of C=� on
Q(C)=. AF corresponds to C#� (i.e., Q(C)=[0]) and AK to C#0. In
general, Q(AC)=Q(AF)+Q(C) and if . # Q(AF) and ' # Q(C), then
(.+', AC(.+'))=(., AF.)+(', C').

Two aspects of Jacobi matrices defined (on sequences of finite support)
make the theory special. First, dim(N)�1. Second, by Theorem 5 (which
we will prove in the next section without using any results from the present
section), if A is not essentially self-adjoint, AF has a discrete spectrum with
the property that if t # spec(AF), then +F ([t])>+([t]) for any other solu-
tion, +, of the Hamburger moment problem. Moreover, if t # spec(AF),
t � spec(B) for any other self-adjoint extension, B.

Proposition 3.1. Let A be a Jacobi matrix defined on the sequences of
finite support, and suppose that A has deficiency indices (1, 1) and that A is
non-negative (i.e., that the moment problem associated to A has at least some
solutions of the Stieltjes moment problem). Then A has a unique non-negative
self-adjoint extension if and only if 0 is an eigenvalue in the spectrum of AF .

Proof. Let :=inf spec(AF). By hypothesis, :�0, and by Theorem 5,
: is a discrete, simple eigenvalue of AF . We want to show that if :>0, then
A has additional non-negative self-adjoint extensions; and contrary-wise, if
:=0, then it has no additional non-negative self-adjoint extensions.

If :>0, A�:>0, then A has a Krein extension distinct from the AF , so
there are multiple non-negative self-adjoint extensions.

Suppose :=0 and that B is some non-negative self-adjoint extension.
Since AF is the largest such extension, 0�B�AF , so

(AF+1)&1�(B+1)&1�1. (3.1)
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Since :=0, &(AF+1)&1&=1, so (3.1) implies that &(B+1)&1&=1. Since
B has discrete spectrum by Theorem 5, this means 0 is an eigenvalue of B.
But, by Theorem 5 again, AF is the unique self-adjoint spectrum with a
zero eigenvalue. Thus, B=AF , that is, there is a unique non-negative self-
adjoint extension. K

Theorem 3.2 (last quarter of Theorem 2). Suppose that A is a Jacobi
matrix on the vectors of finite support and that A is non-negative. If A has
a unique non-negative self-adjoint extension, then the associated Stieltjes
moment problem is determinate.

Proof. Clearly, if A is essentially self-adjoint, then the Hamburger
problem is determinate and so, a fortiori, the Stieltjes problem is deter-
minate. Thus, we need only consider the case where A has multiple self-
adjoint extensions, but only one that is non-negative.

Then A has deficiency indices (1, 1). By Proposition 3.1, :=
inf spec(AF)=0. Moreover, by Theorem 5, 0 is a pure point of +F . Let
.=P[0](AF) $0 . By Lemma 2.8, .{0. Then there exists .n # D(A) so
.n � . with &.n&=&.& and (.n , AF .n) � (AF ., .)=0. If +F ([0])={,
then &.&2=(., $0) ={ so &.n&=- { and (.n , $0) � {.

Suppose \ is some solution of the Stieltjes moment problem. Since
.n � . in L2(d+F), .n is Cauchy in L2(d\), and so .n � f in L2(d\) and
& f &=- {. Since � x.n(x)2 d\ � 0, we conclude that � xf 2 d\=0. Since \ is
a measure supported on [0, �), we conclude f (x)=0 for x{0, and
thus \ has a pure point at zero also. Since (.n , $0) � {, we see that
� f d\=lim � .n(x) d\(x)=lim(.n , $0)={. But � f 2 d\=& f &2={ and
� f d\={. Thus f (0)=1 and so \([0])={. But Theorem 5 asserts that any
solution of the Hamburger problem distinct from +F has +F ([0])<{. We
conclude that \=+F , that is, that the solution of the Stieltjes problem is
unique. K

We will call the solution of the Stieltjes problem associated to the
Friedrichs extension of A the Friedrichs solution. If the Stieltjes problem is
indeterminate, then A�:>0 by Proposition 3.1 and Theorem 3.2. More-
over, since the Hamburger problem is indeterminate, N=ker(A)=
span[?(0)] has dimension 1, so the Krein extension exists and is distinct
from the Friedrichs extension. We will call its spectral measure the Krein
solution of the Stieltjes problem.

As discussed in the introduction, every indeterminate Stieltjes problem
has associated to it an example of a determinate Stieltjes problem where
the associated Hamburger problem is indeterminate. For by Proposi-
tion 3.1 and Theorem 3.2, the indeterminate Stieltjes problem is associated
to an A where the bottom of the spectrum of AF is some f0>0. The
moment problem [#m(&f0)] with #m(& f0)=�m

j=0 ( m
j ) #j (& f0)m& j will be
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determinate Stieltjes (since the associated AF is the old AF& f0) but
indeterminate Hamburger.

We summarize with

Theorem 3.3. Suppose that [#n]�
n=0 is a set of Stieltjes moments. Then,

if # is Hamburger indeterminate, there is a unique c0�0 so that #(c0) is
Stieltjes determinate. Moreover, #(c) is Stieltjes indeterminate if c>c0 and
#(c) are not Stieltjes moments if c<c0 . In particular, if #(c) is Stieltjes deter-
minate for two values of c, then # is Hamburger determinate.

Corollary 3.4. If [#n]�
n=0 is a set of Stieltjes moments and obeys

|#n |�CRn(2n)! (3.2)

then [#n]�
n=0 is Hamburger determinate.

Proof. By (3.2),

|#n(c)|�CRn(2n)! :
n

j=0
\ n

j+ c j=C[R(c+1)]n (2n)!

so by Proposition 1.5, [#n]�
n=0 is Stieltjes determinate for all c�0. By

Theorem 3.3, it is Hamburger determinate. K

4. TRANSFER MATRICES AND THE INDETERMINATE
MOMENT PROBLEM

In this section, we will analyze the indeterminate Hamburger problem in
great detail, using the second-order difference equation associated to the
Jacobi matrix A. In particular, we will prove Theorems 3, 4, and 5.

Throughout, we will fix a set of Hamburger moments [#m]�
m=0 . It will

be convenient to define a linear functional E( } ) on polynomials P(X) by
E(Xm)##m . Where we have polynomials P of several variables X, Y, ..., we
will indicate by EX ( } ) the obvious map to polynomials of Y, ... with

EX(XmYn1...)=#mY n1...

In (1.14), we defined the set of polynomials Pn(X ) by the three conditions,
deg(Pn(X ))=n, E(Pn(X ) Pm(X ))=$nm , and Pn(X)=cnnX n+ } } } with
cnn>0. We noted that with [an]�

n=0 , [bn]�
n=0 , and a&1#1, the elements

of the Jacobi matrix associated to #, the sequence un=Pn(z); n=0, 1, 2, ...
obeys

an un+1+(bn&z) un+an&1un&1=0 (4.1)
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with

u&1=0, u0=1. (4.2)

We also introduced the sequence of polynomials Qn(X) of degree n&1
by requiring that un=Qn(z) solve (4.1) with the initial conditions

u&1=&1, u0=0. (4.3)

Notice that the Wronskian W(Q. (z), P. (z))(&1)=a&1[Q0(z) P&1(z)&
Q&1(z) P0(z)]=1. Thus, by (2.11) we have:

Proposition 4.1.

ak&1[Qk(z) Pk&1(z)&Qk&1(z) Pk(z)]#1

The following is a useful formula for the Q 's in terms of the P 's. Note that
since (Xn&Yn)�(X&Y )=�n&1

j=0 X jYn&1& j for any polynomial P, (P(X )&
P(Y ))�(X&Y ) is a polynomial in X and Y.

Theorem 4.2. For n�0,

EX \Pn(X )&Pn(Y)
X&Y +=Qn(Y ).

Proof. [Pn(X )&Pn(Y )]�(X&Y) is a polynomial in X and Y of degree
n&1, so we can define polynomials

Rn(Y )#EX \Pn(X)&Pn(Y )
X&Y + .

Subtract the equations,

an Pn+1(X)+bnPn(X )+an&1Pn&1(X )=XPn(X )

an Pn+1(Y)+bnPn(Y )+an&1Pn&1(Y )=YPn(Y )

and see that for n=0, 1, 2, ... with R&1(Y)#0:

an Rn+1(Y )+bnRn(Y )+an&1Rn&1(Y )

=EX \XPn(X)&YPn(Y)
X&Y +

=EX \YPn(X)&YPn(Y)
X&Y

+Pn(X )+
=YRn(Y )+$n0 .

115CLASSICAL MOMENT PROBLEM



File: DISTL2 I72835 . By:CV . Date:11:06:98 . Time:10:44 LOP8M. V8.B. Page 01:01
Codes: 2505 Signs: 1362 . Length: 45 pic 0 pts, 190 mm

Replace the abstract variable Y with a complex variable z and let
R� n(z)=Rn(z) if n�0 but R� &1(z)=&1. Then

anR� n+1(z)+bnR� n(z)+an&1R� n&1(z)=zR� (z)

(since the $n0 term becomes &an&1R� n&1(z) for n=0). Moreover,

R� &1(z)=&1, R� 0(z)=EX \ 1&1
X&Y+=0

so by uniqueness of solutions of (4.1) with prescribed initial conditions,
R� n(z)=Qn(z), that is, for n�0, Rn=Qn , as claimed. K

One consequence of Theorem 4.2 is that Pn(X ) and Qn(X) have the
same leading coefficient, that is, if Pn(X )=cnn Xn+ } } } , then Qn(X )=
cnn Xn&1+ } } } .

The following calculation is part of the standard theory [1] and plays a
critical role in what follows:

Theorem 4.3. Let \ solve the moment problem and assume z # C"R. Set
`=G\(z)#� d\(x)�(x&z). Then

( (x&z)&1, Pn(x))L2(d\)=Qn(z)+`Pn(z). (4.4)

In particular,

:
�

n=0

|Qn(z)+`Pn(z)|2�
Im `
Im z

(4.5)

with equality if \ is a von Neumann solution.

Remark. We will eventually see (Proposition 4.15 and its proof) that
the ``if'' in the last sentence can be replaced by ``if and only if.''

Proof.

|
Pn(x)
x&z

d\(x)=`Pn(z)+|
Pn(x)&Pn(z)

x&z
d\(x)=`Pn(z)+Qn(z)

by Theorem 4.2. This is just (4.4). (4.5) is just Parseval's inequality for the
orthonormal set [Pn(x)]�

n=0 in L2(d\) if we note that

|
d\(x)

|x&z| 2=
1

z&z� | d\(x) _ 1
x&z

&
1

x� &z� &=
Im `
Im z

.

If \ comes from a self-adjoint extension, by construction of H(#),
[Pn(x)]�

n=0 is an orthonormal basis for L2(d\), so equality holds in (4.5). K
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Remark. In H(#), thought of as limits of polynomials, the vector with
components Qn(z)+`Pn(z) is represented by

:
n

[Qn(z)+`Pn(z)] Pn(X ).

This product of P 's may seem strange until one realizes that
�N

n=1 Pn( y) Pn(x) is a reproducing kernel in L2(d\) for polynomials of
degree N. This links the construction to ideas in Landau [19].

Given Theorem 2, the following proves the equivalence of parts (i), (ii),
(iii), and (vii) for z # C"R of Theorem 3.

Proposition 4.4. Suppose that z0 # C"R. Then the following are
equivalent:

(i) The Jacobi matrix A is not essentially self-adjoint.

(ii) ?(z0)=[Pn(z0)]�
n=0 is in l2.

(iii) !(z0)=[Qn(z0)]�
n=0 is in l2.

(iv) Both ?(z0) and !(z0) are in l2.

Moreover, when any of these conditions holds, there is a closed disk of
positive radius, D(z0), in the same half-plane as z0 so that for any solution
\ of the moment problem, `=G\(z0) # D(z0). The values of ` when \ is a von
Neumann solution lie on �D(z0) and fill this entire boundary. Every point in
D(z0) is the value of G\(z0) for some \ solving the moment problem.

In addition, if these conditions hold, ?(z0) and !(z0) lie in D(A*)"D(A).

Remarks. 1. One can show (using (2.11)) that the center of the disk is

lim
n � �

&
Qn(z0) Pn&1(z0)&Qn&1(z0) Pn(z0)

Pn(z0) Pn&1(z0)&Pn&1(z0) Pn(z0)

and the radius is

1
2 |Im z0 |

1
&?(z0)&2 (4.6)

but these explicit formulae will play no role in our discussions.

2. We will see later (Theorem 4.14) that if \ is not a von Neumann
solution, then ` # D(z0)int.

Proof. Since A is real, A fails to be essentially self-adjoint if and only
if there is a non-zero solution of (A*&z0) u=0. By Theorem 2.6 and the
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unique solubility of second-order difference operators given u&1=0 and u0 ,
every such solution has un=u0 Pn(z0) so (i) is equivalent to (ii). Let
`=G\(z0) for some von Neumann solution. Then !(z0)+`?(z0) # l2, so (ii)
is equivalent to (iii) or (iv).

If (i)�(iv) hold, then (4.5) has, the form

a |`|2+b`+b� �̀ +c�0,

where a=&?(z0)&2, c=&!(z0)&2, and b=2(!(z0), ?(z0))&i�2 Im z0. The
set where this inequality holds is always a disk, D(z0), although a priori,
it could be empty depending on the values of a, b, c. However, by Theorem
2.11, we know that there are multiple ` 's obeying (4.5) so the disk must
have strictly positive radius. By Theorem 4.3, ` 's for von Neumann solu-
tions obey equality in (4.5) and so lie in �D(z0).

The self-adjoint extensions are parametrized by a circle (unitaries from
K+ to K&) in such a way that the map from the parametrization to values
of ($0 , (Bt&z0)&1 $0) is continuous. By Theorem 2.11, this map is one-one.
Every one-one continuous map of the circle to itself is surjective, so all of
�D(z0) occurs.

Given a point ` in D(z0) int, find `0 and `1 in �D(z0) and % # (0, 1) so
`=%`0+(1&%) `1 . If +0 , +1 are the von Neumann solutions that have
G+i

(z0)=`i (i=0, 1), then \=%+0+(1&%) +1 is a measure solving the
moment problem with G\(z0)=`.

If (iv) holds, then ?(z� 0), !(z0) # D(A*). By (2.14) and Proposition 1.4,
(A*?(z� 0), !(z0))&(?(z� 0), A*!(z0))=&1, so neither ?(z� 0) nor !(z0) lies
in D(A). K

Remark. The Cayley transform way of looking at self-adjoint exten-
sions says that for any z0 # C"R,

(Bt&z� 0)(Bt&z0)&1=V(z0)+ei%(z0 , t)X(z0),

where V(z0) is the t-independent map (A� &z� 0)(A� &z0)&1 from Ran(A&z0)
to Ran(A&z� 0) and X(z0) is any isometry from ker(A*&z� 0) to
ker(A*&z0) extended to H as a partial isometry. % is a parametrization
depending on z0 , t (and the choice of X(z0)), but the theory guarantees
that as t varies through all possible values, ei% runs through the full
circle in an injective manner. Now (Bt&z� 0)(Bt&z0)&1=1+2i(Im z0)
(Bt&z0)&1, so

($0 , (Bt&z0)&1 $0)

=[2i(Im z0)]&1 [&1+($0 , V(z0) $0)+ei%(z0 , t)($0 , X(z0) $0)]
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is seen directly to be a circle. Since one can take X(z0) to be

($n , X(z0) $m)=
Pm(z� 0) Pn(z0)
��

j=0 |Pj (z0)|2

and P0(z)#1, we even see that the radius of the circle is given by (4.6).

Corollary 4.5. If a Hamburger problem is indeterminate, then
��

n=0 |an |&1<�. In particular, if ��
n=0 |an | &1=�, (e.g., an #1), then the

Hamburger problem is determinate. If

:
�

n=1

#&1�2n
2n =�,

then the Hamburger problem is determinate. If

:
�

n=1

#&1�2n
n =�

for a set of Stieltjes moments, that problem is both Stieltjes and Hamburger
determinate.

Remarks. 1. The last pair of assertions is called Carleman's criterion.
It generalizes Proposition 1.5 and proves uniqueness in some cases where
growth doesn't imply analyticity of the Fourier transform.

2. See Corollary 5.24 for the Stieltjes analog of the first assertion.

Proof. By Proposition 4.1 and the Schwarz inequality,

:
N

n=0

|an |&1�2 \ :
N+1

n=0

|Pn(z)|2+
1�2

\ :
N+1

n=0

|Qn(z)|2+
1�2

.

Thus, divergence of ��
n=0 |an |&1 implies that either ? or ! (or both) fail to

be l2 , and so determinacy.
Consider Carleman's criterion in the Hamburger case. By induction in n

and (4.1) starting with P0(x)=1, we see that

Pn(x)=(a1 } } } an)&1 xn+lower order,

so ( (a1 } } } an)&1 xn, Pn(x)) =1 and thus, by the Schwartz inequality,

1�#2n(a1 } } } an)&2

hence

#&1�2n
2n �(a1 } } } an)&1�n.
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Therefore our result follows from the divergence criteria proven at the start
of the proof and the inequality

:
n

j=1

(a1 } } } a j)
&1�j�2e :

n

j=1

a&1
j

(which is actually known to hold with e in place of 2e).
To prove this, note first that 1+x�ex so (1+n&1)n�e so using induc-

tion, nn�enn !, so by the geometric-arithmetic mean inequality,

(a1 } } } aj)
&1�j=(a&1

1 2a&1
2 } } } ja&1

j )1�j ( j !)&1�j

�
e
j 2 :

j

k=1

ka&1
k .

Thus,

:
n

j=1

(a1 } } } aj)
&1�j�e :

n

k=1

a&1
k \ :

n

j=k

k
j 2+�2e :

n

j=1

a&1
j

since

:
�

j=k

k
j 2�

1
k

+k |
�

k

dy
y2 �2.

By Proposition 1.6, Carleman's criterion in the Hamburger case means
that if a set of Stieltjes moments obeys ��

n=1 (#n)&1�2n=�, then it is
Stieltjes determinate. Thus by Theorem 3.3, it suffices to show that

:
�

n=1

(#n(c))&1�2n�D(c) :
�

n=1

#&1�2n
n

for c>0 and D(c)<� to conclude Hamburger determinacy.
Note first that #j+1 �#j�#j �# j&1 by the Schwarz inequality. Thus, if

:=#0 �#1, we have that

#n& j�#n: j.

Therefore,

#n(c)�#n :
n

j=0
\ n

j+ c j: j=(1+c:)n #n
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and so

:
�

n=1

(#n(c))&1�2n�(1+c:)&1�2 :
�

n=1

#&1�2n
n . K

To complete the proof of Theorem 3, we need to show that if every solu-
tion of [(A*&z0) u]n=0 (n�1) is l2 for a fixed z=z0 , the same is true
for all z # C and that �?��x, �!��x are in l2. We will do this by the
standard method of variation of parameters. So we write a general solution
of [(A*&z) u]n=0 (n�1) in terms of Pn(z0) and Qn(z0) using

\un+1

un +#:n \ pn+1(z0)
Pn(z0) ++;n \Qn+1(z0)

Qn(z0) + . (4.7)

Since W(P. (z0), Q.(z0))=&1, the two vectors on the right of (4.7) are
linearly independent, and so they span C2 and (:n , ;n) exist and are
unique. Indeed, by the Wronskian relation:

:n=W(Q. (z0), u)(n) (4.8a)

;n=&W(P. (z0), u)(n). (4.8b)

A straightforward calculation using the fact that P, Q obey (4.1) with
z=z0 , (2.11), and (4.8) shows that (4.1) at n is equivalent to

\:n

;n +=[1+(z&z0) S(N, z0)] \:n&1

;n&1+ , (4.9)

where

S(n, z0)=\&Qn(z0) Pn(z0)
Pn(z0) Pn(z0)

&Qn(z0) Qn(z0)
Pn(z0) Qn(z0) + . (4.10)

For example, using (2.11) and (4.7) for n � n&1:

:n=W(Q. (z0), U )(n)

=W(Q. (z0), u)(n&1)+(z0&z) Qn(z0) un

=:n&1&(z&z0) Qn(z0)[:n&1Pn(z0)+;n&1Qn(z0)].

Notice that

S2=det(S)=Tr(S)=0. (4.11)
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The following is obvious and explains why l2 solutions are so natural:
If ?(z0)=[Pn(z0)]�

n=0 and !(z0)=[Qn(z0)]�
n=0 are both in l2, then

:
�

n=0

&S(n, z0)&<�. (4.12)

Lemma 4.6. Let An be a sequence of matrices with ��
n=0 &An&<�. Let

DN(z)=(1+zAN)(1+zAN&1) } } } (1+zA0). Then D�(z)=lim DN(z) exists
for each z # C and defines an entire function of z obeying

&D�(z)&�c= exp(= |z| )

for each =>0.

Proof. Notice first that

&(1+Bn) } } } (1+B0)&� `
N

j=0

(1+&Bj&)�exp \ :
N

j=0

&Bj &+ (4.13)

and that

&(1+BN) } } } (1+B0)&1&� `
N

j=0

(1+&Bj&)&1�exp \ :
N

j=0

&Bj &+&1.

(4.14)

From (4.14), we see that

&DN+ j (z)&DN(z)&

�_exp \ |z| :
N+ j

N+1

&Aj &+&1& &DN(z)&

�_exp \ |z| :
�

N+1

&Aj&+&1& exp \ |z| :
N

j=0

&Aj&+ ,

from which it follows that DN(z) is Cauchy uniformly for z in balls of C.
Thus, D� exists and is entire in z. By (4.13),

&D�(z)&� `
N

j=0

(1+|z| &Aj &) exp \ |z| :
�

j=N+1

&Aj&+ ,

so given =, choose N so ��
j=N+1 &A j&�=�2 and use the fact that the

polymonial >N
j=0(1+|z| &A j&) can be bounded by c= exp( 1

2= |z| ). K
Given Proposition 4.4 and Theorem 2.14, the following completes the

proof of Theorem 3:
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Theorem 4.7. Let A be a Jacobi matron and consider solutions of (4.1)
for z # C. If for some z0 # C, all solutions are in l2, then that is true for each
z # C. Moreover, ?(z) and !(z) are analytic l2-valued functions so, in par-
ticular, �?��z, �!��z # l2 for all z. The disk D(z0) varies continuously as z
runs through C+ .

Proof. Define

T(n, &1; z, z0)=(1+(z&z0) S(n, z0)) } } } (1+(z&z0) S(0, z0)).

By (4.12) and Lemma 4.6,

sup
n

&T(n, &1; z, z0)&�exp \ |z&z0 | :
�

j=0

&S( j, z)&+<�.

Thus for any initial ( :&1
;&1

), if u has the form (4.7), then supn &( :n
;n

)&�

supn &T(n, &1; z, z0)& &( :&1
;&1

)&#C. Thus, un=:n Pn(z0)+;nQn(z0) has

|un |2�C2[Pn(z0)2+Qn(z0)2] which is in l1 . Since ?(z) is associated to
T(n, &1; z, z0)( 1

0) and !(z) is associated to T(n, &1; z, z0)( 0
1), the claimed

analyticity holds because supn &T(n, &1; z, z0)& is bounded as z varies in
bounded sets.

Continuity of D(z0) follows from the formula for �D(z0), viz. w # �D(z0)
if and only if

&?(z0)&2 |w|2+2 Re _\2(!(z0), ?(z0))&
i

2 Im z0+ w&+&!(z0)&2=0. K

By Theorem 3 and Lemma 4.6, if the Hamburger problem is indeter-
minate,

T(�, &1; z, z0)# lim
n � �

T(n, &1; z, z0) (4.15)

exists. We define four functions A(z), B(z), C(z), D(z) by

T(�, &1; z, z0=0) \&B(z)
D(z)

&A(z)
C(z) + . (4.16)

The Nevanlinna matrix is defined by

N(z)=\A(z)
B(z)

C(z)
D(z)+ . (4.17)
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Theorem 4.8.

(i) Each of the functions A, B, C, D is an entire function obeying

| f (z)|�c= exp(= |z| )

for each =>0.

(ii) For z small,

B(z)=&1+O(z) (4.18a)

and

D(z)=:z+O(z2) (4.18b)

with :>0.

(iii) AD&BC#1.

Proof. (i) follows from Lemma 4.6. (ii) follows if we note that

T(�, &1; z, z0=0)=1+z :
�

n=0

S(n, z0=0)+O(z2).

(4.18a) is immediate and (4.18b) follows since (4.10) says that :=
��

n=0 Pn(0)2>0. (iii) holds since by (4.11), det T=1. K

For our purposes, the formula for A, B, C, D as matrix elements of an
infinite product is sufficient, but there is an infinite sum formula connected
to standard equations for perturbed solutions (see, e.g., Refs. 11, 32) that
lets us make contact with the more usual definitions [1].

Theorem 4.9. If the Hamburger problem is indeterminate, then,

A(z)=z :
�

n=0

Qn(0) Qn(z)

B(z)=&1+z :
�

n=0

Qn(0) Pn(z)

C(z)=1+z :
�

n=0

Pn(0) Qn(z)

D(z)=z :
�

n=0

Pn(0) Pn(z).
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Proof.

T(n, &1; z, z0=0)=(1+zS(n, z0=0)) } } } (1+zS(0, z0=0))

=1+ :
n

j=0

zS( j, z0=0) `
j&1

k=0

(1+zS(k, z0=0))

so it suffices to show that

S( j, z0=0)(1+zS( j&1, z0=0)) } } } (1+zS(0, z0=0))

=\&Qj (0) Pj (z)
P j (0) P j (z)

&Qj (0) Qj (z)
Pj (0) Qj (z) + . (4.19)

By definition,

(1+zS( j&1, z0=0)) } } } (1+zS(0, z0=0))=\: (1)
j&1

; (1)
j&1

: (2)
j&1

; (2)
j&1+ ,

where

: (1)
j&1 \ Pj (0)

Pj&1(0)++; (1)
j&1 \ Qj (0)

Qj&1(0)+=\ Pj (z)
Pj&1(z)+

and

: (2)
j&1 \ Pj (0)

Pj&1(0)++; (2)
j&1 \ Qj (0)

Q j&1(0)+=\ Qj (z)
Qj&1(z)+ .

Thus by (4.10),

LHS of (4.19)

=\&Qj (0)[: (1)
j&1 Pj (0)+; (1)

j&1 Qj (0)]
Pj (0)[:(1)

j&1P j (0)+;(1)
j&1 Qj (0)]

&Qj (0)[: (2)
j&1P j (0)+; (2)

j&1Qj (0)]
P j (0)[: (2)

j&1 Pj (0)+; (2)
j&1 Qj (0)] +

=RHS of (4.19). K

?(0)=[Pn(0)] and !(0)=[Qn(0)] span D(A*)�D(A) by Proposition 4.4.
Notice that A*?(0)=0 while A*!(0)=$0 , so (?(0), A*!(0)) =1 and (2.7)
holds. Thus, we can parametrize the self-adjoint extensions Bt of A by

D(Bt)=D(A)+[:(t?(0)+!(0)) | : # C] (4.20a)

if t<� and

D(B�)=D(A)+[:?(0)]. (4.20b)
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This is equivalent to defining t by

t=($0 , B&1
t $0). (4.20c)

Theorem 4.10. For each t # R _ [�] and z # C"R,

($0 , (Bt&z)&1 $0)=&
C(z)t+A(z)
D(z)t+B(z)

. (4.21)

Proof. Let us sketch the proof before giving details:

T(&1, �; z, z0=0)#T(�, &1; z, z0=0)&1. (4.22)

Then

\:&1

;&1 +#T(&1, �; z, z0=0) \ t
1+ (4.23)

is such that the un associated to ( :&1
;&1

) obeys (4.1) and is asymptotically

t?(0)+!(0) and so in D(Bt). (Bt&z)&1 $0 will thus be &(ut �ut(&1)) and
($0 , (Bt&z)&1 $0) will be &(ut(0)�ut(&1)). But ut(0)=:&1 and ut(&1)=
&;&1 so ($0 , Bt&z)&1 $0) will be :&1 �;&1, which is given by (4.21).

Here are the details. If . # D(A*), then by (2.14), . # D(Bt) if and only
if

lim
n � �

W(., t?(0)+!(0))(n)=0. (4.24)

Suppose u solves (4.1) for a given z. Then u # D(A*) and u has the form
(4.7), where by (4.15), limn � � ( :n

;n
)=( :�

;�
) exists. Clearly,

W(u, t?(0)+!(0))(n)=&:n+;n t

so (4.24) holds if and only if

:�=t;� .

Thus, if T(&1, �; z, z0=0) is given by (4.22), then ( :&1
;&1

) given by (4.23)

is initial data for a solution u of (4.1) that has u # D(Bt). A solution u of
(4.1) has

(A*&z) u=&u&1 $0

and thus, if u is associated to the data in (4.23),

(Bt&z) u=&u&1 $0
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and

($0 , (Bt&z)&1 $0)=&
u0

u&1

.

But

\ u0

u&1 +=:&1 \ P0(0)
P&1(0)++;&1 \ Q0(0)

Q&1(0)+=\ :&1

&;&1+
so

($0 , (Bt&z)&1 $0)=
:&1

;&1

.

Since T(�, &1; z, z0=0) has the form (4.16) and has determinant 1, its
inverse has the form

\ C(z)
&D(z)

A(z)
&B(z)+

and so :&1=C(z) t+A(z), ;&1=&D(z) t&B(z). Thus (4.21) is
proven. K

Remark. Our convention for the parameter t differs from that in
Akhiezer [1], which is the traditional one! If s=&t&1, then

&
Ct+A
Dt+B

=&
As&C
Bs&D

.

The parameter s is what he calls t. Our 8(z) later and his 8(z), which
I will call 9(z), are related by 8(z)=&9(z)&1. Since this transformation
takes Herglotz functions to themselves, we both deal with Herglotz func-
tions. See Ref. 9 for an interesting alternate reparametrization.

We turn next to half of Theorem 5. We will prove that each Bt has point
spectrum with any two disjoint. The condition that +t([t])>\([t]) for any
other solution of the moment problem will wait until after we have proven
Theorem 4.

Theorem 4.11 (half of Theorem 5). Suppose the Hamburger problem is
indeterminate. Each Bt has pure point spectrum only. The eigenvalues of the
different Bt 's are distinct and every x # R is an eigenvalue of some Bt . If x
is an eigenvalue of Bt , then

+t([x])=
1

��
n=0 |Pn(x)|2 . (4.25)
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Moreover, if *n(Bt) are the eigenvalues of Bt (ordered in some convenient
way), then for any p>1,

:
n

|*n(Bt)| &p<�. (4.26)

Proof. Let +t be the spectral measure for Bt . By Theorem 4.10,

|
d+t(x)
x&z

=&
C(z) t+A(z)
D(z) t+B(z)

is a meromorphic function of z, since A, B, C, D are entire. That implies
that +t is pure point only and these points are given by solutions of

D(z) t+B(z)=0.

Since A, B, C, D are real when z=x is real, for any x, x # spec(Bt) for
t=&(B(x)�D(x)). Since AD&BC#1, B and D have no simultaneous
zeros, so the eigenvalues are distinct for different t 's. (4.26) is a standard
result on the zeros of an entire function like D(z) t+B(z), which obeys (i)
of Theorem 4.8.

To prove (4.25), note that if x is an eigenvalue of Bt , then the corre-
sponding normalized eigenvector . obeys A*.=x.. It follows that .n=
.0Pn(x) and then by normalization, that .2

0=1���
n=0 |Pn(x)| 2. Thus,

+t([x])=.2
0 is given by (4.25). K

Now define the map F(z) : C _ [�] � C _ [�] by

F(z)(w)=&
C(z) w+A(z)
D(z) w+B(z)

. (4.27)

F(z) as a fractional linear transformation is one-one and onto, and takes
R _ [�] onto a circle or straight line. By Proposition 4.4 and (4.21),
F(z)[R _ [�]] is precisely the circle �D(z) when Im z{0.

Proposition 4.12. If Im z>0, F(z) maps the upper half-plane C+=
[z # C | Im z>0] onto the interior of the disk D(z) int.

Proof. For each z # C"R, F(z) must map C+ onto either D(z)int or
C"D(z) since R is mapped to �D(z) and a fractional linear transformation
maps C _ [�] to itself bijectively. Thus it suffices to show F(z)[i] # D(z) int

for all z with Im z>0. But F(z)[i] moves analytically, and so continuously.
It can only move from D(z) int to C"D(z) by lying on �D(z), which is
impossible if Im z>0 since then �D(z)=F(z)[R _ [�]]. Thus it suffices
to show F(z)[i] # D(z)int for z=ix with x>0 and small.
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Now, F(z)[i] # D(z) int if and only if F(z) takes the lower half-plane to
C _ [�]"D(z), which holds if and only if F(z)&1 [�] is in the lower half-
plane. Thus it suffices to show for x small and positive that
F(ix)&1 [�] # C& .

F(ix)&1 [�] is that w with D(ix) w+B(ix)=0, that is, w=&(B(ix)�
D(ix)). But by (4.18), B(ix)= &1+O(x) and D(ix)=i:x+O(x2) with
:>0, so w=&i:&1x&1+O(1) lies in C& , which suffices to prove the
proposition. K

We now follow the classical argument of Nevanlinna [29] to obtain
Theorem 4. We need to relate solutions of (1.1) to asymptotics of the
Stieltjes transform of \ following Hamburger [8] and Nevanlinna [29].

Proposition 4.13. Let MH(#)=[\ | \ obeys (1.1)]. Let G\(z)=
� d\(x)�(x&z), Then for any N as y � �,

yN+1 _G\(iy)+ :
N

n=0

(&i)n+1 y&n&1#n&� 0 (4.28)

uniformly for \ in MH(#). Conversely, if G is a function on C+ with
Im G(z)>0 there and so that (4.28) holds for each N, then G(z)=G\(z) for
some \ in MH(#).

Proof. By the geometric series with remainder, the left side of (4.28) is

&(&i)N+1 yN+1 |
d\(x)
x&iy

xN+1

yN+1#RN(\) (4.29)

so, using |x&iy|&1� y&1,

|RN(\)|� y&1 | |x|N+1 d\(x) {=#N+1y&1

�1
2 [#N+#N+2] y&1

if N is odd
if N is even.

This shows that (4.28) holds and the convergence is uniform for \ # MH(#).
For the converse, first use the Herglotz representative theorem which

says that if G maps C+ to C+ , then for some measure d\, some c�0 and
some real d :

G(z)=cz+d+| d\(x) _ 1
x&z

&
x

1+x2& , (4.30)

where, a priori, \ only obeys

|
d\(x)
1+x2<�.
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By (4.28),

y[G(iy)] � i#0 . (4.31)

If (4.30) holds, then y&1G(iy) � ic, so c=0. Since c=0, (4.30) says

y Im G(iy)=|
y2

x2+ y2 d\(x),

so (4.31) and the monotone convergence theorem implies that � d\(x)=#0 .
Once this is true, (4.30) implies that as y � �,

Re G(iy) � d&| d\(x)
x

1+x2 (4.32)

so (4.31) implies the right side of (4.32) is zero, and thus (4.30) becomes

G(z)=|
d\(x)
x&z

. (4.33)

We will now prove inductively that \ obeys (1.1), that is, \ # MH(#).
Suppose that we know that (1.1) holds for n=0, 1, ..., 2M&2. (4.28) for
N=2M then implies that

|
(iy)2 x2M&1

x&iy
d\(x)+iy#2M&1 � &#2M .

Taking real and imaginary parts, we see that

#2M&1= lim
y � � |

y2x2M&1

x2+ y2 d\(x) (4.34)

#2M= lim
y � � |

y2x2M

x2+ y2 d\(x). (4.35)

(4.35) and monotone convergence implies that � x2M d\(x)<�, so that
dominated convergence and (4.34), (4.35) imply that (1.1) holds for
n=0, 1, 2, ..., 2M. K

Let F be the set of analytic maps from C+ to C� + _ [�]. By the open
mapping theorem for analytic functions, 8 # F either maps C+ to C+ or
8 has a constant value in R _ [�].
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Theorem 4.14 (Nevanlinna [29]). Let # be a set of indeterminate
Hamburger moments. Then there is a one-one correspondence between solu-
tions, \, of the moment problem and functions 8 # F given by

G\ #|
d\(x)
x&z

=&
C(z) 8(z)+A(z)
D(z) 8(z)+B(z)

. (4.36)

In particular, if \ is not a von Neumann solution, G\(z) # D(z) int for all
z # C+ .

Remarks. 1. By (4.21), the von Neumann solutions +t correspond
precisely to the case 8(z)#t # R _ [�].

2. We will call the Herglotz function associated to some \ # MH(#)
the Nevanlinna function of \ and denote it by 8\ . Conversely, given 8
(and #), we denote by \8 the associated solution of the moment problem.

3. In Section 6, we will discuss the \8 's associated to the case where
the measure + in the Herglotz representation (1.19) is a measure with finite
support.

Proof. Let 8 # F and let G(z) denote the right side of (4.36). In terms
of the map F(z) of (4.27), G(z)=F(z)(8(z)), so by Proposition 4.12,
G(z) # D(z). By the uniformity in Proposition 4.13, the fact that the
+t # MH(#) and that [G+t

(z) | t # R _ [�]]=�D(z), this implies that G(z)
obeys (4.28). Thus by Proposition 4.13, G(z)=G\(z) for some \ # MH(#).

Conversely, let \ # MH(#) and consider G\(z). By Theorem 4.3, Proposi-
tion 4.4 and Proposition 4.12, 8(z)#F(z)&1 (G\(z)) # C� + _ [�], and so
8 # F. Thus, G\(z)=F(z)(8(z)), that is, (4.36) holds.

If \ is not a von Neumann solution, then Im 8\(z)>0, so G\(z)=F(z)
(8\(z)) is in the interior of D(z). K

Proposition 4.15. Let \ # MH(#). If \ is a von Neumann solution, then
the polynomials are dense in L2(R, d\) and for each z0 # C+ , there is no
other + in MH(#) with G+(z0)=G\(z0). If \ is not a von Neumann solution,
then the polynomials are not dense in L2(R, d\) and for each z0 # C+ , there
are distinct +'s in MH(#) with G+(z0)=G\(z0).

Proof. If \ is a von Neumann solution, the polynomials are dense by
construction and the uniqueness result holds since G+(z0)=G\(z0) if and
only if 8+(z0)=8\(z0) and 8\(z0) is then real.

Conversely, suppose \ is not a von Neumann solution. Then, G\(z0) #
D(z) int, so by the proof of Theorem 4.3, (x&z0)&1 is not in the L2 closure
of the polynomials. Thus, the polynomials are not dense. If 8\ is not a
constant, set 9(z)=&|8\(z0)|2 8\(z)&1+2 Re 8\(z0). If 8\(z) is a con-
stant, q (of necessity with Im q>0), set 9(z)=cz+d with c=Im q�Im z0
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(>0) and d=Re q&c Re z0 . In either case, 9{8, 9 is Herglotz, and
9(z0)=8(z0). Thus, if +=\9 , we have G+(z0)=F(z0)(9(z0))=F(z0)
(8(z0))=G\(z0). K

To complete the proof of Theorem 5, we need the following fact about
Herglotz functions:

Theorem 4.16. Let 8(z) be a Herglotz function so

8(z)=cz+d+| d+(x) _ 1
x&z

&
x

1+x2&
with d real, c�0, and either c>0 or d+{0. Suppose for some x0 ,
8(x0+i=) � t # R. Then either |[8(x0+i=)&t]�i=| � � or else
� d+(x)�(x&x0)2<� and

lim
= a 0

8(x0+i=)&t
i=

=c+|
d+(x)

(x&x0)2 . (4.37)

Remark. Do not confuse the + in the Herglotz representation for 8 and
the measure \ of (4.36). In particular, + is allowed to have finite support
even though we are supposing that \ does not.

Proof. Note first that

Im 8(x0+i=)
=

=c+|
d+(x)

(x&x0)2+=2 . (4.38)

On the other hand,

Im
�8
�z

(x0+i=)=|
d+(x) 2=(x&x0)
[(x&x0)2+=2]2 . (4.39)

If � d+(x)�(x&x0)2=�, then (4.38) implies Im[(8(x0+i=)&t)�=] � �, so
if the limit is finite, then � d+(x)�(x&x0)2<�. (4.39) and the dominated
convergence theorem implies that Im �8��z (x0+i=) � 0 so that
[Re 8(x0+i=)&t]�i==1�= �=

0 Im �8��z (x0+iy) dy � 0. This and (4.38)
implies (4.37). K

Theorem 4.17 (end of Theorem 5). Let # be an indeterminate moment
problem. Let \ # MH(#) correspond to a 8 which is not a constant in
R _ [�] (so that \ is not a von Neumann solution). Suppose :#\([x0])>0
for some point x0 # R. Then there is a von Neumann solution +t so that
+t([x0])>:.
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Proof. We will suppose that D(x0){0. If D(x0)=0, then B(x0){0 and
we can use

&
C(z) 8(z)+A(z)
D(z) 8(z)+B(z)

=&
A(z)(&8(z))&1&C(z)
B(z)(&8(z))&1&D(z)

and &8(z)&1 in place of 8(z) to give an identical argument. Define
t=&(B(x0)�D(x0)) # R. Since AD&BC=1,

C(x0) t+A(x0)=
1

D(x0)
(4.40)

is non-zero and has the same sign as D.

(&i=) G\(x0+i=)=(i=) _C(x0+i=) 8(x0+i=)+A(x0+i=)
D(x0+i=) 8(x0+i=)+B(x0+i=)&� :.

This is only possible if G\(x0+i=) � �, which requires that 8(x0+i=) � t.
Then

C(x0+i=) 8(x0+i=)+A(x0+i=) � C(x0) t+A(x0)

while

D(x0+i=) 8(x0+i=)+B(x0+i=)
i=

� D$(x0) t+B$(x0)+D(x0) lim
= a 0

8(x0+i=)&t
i=

.

Thus using (4.40),

:=
1

D(x0)2 lim= a 0 ((8(x0+i=)&t)�i=)+D(x0)[D$(x0) t+B$(x)]
.

On the other hand, taking 8(x)#t to describe +t ,

+t([x0])=
1

D(x0)[D$(x0) t+B$(x0)]

must be positive. It follows from Lemma 4.16 that � d+(x)�(x&x0)2<�
and that

:&1>+t([x0])&1. K

Finally, we turn to the Nevanlinna parametrization in the indeterminate
Stieltjes case. As we have seen, among the Bt there are two distinguished
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ones, BF and BK . The Krein extension has ker(A*)/D(BK) so ?(0) #
D(BK), which means t=� in the notation of (4.20). The Friedrichs exten-
sion is BF=Bt0

where t0=($0 , A&1
F $0).

Theorem 4.18 (Stieltjes case of Theorem 4). If the Stieltjes problem for
# is indeterminate, its solutions obey (4.36) for precisely those 8 that either
are a constant in [t0 , �) _ [�] or that obey 8(z) is analytic in C"[0, �)
with 8(x) # [t0 , �) if x # (&�, 0). Here t0=($0 , A&1

F $0).

Remark. Such 8 's are precisely those of the form

8(z)=d+|
�

0

d+(x)
x&z

, (4.41)

where d�t0 and ��
0 d+(x)�(x+1)<�.

Proof. Clearly, the solutions of the Stieltjes problem are precisely the
solutions \ of the Hamburger problem with lim= a 0 G\(&y+i=) real for
each y # (0, �). Since the Bt 's obey t=($0 , B&1

t $0) and BK<Bt<BF

means t0<($0 , B&1
t $0)<�, we know that for y # (&�, 0), F( y) maps

[t0 , �) into (0, �) (F( } ) is given by (4.27)). It follows that if 8 obeys
8(x) # [t0 , �) for x # (&�, 0), then G\( y+i=) has a limit in (0, �) on
(&�, 0), that is, 8 defines a solution of the Stieltjes moment problem. The
converse follows from this argument and the next theorem. K

Theorem 4.19. Let d+F and d+K be the Friedrichs and Krein solutions of
an indeterminate Stieltjes moment problem and let d\ be another solution.
Then for all y # (0, �),

|
�

0

d+F (x)
x+ y

�|
�

0

d\(x)
x+ y

�|
�

0

d+K (x)
x+ y

. (4.42)

This will be proven below as part of Theorem 5.2.

Corollary 4.20. If \ # MS(#) and d\{d+F , then for y # [0, �),

|
�

0

d+F (x)
x+ y

<|
�

0

d\(x)
x+ y

. (4.43)

(Note that the inequality is strict.)

Proof. For each y # (0, �), F(&y)( } ) is a strictly monotone map of
[t0 , �) to [G+F

(&y), G+K
(&y)) by the proof of Theorem 4.18 and the fact

that any fractional linear map of R to R is monotone in any region where
it is finite. By a limiting argument, the same is true for y=0. Thus, (4.43)
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follows from the relation of Nevanlinna functions 8\( y)>8+F
( y)#t0 .

This is immediate from (4.41). K

As a corollary of this, we see

Corollary 4.21. Let # be a set of indeterminate Stieltjes moments and
let d+F be its Friedrichs solution. Let r=� x&1 d+F (x) and let

#~ 0=1; #~ n=r&1#n&1 , n=1, 2, ... .

Then [#~ j]�
j=0 is a determinate Hamburger moment problem.

Remark. This lets us produce Stieltjes determinate moment problems
with essentially arbitrary rates of growth for #n . By using Theorem 2.13, we
obtain determinate Hamburger problems with arbitrary fast growth also.

Proof. r&1x&1 d+F #d*0(x) is a Stieltjes measure whose moments are #~ .
Let d*(x) be another such Stieltjes measure and let d\(x)=rx d*(x). Then
the moments of d\ are # and � x&1 d\(x)=r. So, by Corollary 4.20, \=+F .
Thus, *=*0 . Thus, *0 is the unique solution of the Stieltjes problem. But
0 � supp(d*0). Thus by Proposition 3.1, the Hamburger problem is also
determinate. K

5. PADE� APPROXIMANTS, CONTINUED FRACTIONS, AND
FINITE MATRIX APPROXIMATIONS

In this section, we will primarily consider aspects of the Stieltjes moment
problem. We will discuss finite matrix approximations which converge to
the Friedrichs and Krein extensions of A and, as a bonus, obtain Theorem
4.19 and Theorems 5, 6, 7, and 8. We will see that the convergence of the
Pade� approximants (equivalently, continued fractions of Stieltjes) can be
reinterpreted as strong resolvent convergence of certain finite matrix
approximations to AF and AK .

Before we start, we note that our continued fraction expressions are
related to but distinct from those of Stieltjes. Our basic object (the
approximations to AF) are of the form:

1

&z+b0&
a2

0

&z+b1&
a2

1

&z+b2+ } } }
(5.1a)
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with two terms (an affine polynomial) at each stage while Stieltjes' are of
the form

1

c1w+
1

c2+
1

c3w+ } } }
(5.1b)

with a single term in each step and alternate constant and linear terms.
This gives him twice as many continued fractions, so his alternate between
the two sets of rational approximations we get. We will say more about
this later.

Until Theorem 5.29 below, we will suppose [#n]�
n=0 is a set of Stieltjes

moments.
Given the Jacobi matrix (1.16), we will consider two N_N approxima-

tions. The first is obvious:

b0 a0

a0 b1

A[N]
F =\ . . . + . (5.2a)

bN&2 aN&2

aN&2 bN&1

The second differs by the value of the NN coefficient:

b0 a0

a0 b1

A[N]
K =\ . . . + , (5.2b)

bN&2 aN&2

aN&2 bN&1&:N&1

where :N&1 is chosen so that A[N]
K has a zero eigenvalue. That such an

:N&1 exists is the content of

Lemma 5.1. There is a unique :N&1>0 so that (5.2b) has a zero eigen-
value. A[N]

K �0 and :N&1 obeys

(bN&1&:N&1) PN&1(0)+aN&2PN&2(0)=0 (5.3)

and

:N&1=&aN&1

PN(0)
PN&1(0)

. (5.4)
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Moreover,

(bN&:N)(:N&1)&a2
N&1=0. (5.5)

Proof. Any solution of A[N]
K u=0 must obey the eigenfunction equation

(4.1) and so be a multiple of Pj (0), that is,

uj=Pj (0), j=0, 1, ..., N&1.

This obeys the condition at the lower right of the matrix if and only if (5.3)
holds.

If PN&1(0) were 0, then A[N&1]
F would have a zero eigenvalue, which is

impossible since A[N&1]
F is strictly positive definite (since the form SN&1 is

strictly positive definite). Thus, PN&1(0){0 and so (5.3) has a unique solu-
tion. Since A[N]

F is positive definite, this solution must have :N&1>0.
The eigenfunction equation for PN(0) then yields (5.4). (5.3) for

N � N+1 and (5.4) yield two formulas for PN(0)�PN&1(0). Setting these to
each other yields (5.5). K

The first main result of this section, towards which we are heading, is

Theorem 5.2 (includes Theorem 4.19). Let

f +
N (z)#($0 , (A[N]

K &z)&1 $0) (5.6)

and

f &
N (z)#($0 , (A[N]

F &z)&1 $0). (5.7)

Then for x # (0, �),

f +
N (&x)� f +

N+1(&x) converges to ($0 , (AK+x)&1 $0)# f +(&x)

while

f &
N (&x)� f &

N+1(&x) converges to ($0 , (AF+x)&1 $0)# f &(&x).

The convergence holds for any z # C"[0, �) and is uniform on compacts.
Moreover, for any solution \ of the moment problem and x>0,

f &(&x)�|
d\( y)
x+ y

� f +(&x). (5.8)

Remarks. 1. Notice that (5.8) is (4.42).

2. Let A[N](;) be (5.2b) with :N&1 replaced by &;. Then A[N]
K is

quite a natural approximation: It is that A[N](;) which is minimal among
the non-negative matrices��reasonable to capture AK , the minimal non-
negative self-adjoint extension. From this point of view, A[N]

F seems less
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natural. One would instead want to consider lim; � � A[N](;). In fact, one
can show this limit is ``essentially'' A[N&1]

F in the sense that

lim
; � �

($0 , (A[N](;)&z)&1 $0)=($0 , (A[N&1]
F &z)&1 $0).

Thus, the A[N](;) interpolate between A[N]
K and A[N&1]

F .

Proposition 5.3. Let A� [N]
K be the operator on l2 which is A[N]

K �0.
Then A� [N]

K converges to AK in strong resolvent sense.

Remark. For self-adjoint operators [An]�
n=1 and A� , we say An con-

verges to A� in strong resolvent sense if and only if for all z # C"R,
(An&z)&1 . � (A�&z)&1 . for all vectors .. It is a basic theorem (see
Reed�Simon [33]) that it suffices to prove this for a single z # C"R. The
same proof shows that if all An and A� are non-negative, one then also has
convergence for z # (&�, 0). Moreover, one has convergence uniformly for
z in compact subsets of C"[0, �).

Proof. Suppose first that the Hamburger problem is indeterminate.
Thus, ?(0)=(P0(0), ...) # l2 . Let P[n](0) be the vector (P0(0), ..., Pn&1(0),
0, 0, ...). Then A[n]

K P[n]=0 so (A[n]
K &z)&1 P[n]=&z&1P[n] for any

z # C"R. Since &(A[n]
K &z)&1&�|Im z|&1 for any such z, and &P[n]&

?(0)& � 0, we conclude that

(A[n]
K &z)&1 ?(0) � &z&1?(0)=(Ak&z)&1 ?(0) (5.9)

since AK ?(0)=0.
Suppose .=(A&z) ' for ' # D(A), that is, a finite sequence. Then

(AK&z) '=.=(A[n]
K &z) ' for n large, and thus limn � � (A[n]

K &z)&1 .=
'=(AK&z)&1 .. Thus, (A[n]

K &z)&1 . � (A&z)&1 . for . # Ran(A&z).
In the determinate case, that is all .'s; while in the indeterminate case, we
claim that Ran(A&z)+[?(0)] is all of l2 so (5.9) completes the proof.

That leaves the proof of our claim that Ran(A&z)+[?(0)] is l2. We
first note that ?(0) � D(A� ) by Proposition 4.4. (AK&z)&1 (Ran(A&z)+
[?(0)])=D(A� )+[?(0)] since (AK&z)&1) ?(0)=&z&1?(0). But D(AK)�
D(A� ) has dim 1 and ?(0) � D(A� ) so (AK&z)&1 (Ran(A&z)+[?(0)])=
D(AK) and thus, since Im z{0, Ran(A&z)+[?(0)]=l2 , as claimed. K

Proposition 5.4. Let A�� [N]
K be the (N+1)_(N+1) matrix which is

A[N]
K �0, that is, it has zeros in its last row and column. Then

A�� [N]
K �A[N+1]

K . (5.10)
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In particular, for x>0,

($0 , (A[N+1]
K +x)&1 $0)�($0 , (A�� [N]

K +x)&1 $0)=($0 , (A[N]
K +x)&1 $0).

Remark. Propositions 5.3 and 5.4 prove the part of Theorem 5.2
involving monotonicity of f +

N and its convergence.

Proof. B#A[N+1]
K &A�� [N]

K is an (N+1)_(N+1) matrix which has all
zeros except for a 2_2 block in its lower right corner. This block is

\:N&1

aN&1

aN&1

bN&:N+ ,

which is symmetric with a positive trace and determinant zero (by (5.5)).
Thus, the block is a positive rank one operator so B is positive, proving
(5.10). K

The monotonicity of the A[N]
F 's and their convergence is a special case

of monotone convergence theorems for forms. Consider non-negative
closed quadratic forms whose domain may not be dense. Each such form
qB with D(qB) is associated to a non-negative self-adjoint operator B on
D(qB). We define (B&x)&1 to be 0 on D(qB)=. This essentially sets B=�
on D(qB)= consistent with the intention that D(qB) is the set of . for which
qB(.)<�.

Given two forms qB and qC , we say qB�qC if and only if D(qB)$D(qC)
(intuitively qC(.)<� implies qB(.)<�) and for all . # qC , qC(.)�
qB(.). It is a fundamental result [12, 37] that if qB�qC , then for all x�0
and all .,

(., (C+x)&1 .)�(., (B+x)&1 .). (5.11)

One monotone convergence theorem for forms [12, 37] says the
following: Let [qAn

]�
n=1 be a sequence of quadratic forms with qAn

�qAn+1
.

Then (An+x)&1 converges to the resolvent, (A�+x)&1, of an operator
A� . It is the operator associated to the form qA�

defined to be the closure
of q~ A�

where D(q~ A�
)=� D(qAn

) with q~ A�
(.)=limn � � qAn

(.) provided
that the form q~ A�

is closable.
We can apply this to the A[N]

F . Let q[N]
F be defined to be the form

with D(q[N]
F )=[(.0 , ..., .N&1 , 0, ..., 0, ...)] and q[N]

F (.)=(., A.). Then
D(q[N]

F )/(q[N+1]
F ) and q[N]

F (.)=q[N+1]
F (.) if . # D(q[N]

F ). Thus, q[N]
F �

q[N+1]
F (in essence, A� [N]

F =A[N]
F �� on CN+1). The monotone conver-

gence theorem applies. A� is just the closure of . [ (., A.) on finite
sequences, that is, the Friedrichs extension AF , so we have the convergence
and monotonicity part of Theorem 5.2 for f &

N (using (5.11)):
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Proposition 5.5. Let x>0. Then ($0 , (A[N+1]
F +x)&1 $0)�($0 ,

(A[N]
F +x)&1 $0) and this converges to ($0 , (AF+x)&1 $0) as N � �.

To head towards the remaining part of Theorem 5.2, viz. (5.8), we need
expressions for (., (A[N]

F &z)&1 .) and (., (A[N]
K &z)&1 .), which are of

independent interest.

Proposition 5.6.

($0 , (A[N]
F &z)&1 $0)=&

QN(z)
PN(z)

(5.12)

Proof. The only possible eigenfunctions of A[N]
F are the vectors

?[N](z)#(P0(z), ..., PN&1(z)). By the eigenfunction equation (4.1), this is
an eigenfunction of A(N)F if and only if PN(z)=0. Thus, the N poles of
($0 , (A[N]

F &z)&1 $0) are precisely the N-zeros of PN(z). The zeros are dis-
tinct because the eigenvalues are simple (since ?[N](z) is the only potential
eigenfunction, since eigenfunctions must have u0{0).

Now let the B[N]
F be the (N&1)_(N&1) matrix obtained by removing

the top row and left column of A[N]
F . By Cramer's rule, ($0 , (A[N]

F &z)=
det(B[N]

F &z)�det(A[N]
F &z), so the N&1 zeros of ($0 , (A[N]z)&1 $0) are

precisely the N&1 eigenvalues of B[N]
F . The only possible eigenfunctions of

B[N]
F are !(z)[N&1]=(Q1(z), ..., QN&1(z)) (since Q0(z)=0, Q1(z)=1�a0).

Thus, the eigenvalues of B[N]
F are precisely z's with QN(z)=0. It follows

that

($0 , (A[N]
F &z)&1 $0)=

dNQn(z)
PN(z)

,

and we need only show that dN#&1.
Since ($0 , (A[N&1]

F &z)&1 $0)=(b0&z)&1 and Q1(z)=1�a0, P1(z)=
(z&b0)�a0, we see that d1=&1. On the other hand, Proposition 4.1
implies that

Qk(z)
Pk(z)

&
Qk&1(z)
Pk&1(z)

=
1

ak&1Pk(z) Pk&1(z)
=o \1

z+ .

Moreover, ($0 , (A&z)&1) $0)=&z&1+O(z&2), so dk=dk&1 , that is,
dN=&1 for all N. K

Remarks. 1. The proof shows that for suitable cN (indeed, an induc-
tion shows that cN=(&1)N (a0 } } } aN&1)&1), we have

PN(z)=cN det(A[N]
F &z) (5.13)

140 BARRY SIMON



File: DISTL2 I72860 . By:CV . Date:11:06:98 . Time:10:45 LOP8M. V8.B. Page 01:01
Codes: 2499 Signs: 1507 . Length: 45 pic 0 pts, 190 mm

and

QN(z)=&cN det(B[N]
F &z). (5.14)

2. Since A[N]
F is strictly positive definite, (5.13) shows once more that

PN(0){0 in the Stieltjes case. Since B[N]
F is also strictly positive definite (as

a submatrix of A[N]
F ), (5.14) shows that QN(0){0 also in the Stieltjes case.

(5.13)�(5.14) imply some facts about the zeros of PN and QN :

Proposition 5.7. All the zeros of each PN(z) and each QN(z) are real.
Moreover, there is exactly one zero of QN(z) and one zero of PN&1(z)
between any pair of successive zeros of PN(z).

Proof. The first assertion follows from the fact that the eigenvalues of
a real-symmetric matrix are all real. The second assertion follows from the
fact that if X is an N_N real-symmetric matrix and Y is an N&1_N&1
submatrix, then by the min-max principle, there is exactly one eigenvalue
of Y between any pair of eigenvalues of X. K

Remark. Since the QN 's are orthogonal polynomials for another moment
problem (see Proposition 5.16), between any two successive zeros of QN(z),
there is a single zero of QN&1(z).

Now define

MN(z)=PN(z)&PN(0)
PN&1(z)
PN&1(0)

(5.15)

MN(z)=QN(z)&PN(0)
QN&1(z)
PN&1(0)

(5.16)

since A[ j]
F is strictly positive, 0 is never an eigenvalue and Pj (0){0 for all

j, so M is well-defined. Notice MN(0)=0.

Proposition 5.8.

($0 , (A[N]
K &z)&1 $0)=&

NN(z)
MN(z)

(5.17)

Proof. Let cN be the constant in (5.13) and let B[N]
K be A[N]

K with the
top row and left-most column removed. We will prove that

MN(z)=cN det(A[N]
K &z); NN(z)=&cN det(B[N]

K &z), (5.18)

from which (5.17) holds by Cramer's rule.
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Clearly,

det(A[N]
K &z)=det(A[N]

F &z)&:N&1 det(A[N&1]
F &z)

so

cN det(A[N]
K &z)=PN(z)&;NPN&1(z),

where

;N=:N&1

cN

cN&1

.

But det(A[N]
K )=0 by construction. So PN(0)&;NPN&1(0)=0 and thus,

cN det(A[N]
K &z)=MN(z).

In the same way,

cN det(B[N]
K &z)=&QN(z)+;NQN&1(z)=&NN(z). K

Because of our convergence theorem, we have

Corollary 5.9. Let [*[N]
i ]N

i=1 be the zeros of PN(z) and let &[N]
i =

&(QN(*[N]
i )�P$N(*[N]

i )). Then �N
i=1 &[N]

i $(*&*[N]
i ) converges to d+F (*),

the Friedrichs solution of the moment problem. A similar formula holds for
the Krein solution, d+K (*), with P, Q replaced by M, N.

The following concludes the proof of Theorem 5.2. It extends the calcula-
tion behind (4.4):

Theorem 5.10. Let d\ solve the Stieltjes moment problem. Then for
x>0 and N�1,

&
QN(&x)
PN(&x)

�|
d\( y)
x+ y

� &
NN(&x)
MN(&x)

. (5.19)

Proof. (PN( y)&PN(z))�(y&z) is a polynomial in y of degree N&1 so

| d\( y) PN( y) _PN( y)&PN(z)
y&z &=0. (5.20)

On the other hand, (4.4) says that

| d\( y)
PN( y)
y&z

=PN(z) |
d\( y)
y&z

+QN(z). (5.21)
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Thus for z=&x with x>0,

0�|
d\( y) P2

N( y)
y+x

=PN(&x) |
d\( y) PN( y)

y+x

=PN(&x)2 |
d\( y)
x+ y

+QN(&x) PN(&x).

Dividing by PN(&x)2, we obtain the left-most inequality in (5.19).
Similarly, since MN(0)=0, MN(z)�z is a polynomial of degree N&1 and

so [ y&1MN( y)&z&1MN(z)]�y&z is a polynomial of degree N&2
in y, which is orthogonal to PN( y) and PN&1( y) and so to MN( y). Thus

| d\( y)
MN( y)
y&z _MN( y)

y
&

MN(z)
z &=0. (5.22)

Since for N�0,

QN(z)=| d\( y)
PN( y)&PN(z)

y&z
(5.23)

for each z, we see that for N�1,

NN(z)=| d\( y)
MN( y)&MN(z)

y&z
. (5.24)

Therefore, for x>0,

0�|
d\( y)
y+x

MN( y)2

y
=

MN(&x)
(&x) | d\( y)

MN( y)
y+x

(by (5.22))

=
MN(&x)2

(&x) |
d\( y)
x+ y

+
MN(&x) NN(&x)

(&x)
.

Dividing by (MN(&x)2�x) we obtain the second half of (5.19). K

Next, we turn to Theorem 6 and the connection of Pade� approximants
to these finite matrix approximations. Given a formal power series
��

n=0 }nzn, we define the Pade� approximants f [N, M](z) as follows (see
Baker and Graves�Morris [4] for background on Pade� approximants): we
seek a function f [N, M](z) so that

f [N, M](z)=
A[N, M](z)
B[N, M](z)

, (5.25)
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where A[N, M](z) is a polynomial of degree at most N, B[N, M](z) is a poly-
nomial of degree at most M, as z � 0.

f [N, M](z)& :
N+M

j=0

}jz j=O(zN+M+1) (5.26)

and

B[N, M](0)=1. (5.27)

There is at most one solution, f, for these equations since if A� , B� are
another pair of such polynomials, by (5.26), A� B&AB� =O(zN+M+1) must
be zero since A� B&AB� is a polynomial of degree N+M. Thus,

A[N, M](z) B� [N, M](z)&A� [N, M](z) B[N, M](z)=0. (5.28)

This implies A�B=A� �B� , showing f is uniquely determined as an analytic
function. If

deg A=N, deg B=M, A, B relatively prime, (5.29)

then (5.28) shows A� =A and B� =B, so A and B are uniquely determined.
It can be shown ([4]) that if

det((}N&m+i+ j&1)1�i, j�M){0 (5.30)

then A, B exist and obey (5.29).
There are degenerate cases where a Pade� approximant exists, but A, B

are not unique (e.g., for ��
n=0 }nzn=1+z, f [2, 1](z)=1+z can be written

as A(z)=(1+z)(1+:z), B(z)=(1+:z) for any :). In any event, if a solu-
tion of (5.25)�(5.27) exists, we say the [N, M] Pade� approximant exists
and denote it by f [N, M](z).

In the context of Theorem 6, we are interested in the Pade� approximants
for the Taylor series of

f (z)=|
�

0

d\(x)
1+zx

, (5.31)

where \ is a measure with finite moments. Without loss, normalize \ so
� d\=1. Recall the context of Theorem 6. We have

}n=(&1)n |
�

0
xn d\(x)
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and want to formally sum near z=0:

f (z)t :
�

n=0

}nzn.

If we define

#n=|
�

0
xn d\(x),

then near w=�,

G\(w)#|
�

0

d\(x)
x&w

t & :
�

n=0

#n w&n&1. (5.32)

Thus formally,

f (z)=
1
z

G\ \&
1
z+ . (5.33)

We begin by noting:

Proposition 5.11. As |w| � �,

&
QN(w)
PN(w)

=& :
2N&1

j=0

# jw
& j&1+O(w&2N&1) (5.34)

&
NN(w)
MN(w)

=& :
2N&2

j=0

# jw
& j&1+O(w&2N) (5.35)

Proof. Let A be the Jacobi matrix for the moment problem [#n]�
n=0 .

Then

#n=($0 , An$0) . (5.36)

On the other hand, we have an expansion converging near infinity for

($0 , (A[N]
F &w)&1 $0) =& :

�

j=0

($0 , (A[N]
F ) j $0) w& j&1,

so (5.34) follows from

($0 , (A[N]
F ) j $0) =($0 , A j$0), j=0, 1, ..., 2N&1. (5.37)
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To prove (5.37), note that

(A[N]
F ) j $0=A j

F $0 (5.38)

if j=0, ..., N&1 and for B symmetric,

($0 , B2j$0) =&B j$0&

and that

($0 , B2j+1$0)=(B j$0 , B(B j$0)). (5.39)

To obtain (5.35), note that if A[N]
F is replaced by A[N]

K , (5.38) still holds
for j=0, ..., N&1, but (5.39) fails for j=N&1 and so the analog of (5.37)
only holds for j=0, ..., 2N&2. K

Remark. While (5.37) holds for j=0, 1, 2, ..., 2N&1, it never holds for
j=2N. For if it did, we would have for any polynomial R, of degree 2N
that

($0 , R(A[N]
F ) $0) =($0 , R(A) $0).

But this is false for R(x)=x2PN&1(x)2 since

($0 , R(A) $0) =&A$N&1&2=a2
N&1+a2

N&2+b2
N&1 ,

while

($0 , R(A[N]
F ) $0)=&A[F]

N $N&1 &2=a2
N&2+b2

N&1 .

Proof of Theorem 6. By (5.33) and (5.34) as z � 0,

&
QN(&(1�z))
zPN(&(1�z))

= :
2N&1

j=0

} jz j+O(z2N). (5.40)

Now zN&1QN(&(1�z)) is a polynomial of degree N&1 since QN(0){0 and
zNPN(&(1�z)) is a polynomial of degree N since PN(0){0. Moreover,
limz � 0 zNPN(&(1�z)){0 since PN has degree N. Thus (5.40) identifies
f [N&1, N] and &zN&1QN(&(1�z))�zNPN(&(1�z)). Similarly, noting that
since MN(0)=0 (but M$N(0){0 since AN

K has simple eigenvalues),
zNMN(&(1�z)) is a polynomial of degree N&1, and we identify
f [N&1, N&1](z) and &zN&1NN(&(1�z))�zNMN(&(1�z)). Theorem 5.2 thus
implies Theorem 6. K

Remarks. 1. Since PN and QN are relatively prime (by Proposition
5.7) and similarly for MN , NN , we are in the situation where the numerator
and denominator are uniquely determined up to a constant.
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2. Suppose #n�Can so \ is unique and supported on some interval
[0, R]. Then if R is chosen as small as possible, ��

n=0 }nzn has radius of
convergence R&1, but the Pade� approximants converge in the entire region
C"(&�, &R&1]!

Before leaving our discussion of Pade� approximants for series of Stieltjes,
we will consider the sequences f [N+ j, N](z) for j fixed. We will show they
each converge as N � � with limits that are all distinct (as j varies) if the
Stieltjes moment problem is indeterminate and all the same if a certain set
of Stieltjes moment problems are all determinate.

Given a set of moments [#j]�
j=1 and l=1, 2, ..., define for j=0, 1, ...

# (l)
j #

#j+l

#l

. (5.41)

Proposition 5.12. Suppose that [#j]�
j=0 is a set of Stieltjes (resp.

Hamburger) moments. Then [# (l)
j ]�

j=0 is the set of moments for a Stieltjes
(resp. Hamburger) problem for l=1, 2, ... (resp. l=2, 4, 6, ...). This problem
is indeterminate if the original problem is.

Proof. We will consider the Stieltjes case. Let \ # MS(#). Then
#&1

l xl d\(x)#d\(l)(x) solves the moment problem for #(l). If \1 , \2 #
MS(#), then \ (l)

1 , \ (l)
2 are both in MS(#(l)). If \ (l)

1 =\ (l)
2 , then \1&\2 is

supported at zero, which means it is zero since � d\1(x)=#0=� d\2(x).
Thus, if the # problem is indeterminate, so is the #(l) problem. K

Example. As Corollary 4.21 shows, there can be determinate moment
problems so that #(1) is indeterminate (in the language of that corollary,
#~ (1)=#). Thus, the converse of the last statement in Proposition 5.12 fails.

As an aside, we present a proof of a criterion for indeterminacy of
Hamburger [8], especially interesting because of a way of rewriting it in
terms of a single ratio of determinants (see Theorem A.7). Note this aside
deals with the Hamburger problem.

Proposition 5.13. A necessary and sufficient condition for a set of
Hamburger moments to be indeterminate is that

(i) ��
j=0 |Pj (0)| 2<� and

(ii) ��
j=0 |P (2)

j (0)|2<�

where P (2)
j (x) are the orthogonal polynomials for the #(2) moment problem.

Proof. If [#j]�
j=0 is indeterminate by Proposition 5.12, so is [# (2)

j ]�
j=0 ,

and then (i), (ii) follow by Theorem 3. The converse is more involved. The
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intuition is the following: If d\ is an even measure, then P (2)
2j (x)=

- #2 P2j+1(x)�x so P (2)
m (0)=- #2 �Pm+1��x (0) (both sides are zero if m is

odd). So (ii) is equivalent to ��
j=0 |�Pj (0)��x| 2<� and condition (v) of

Theorem 3 says that (i), (ii) imply indeterminacy. Our goal is to prove in
general that when (i) holds, P(2)

j (0) and �Pj+1��x (0) are essentially equiv-
alent.

Let Sn(x)=P (2)
n (x), 'n=�Pn ��x (0), and define

:n=| xSn(x) d\(x) (5.42)

;n=| [xSn(x)][Pn+1(x)] d\(x), (5.43)

where \ is any solution of the # moment problem. Since Sn is an
orthogonal polynomial for d\(2), we have

| [xSn(x)]x jx d\(x)=0, j=0, 1, ..., n&1

and thus

| xSn(x) Pj (x) d\(x)=:nPj (0), j=0, 1, ..., n

so the orthogonal expansion for xSn(x) is

xSn(x)=;n Pn+1(x)+:n :
n

j=0

Pj (0) Pj (x). (5.44)

Since xSn(x) vanishes at zero,

;n Pn+1(0)+:n :
n

j=0

|Pj (0)|2. (5.45)

Since

| |xSn(x)|2 d\(x)=#2 | Sn(x)2 d\(2)(x)=#2 ,

we have by (5.44) that

#2=;2
n+:2

n :
n

j=0

|Pj (0)| 2. (5.46)
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Moreover, taking derivatives of (5.44) at x=0,

Sn(0)=;n'n+1+:n :
n

j=0

Pj (0) 'j . (5.47)

By (5.46), ;n is bounded, so by (5.45),

|:n |�C1 |Pn+1(0)|. (5.48)

By hypothesis, ��
j=0 |Pj (0)|2<�, so Pn+1(0) � 0 and thus by (5.46),

;n � - #2 as n � �. Since ;n>0 for all n (this follows from the fact that
both xSn(x) and Pn+1(x) have positive leading coefficient multiplying
xn+1), we see that ;&1

n is bounded. Using (5.48), the Schwarz inequality on
the sum in (5.47), and ��

j=0 |Pj (0)|2<� again, we see that

|'n+1 | 2�C \ |Sn(0)|2+|Pn+1(0)|2 :
n

j=0

|'j |
2+

�C( |Sn(0)| 2+|Pn+1(0)|2) \1+ :
n

j=0

|'j |
2+ .

It follows that

_1+ :
n+1

j=0

|'j |
2&�[1+C(Sn(0)|2+|Pn+1(0)|2)] _1+ :

n

j=0

|' j |
2&

and so by induction that

sup
1�n<�

:
n+1

j=0

|'j |
2� sup

1�n<�
`

n+1

j=1

[1+C( |Sj&1(0)| 2+|Pj (0)|2)]<�

since ��
j=0 |Pj (0)|2+��

j=0 |Sj (0)|2<� by hypothesis. Thus, if (i) and (ii)
hold, 'n # l2 and thus, the problem is indeterminate by Theorem 3. K

Theorem 5.14. Let [#n]�
n=0 be a set of Stieltjes moments. Fix l�1 and

let P (l)
N (z), Q (l)

N (z), M (l)
N (z), and N (l)

N (z) be the orthogonal polynomials and
other associated polynomials for the #(l) moment problem. Let f [N, M](z)
be the Pade� approximants for the series of Stieltjes ��

j=0 } jz j where }j=
(&1) j #j . Then

f [N+l&1, N](z)= :
l&1

j=0

(&1) j # jz j+(&1)l #l zl _Q (l)
N (&(1�z))

zP (l)
N (&(1�z))& (5.49)
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and

f [N+l&1, N&1](z)= :
l&1

j=0

(&1) j #j z j+(&1)l #lzl _ N (l)
N (&(1�z))

zM (l)
N (&(1�z))& . (5.50)

In particular:

(1) For each l, (&1)l f [N+l&1, N](x) is monotone increasing to a
finite limit for all x # (0, �).

(2) For all z # C"(&�, 0], limN � � f [N+l&1, N](z)# fl(z) exists.

(3) The #(l) moment problem is (Stieltjes) determinate if and only if
fl(z)= fl+1(z).

(4) If the #(l) moment problem is determinate, then f0(z)=
f1(z)= } } } = fl+1(z).

(5) If the #(l) moment problem is indeterminate, then as x � �,

fl+1(x)=(&1)l #l+ (l)
K ([0]) xl+O(xl&1), (5.51)

where + (l)
K is the Krein solution of the #(l) problem. In particular if l>1,

&fl+1(x) is not a Herglotz function (as it is if the problem is determinate).

Remarks. 1. Thus, it can happen (e.g., if # is determinate but #(1) is
not (cf. Corollary 4.21) that f [N&1, N] and f [N, N] have the same limit, but
that f [N+1, N] has a different limit.

2. If the [#j]�
j=0 obey a condition that implies uniqueness and which

is invariant under #j � #j+1 (e.g., the condition of (1.12b) of Proposition
1.5), then all #(l) are determinate; see Theorem 5.19 below.

3. Even for l=1 and consideration of f [N&1, N] and f [N, N], we have
something new��the remarkable fact that x d+K (x)�#&1

1 is d+ (1)
F (x). Multi-

plication by x kills the point measure at x=0 and produces a measure sup-
ported on some set [R, �) with R>0. We also see that monotonicity for
f &

N implies monotonicity of f +
N . The direction of monotonicity flips because

of the minus sign ((&1)l=&1) in (5.49).

4. In particular, we have P (1)
N (x)=cN x&1MN+1(x), that is, for any

l{m, � x&1Mm(x) Ml(x) d\(x)=0, something that can be checked
directly.

5. This theorem implies that all the f [N, M] with N�M&1 exist and
their denominators obey a three-term recursion relation.

6. The connection in Remark 3 extended to x d+ (l)
K (x)=cl d+ (l+1)

F (x)
implies that if any #(l) is indeterminate, then d+K (x) is a point measure.
Thus if }n=(&1)n ��

0 xn d\(x) where \ is associated to a determinate
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Stieltjes problem and d\ is not a point measure, then all the fl(z)'s,
l=0, 1, 2, ..., are equal.

Proof. It is easy to check that the right side of (5.49) and (5.50) are
ratios of polynomials whose degrees are at most of the right size. (Because
P(l)

N (0){0{M (l)$
N (0), it is easy that the denominators are always precisely

of the right size.) Since M (l)
N (z) and P (l)

N (z) are of degree n, the rationalized
denominators do not vanish at 1�z=0. By Proposition 5.11 for the #(l)

problem, they have the proper asymptotic series to be f [N+l&1, N](z) and
f [N+l&1, N&1](z), respectively. That proves (5.49) and (5.50).

Assertions (1), (2), (3) are then just Theorem 6 for the #(l) moments. To
prove assertion (4), note that if #(l) is determined by Proposition 5.12, so
are #(l&1), #(l&2), ..., #(1), #, and so by (3), we have fl+1= fl= } } } = f0 .

To prove assertion (5), note that if the #(l) moment problem is indeter-
minate, d+ (l)

K ([0])>0. Thus,

lim
x � � |

d+ (l)
K ( y)

1+xy
=+ (l)

K [0]>0. (5.52)

By (5.50),

fl+1(x)= :
l&1

j=0

(&1) j #jx j+(&1)l #lxl |
�

0

d+ (l)
K ( y)

1+xy
,

so (5.52) implies (5.51). K
To deal with the sequences f [N&1+l, N](z) with l<0, we need to introduce

yet another modified moment problem associated to a set of Hamburger
(or Stieltjes) moments. To motivate what we are looking for, let \ # MH(#)
and let G\(z) be the associated Stieltjes transform. Then &G\(z)&1 is a
Herglotz function which has an asymptotic series to all orders as z � i�.
Since G\(z)t&(1�z)(1+#1z&1+#2z&2+O(z&3)),

&G\(z)&1
tz&#1&(#2&#2

1) z&1+O(z&2)

so (by the proof of Proposition 4.13) the Herglotz representation of
&G\(z)&1 has the form

&G\(z)&1=z&#1+(#2&#2
1) |

d\~ (x)
x&z

, (5.53)

where d\~ is a normalized measure. Its moments, which we will call # (0)
j ,

only depend on the asymptotic series for G\(z), and so only on the original
moments. We could do everything abstractly using (5.53), but we will be
able to explicitly describe the relation between the moment problems.
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The key is the following formula, a Ricatti-type equation well known to
practitioners of the inverse problem [6] (which we will, in essence, prove
below):

&m0(z)&1=z&b0+a2
0m1(z), (5.54)

where m0(z)=($0 , (A&z)&1 $0) is just G\(z) for a spectral measure, and
m1(z)=($0 , (A[1]&z)&1 $0) , where A[1] is obtained from A by removing
the top row and left-most column. (5.54) is just (5.53) if we note that
b0=#1 and a2

0=#2&#2
1 . Thus, we are led to define # (0)

j as the moments
associated to the Jacobi matrix A[1] obtained by removing the top row and
left-most column, that is,

A[1]=\
b1

a1

0
b

a1

b2

a2

b

0
a2

b3

b

} } }
} } }
a3

b

} } }
} } }
} } }
b + .

Proposition 5.15. Let [#j]�
j=0 be a set of Hamburger moments. Then

the [# (0)
j ]�

j=0 Hamburger problem is determinate if and only if [#j]�
j=0 is.

Proof. Let A� [1] be A[1] with a row of zeros added at the top and
column of zeros on the left. Since A� [1]=0�A[1], A� [1] is essentially self-
adjoint if and only if A[1] is. A&A� [1] is a matrix with three non-zero
elements and essential self-adjointness is provided by bounded pertur-
bations. Thus, A is essentially self-adjoint if and only if A[1] is. By
Theorem 2, we have the equivalence of determinacy for the Hamburger
problem. K

Remark. As we will see shortly, this result is not true in the Stieltjes
case.

Let P (0)
N (x), Q (0)

N (x), and f (0)
N (z)=&(Q (0)

N (z)�P (0)
N (z)) be the polynomials

and finite matrix approximation for the #(0) problem. Then

Proposition 5.16.

(i) P (0)
N (x)=a0 Qn+1(x) (5.56)

(ii) Q (0)
N (x)=&

1
a0

PN+1(x)+
x&b0

a0

QN+1(x) (5.57)

(iii) & f &
N+1(z)&1=z&b0+a2

0 f (0)
N (z) (5.58)

Remarks. 1. (i) implies that the QN 's are orthogonal polynomials for
some measure.

2. (5.58) is (5.54).
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Proof. For each fixed x, P(0)
N (x), Q (0)

N (x) obey the same difference equa-
tion as PN+1(x), QN+1(x) so we need (5.56), (5.57) at the initial points
N=&1, 0 where it is required that

P (0)
&1(x)=0, P(0)

0 (x)=1; Q (0)
&1(x)=&

1
a0

, Q (0)
0 (x)=0

(Q (0)
&1(x)=&(1�a0) since we don't make the convention a (0)

&1=1, but rather
a(0)

&1=a0 consistent with a (0)
n =an+1). This is consistent with (5.56) if we

note that

Q0(x)=0, Q1(x)=
1

a0

; P0(x)=1, P1(x)=
(x&b0)

a0

.

This proves (i), (ii).
They in turn imply

a2
0

Q (0)
N (x)

P (0)
N (x)

=x&b0&
PN+1(x)
QN+1(x)

,

which, by (5.12), proves (iii). K

Proposition 5.17. Let [#j]�
j=0 be a set of Stieltjes moments. If the

Hamburger problem is indeterminate, then the #(0) Stieltjes problem is
indeterminate (even if the # Stieltjes problem is determinate).

Proof. As we will see below (Proposition 5.22#Theorem 8), a set of
Stieltjes moments which is Hamburger indeterminate is Stieltjes deter-
minate if and only if L#limN � � [&(QN(0)�PN(0))] is infinite. By (5.58),

a2
0 L(0)=b0&L&1.

Since L>0, L(0) is never infinite. K

Remarks. 1. Thus, if # is Hamburger indeterminate but Stieltjes deter-
minate, # and #(0) have opposite Stieltjes determinacy.

2. The spectral way to understand this result is to note that if # is
Hamburger indeterminate, the Friedrichs extensions of A and A[1] have
interlacing eigenvalues. Given that A�0, A[1] must be strictly positive.

For l<0 and integral, we let

# (l)
j =[#(0)] (&l)

j =
# (0)

j&l

# (0)
&l

.

Then:
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Theorem 5.18. Let [#n]�
n=0 be a set of Stieltjes moments. Fix l<0 and

let P (l)
N (z), Q (l)

N (z), M (l)
N (z), and N (l)

N (z) be the orthogonal polynomials and
other associated polynomials for the #(l) moment problem. Let f [N, M](z)
be the Pade� approximants for the series of Stieltjes ��

j=0 } jz j where }j=
(&1) j #j . Then

f [N+l&1, N](z)={1&#1 z& :
&l&1

j=0

(&1) j # (0)
j z j+2+(&1)l+1 #(0)

&lz&l+2

__Q (l)
N+l&1(&(1�z))

zP (l)
N+l&1(&(1�z))&=

&1

(5.59)

and

f [N+l&1, N+1](z)={1&#1z& :
&l&1

j=0

(&1) j # (0)
j z j+2+(&1)l+1 # (0)

&l z&l+2

__N (l)
N+l&1(&(1�z))

zM (l)
N+l(&(1�z)) &=

&1

. (5.60)

In particular,

(1) For each l, (&1)l f [N+l&1, N](x) is monotone increasing to a
finite limit for all x # (0, �).

(2) For all z # C"(&�, 0], limN � � f [N+l&1, N](z)# fl(z) exists.

(3) The #(l) moment problem is Stieltjes determinate if and only if
fl(z)= fl&1(z).

(4) If the #(l) moment problem is determinate, then f0(z)=
f&1(z)= } } } = fl(z)= fl&1(z).

(5) If the #(l) moment problem is indeterminate, then as x � �,

fl&1(x)=(&1)l+1 (# (0)
&l)&1 xl&2+ (l)

K ([0])&1+O(xl&3),

where + (l)
K is the Krein solution of the #(l) problem. In particular, & fl&1(x)

is not a Herglotz function (as it is if the problem is determinate).

Proof. By (5.58), we have a relation between formal power series:

\ :
�

j=0

(&1) j #jz j+
&1

=1+#1 z&(#2&#2
1) z2 _ :

�

j=0

(&1) j # (0)
j z j& , (5.61)

from which one obtains

f [M, N+2](z)=(1+#1 z&(#2&#2
1) z2f (0)[N, M](z))&1.
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Thus, (5.59) is just (5.49) and (5.60) is (5.50). The consequence (1)�(5)
follows as in the proof of Theorem 5.14. K

We summarize and extend in the following:

Theorem 5.19. Let ��
j=0 } jz j be a series of Stieltjes. Then for each

l=0, \1, \2, ..., fl(z)=limN � � f [N+l, N](z) exists uniformly for z in
compact subsets of C"(&�, 0]. Moreover,

(1) If any two fl 's are different, then all of them are meromorphic.

(2) If the |}j |=#j moment problem is determinate and the measure
solving the moment problem is not a discrete point measure, then all fl 's are
equal.

(3) If |}j |�C j (2j)!, then all fl 's are equal.

Proof. The first assertion is Theorem 5.14 for l�1 and Theorem 5.18
for l�0. If some fl { fl+1 , then some #(l) are indeterminate, so the corre-
sponding d\F 's are pure point and fl 's meromorphic. This proves (1).
Under the hypothesis of (2), f0 is not meromorphic, so by (1), all f 's are
equal. To prove (3), an induction using (5.61) proves |# (0)

j |�C� j (2 j)!, so by
Proposition 1.5, all the #(l) moment problems are determinate. K

This completes our discussion of Pade� approximants for series of
Stieltjes. We return to consequences of Theorem 5.2 for the study of the
Stieltjes moment problem.

As we have seen for any x>0, &(QN(&x)�PN(&x)) is monotone
increasing and &(xNN(&x)�MN(&x)) is monotone decreasing. By taking
limits (recall MN(0)=0), we see that &(QN(0)�PN(0)) is monotone
increasing and NN(0)�M$N(0) is decreasing.

Proposition 5.20.

(i) lim
N � �

&
QN(0)
PN(0)

=| y&1 d+F ( y)

(ii) lim
N � �

NN(0)
M$N(0)

=+K ([0]),

where +F (resp. +K) is the Friedrichs (resp. Krein) solution.

Proof. By Theorem 5.2 and Proposition 5.6, for x>0,

&
QN(&x)
PN(&x)

�| ( y+x)&1 d+F ( y),
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so taking x to zero and N to infinity, we see that

lim
N � �

&
QN(0)
PN(0)

�| y&1 d+F ( y).

On the other hand, since &(QN(&x)�PN(&x))=($0 , (A[N]
F +x)&1 $0) is

monotone increasing as x decreases, we have for each N and x>0,

&
QN(&x)
PN(&x)

� lim
N � �

&
QN(0)
PN(0)

,

so taking N to infinity for fixed x>0 and using Theorem 5.2,

| (x+ y)&1 d+F ( y)� lim
N � �

&
QN(0)
PN(0)

.

Taking x to zero, we see that

| y&1 d+F ( y)� lim
N � �

&
QN(0)
PN(0)

,

so (i) is proven.
The proof of (ii) is similar. By Theorem 5.2 and Proposition 5.8,

&
xNN(&x)
MN(&x)

�|
x

y+x
d+K ( y)�+K ([0]),

so taking x to zero and N to infinity,

lim
N � �

NN(0)
M$N(0)

�+K ([0]).

On the other hand, since &(xNN(&x)�MN(&x))=($0 , x(A[N]
K +x)&1 $0)

is monotone decreasing as x decreases, we have for each N and x>0,

&
xNN(&x)
MN(&x)

� lim
N � �

NN(0)
M$N(0)

,

so taking N to infinity for fixed x>0 and using Theorem 5.2,

|
x

x+ y
d+K ( y)� lim

N � �

NN(0)
M$N(0)

.
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Taking x to zero, we see that

+K ([0])� lim
N � �

NN(0)
M$N(0)

,

so (ii) is proven. K

This leads us to define (note that we use M$N(0)�NN(0), not
NN(0)�M$N(0) so M, L # (0, �) _ [�]):

L= lim
N � �

&
QN(0)
PN(0)

(5.62)

M= lim
N � �

M$N(0)
NN(0)

, (5.63)

so Proposition 5.20 says that

L=| y&1 d+F ( y)

M&1=+K ([0]).

By (4.25), +K ([0])=1���
n=0 |PN(0)|2, so

M= :
�

n=0

|Pn(0)|2. (5.64)

Note. (4.25) was only proven in the indeterminate case, but the argu-
ment applies in the determinate case also. If x is an eigenvalue of a solution
+ of the moment problem associated to a self-adjoint extension, then
+([x])=1���

n=0 |Pn(x)| 2.

Theorem 5.21 (#Theorem 7). Let [#n]�
n=0 be the moments of a Stieltjes

problem. Then the problem is indeterminate if and only if

L<� and M<�.

Equivalently, the problem is determinate if and only if

L=� or M=�.

Proof. If L<� and M<�, then � y&1 d+F ( y)<�, while +K ([0])>0,
so clearly, +F {+K and the problem is indeterminate. Conversely, if the
problem is indeterminate, then by Proposition 3.1, :=inf spec(AF)>0, so
� y&1 d+F ( y)�:&1<� and L<�. Moreover, since the Stieltjes problem
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is indeterminate, so is the Hamburger problem; and thus by (5.64),
M<�. K

Theorem 5.22 (#Theorem 8). Let [#n]�
n=0 be a set of Stieltjes

moments. Then the Stieltjes problem is determinate while the Hamburger
problem is indeterminate if and only if

:
�

n=0

|Qn(0)|2<� (5.65)

and L=�.

Proof. For a set of Stieltjes moments &(Qn(0)�Pn(0)) is positive and
monotone increasing, so |Qn(0)|�|Q1(0) Pn(0)|�|P1(0)|. Since Q1(0){0,
we see that (5.65) implies also that M<�. Thus, (5.65) is equivalent to the
Hamburger problem being indeterminate. Given that M<�, Theorem 5.21
says that determinacy of the Stieltjes problem is equivalent to L=�. K

As our next topic, we will further examine the conditions M<� and
L<� to see they are conditions of Stieltjes and Krein in a different form.
Define

ln=&
Qn(0)
Pn(0)

+
Qn&1(0)
Pn&1(0)

, n�1 (5.66)

and

mn=
M$n(0)
Nn(0)

&
M$n&1(0)
Nn&1(0)

, n�2 (5.67a)

m1=
M$n(0)
N1(0)

. (5.67b)

By the monotonicity properties of this section, ln>0, mn>0. By definition
and Q0(0)=0.

&
QN(0)
PN(0)

= :
N

n=1

ln , L= :
�

n=1

ln

M$N(0)
NN(0)

= :
N

n=1

mn , M= :
�

n=1

mn .

Proposition 5.23. For N�1,

mN=|PN&1(0)|2 (5.68)

lN=&[aN&1PN(0) PN&1(0)]&1. (5.69)
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Remark. Since A[N]
F >0, PN(z) has no zeros on (&�, 0] and thus,

PN(z) has the same sign near &� and 0. But PN(z)=cNzN+ lower order
with cN>0, so (&1)N PN(0)>0 (cf. (5.13)). Thus, PN(0) PN&1(0)<0 and
the minus sign in (5.69) is just what is needed to ensure that lN>0.

Proof. A[N]
K has [P0(0), ..., PN&1(0)] as its eigenfunction with eigen-

value zero. Thus, limx � 0 x($0 , (A[N]
K +x)&1 $0)=|P0(0)|2��N&1

j=0 |P j (0)|2.
Since P0(0)=1, we see that

M$N(0)
NN(0)

= :
N&1

j=0

|Pj (0)| 2, (5.70)

which implies (5.68). (5.69) follows immediately from Proposition 4.1. K

Corollary 5.24. If A given by (1.16) is the Jacobi matrix associated to
an indeterminate Stieltjes moment problem, then

:
�

n=0

a&1�2
n <�.

In particular, if ��
n=0 a&1�2

n =� for the Jacobi matrix associated to a
Stieltjes problem, then the problem is determinate.

Proof. If the problem is indeterminate, by Proposition 5.23 and
Theorem 5.21, a&1�2

n |Pn(0) Pn&1(0)|&1�2 and |Pn(0) Pn&1(0)| 1�2 both lie in
l2, so their product lies in l1. K

Now we will define, following Stieltjes and Krein, functions

Un(x)=
Pn(&x)

Pn(0)
, n�0 (5.71)

Vn(x)=&
Qn(&x)

Pn(0)
, n�0 (5.72)

Gn(x)=&an&1Mn(&x) Pn&1(0), n�1 (5.73)

Hn(x)=an&1Nn(&x) Pn&1(0), n�1. (5.74)

We claim that
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Proposition 5.25.

(i) Un(0)=1

(ii) Gn(0)=0

(iii) Hn(0)=1

(iv) Un(x) Hn(x)&Vn(x) Gn(x)=1 for n�1

(v) f +
n (&x)& f &

n (&x)=1�Un(x) Gn(x) for n�1

Proof. (i) is immediate from the definition (5.71), (ii) from Mn(0)=0,
and (iii) follows from Proposition 4.1 and the definition (5.16) of NN (and
explains why we multiply M and N by an&1 Pn&1(0)). To prove (iv), we
note that for some constants :n , ;n , #n ,

Un(x)=:nPn(&x),

Vn(x)=&:n Qn(&x)

Gn(x)=;nPn(&x)+#n Pn&1(&x),

Hn(x)=&;n Qn(&x)&#n Qn&1(&x),

so

Un(x) Hn(x)&Vn(x) Gn(x)

=&:n#n[Pn(&x) Qn&1(&x)&Qn(&x) Pn&1(&x)]

is constant as x is varied for fixed n. But at x=0, by (i)�(iii) this combina-
tion is 1. (v) follows from (iv) and the definitions. K

The following says that for x>0, U, G can be associated with the equa-
tion of motion of a string of beads (see Ref. 1). This is the starting point
of deep work of Krein [17].

Theorem 5.26.

(i) Un(x)&Un&1(x)=lnGn(x), n�1

(ii) Gn+1(x)&Gn(x)=mn+1xUn(x), n�1

(iii) G1(x)=m1 x, U0(x)=1

Proof. (i) By definition of Un ,

Un(x)&Un&1(x)=
Mn(&x)

Pn(0)
=ln Gn(x)

by (5.69) and (5.73).
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(ii) We have for n�1,

an Pn+1(&x)+bnPn(&x)+an&1Pn&1(&x)=&xPn(&x). (5.75)

(5.75) for x=0 implies that

bn=&an Pn+1(0) Pn(0)&1&an&1Pn&1(0) Pn(0)&1, (5.76)

which we can substitute into (5.75) to obtain

an Mn+1(&x)&an&1Pn&1(0) Pn(0)&1 Mn(&x)=&xPn(x).

Multiplying by &Pn(0) and using the definitions (5.71)�(5.73), we see

Gn+1(x)&Gn(x)=xPn(0)2 Un(x)

so (5.68) implies the result.

(iii) U0(x) is a constant so U0(0)=1 implies U0(x)#1. G1 is a linear
polynomial with G1(0)=0, so G1(x)=G$1(0) x. For any n, G$n(0)=
limx a 0 x&1Gn(x)�Hn(x)=�n

j=1 mj . K

We can use these equations to get further insight into Theorem 5.2. First,
we obtain explicit bounds on the rate of convergence of f +

N (&x)&
f &

N (&x) to zero in the determinate case, where either � mj or � lj or both
diverge.

Theorem 5.27. For x>0,

f +
N (&x)& f &

N (&x)�_m1x2 \ :
n

j=1

mj+ \ :
n

j=1

lj+&
&1

.

Proof. It follows from Theorem 5.26 and induction that Un(x) and
Gn(x) are non-negative for x>0 and then that they are monotone in n. In
particular, Un(x)�1, Gn(x)�m1x from which, by (i), (ii),

Un(x)�m1 \ :
n

j=1

lj+ x

Gn(x)�\ :
n

j=1

mj + x.

(v) of Proposition 5.25 then completes the proof. K

And we obtain directly that in the indeterminate case, f \ are
meromorphic functions.
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Theorem 5.28. (i) For any z # C, we have that for n�1,

|Un(z)|� `
n

j=1

(1+lj) `
n

j=1

(1+m j |z| )

|Gn(z)|� `
n&1

j=1

(1+lj) `
n

j=1

(1+m j |z| ).

(ii) If M<� and L<�, then for all z # C, Un(z), Vn(z), Gn(z),
Hn(z) converge to functions U�(z), V�(z), G�(z), H�(z), which are entire
functions obeying

| f (z)|�C= exp(=(z))

for each =>0.

(iii) f &(z)=V�(&z)�U�(&z), f +(z)=H�(&z)�G�(&z).

(iv) f +(z)& f &(x)=1�U�(&z) G�(&z).

Remark. In terms of the Nevanlinna functions A, B, C, D, one can see
(using the fact that the Friedrichs solution is associated to Bt with t=L)
that G�(&z)=&D(z), H�(&z)=C(z), U�(&z)=&B(z)&LD(z), and
V�(&z)=A(z)+LC(z), where L=��

j=1 lj .

Proof. (i) follows by an elementary induction from Theorem 5.26.
Similarly, one follows the proof of that theorem to s show that Vn , Hn obey

Vn(x)&Vn&1(x)=lnHn(x), n�1

Hn+1(x)&Hn(x)=mn+1xVn(x), n�1

H1(x)=1 V0(x)=0

and obtains inductively that

|Vn(z)|� `
n

j=1

(1+lj) `
n

j=2

(1+m j |z| )

|Hn(z)|� `
n&1

j=1

(1+lj) `
n

j=2

(1+m j |z| ).

Thus, if L, M<�, we first see that U, V, H, G are bounded and then,
since �j�n lj � 0, � j�n mj � 0, that each sequence is Cauchy as n � �.
The C= bound is easy for products >�

j=1 (1+mj |z| ) with ��
1 mj<�. (iii),

(iv) are then immediate from the definitions. K
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To make the link to Stieltjes' continued fractions, we need to note the
relation between an , bn , ln , and mn . Immediately from Proposition 5.23, we
have

an=(ln+1 - mn+1mn+2 )&1, n�0 (5.77)

and by (5.76),

bn=m&1
n+1(l&1

n +l&1
n+1), n�1 (5.78)

b0=m&1
1 l&1

1 . (5.79)

(Parenthetically, we note that these equations can be used inductively to
define mj , lj given aj , bj . We have m1=1, so (5.79) gives l1 . Given l1 , ..., lj

and m1 , ..., mj , we can use aj&1 and (5.77) to find m j+1 and then bj and
(5.78) to get lj+1 .)

Stieltjes' continued fractions are of the form (5.1b). Let

d0=c&1
1 , dn=(cn cn+1)&1 (5.80)

for n�1 so (5.1b) becomes

d0

w+
d1

1+
d2

w+ } } }

Now use the identity

w+
;1

1+
;2

f (w)

=w+;1&
;1 ;2

;2+ f (w)

to see that (5.1b) has the form (5.1a) if w=&z, d0=1, and

b0=d1 (5.81a)

bn=d2n+1+d2n (5.81b)

a2
n=d2n+1 d2n+2 . (5.81c)

Thus, (5.80) and (5.81) are consistent with (5.77)�(5.79) if and only if

c2j&1=mj , c2j=lj . (5.82)
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Thus, we have seen that (5.1a) is (5.1b) if w=&z and the c's are given by
(5.82). Stieltjes' criterion that depends on whether or not ��

j=1 cj<� is
equivalent to L<� and M<�.

The connection (5.82) is not surprising. In (5.1b) if w=0, the continued
fraction formally reduces to c2+c4+ } } } consistent with ��

j=1 lj=
&limN � � QN(0)�Pn(0). On the other hand, if we multiply by w, the
continued fraction formally becomes

1

c1+
1

c2w+
1

c3+ } } }

which, formally at w=0, is (c1+c3+ } } } )&1, consistent with ��
j=1 mj=

limN � � limx a 0[&(xNN(&x)�MN(&x))].
We conclude this section by discussing Pade� approximants for the

Hamburger analog of series of Stieltjes. A series of Hamburger is a formal
power series ��

j=0 } jz j with

}j=(&1) j |
�

&�
x j d\(x)

for some measure \. We will begin with the ``principal'' Pade� approximants
f [N&1, N](z):

Theorem 5.29. Let ��
j=0 } jx j be a series of Hamburger. Then:

(i) The f [N&1, N](z) Pade� approximants always exist and are given
by

f [N&1, N](z)=($0 , (1+zA[N]
F )&1 $0)=&

zN&1QN(&(1�z))
zNPN(1�z)

. (5.83)

(ii) If the associated Hamburger moment problem is determinate, then
for any z with Im z{0,

lim
N � �

f [N&1, N](z)=&
zN&1QN(&(1�z))

zNPN(1�z)
(5.84)

exists and equals � d\(x)�(1+zx) for the unique solution, \, of the moment
problem.

(iii) The sequence f [N&1, N](z) is pre-compact in the family of func-
tions analytic in C+ (in the topology of uniform convergence on compact
sets).
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(iv) Any limit of f [N&1, N](z) is of the form � d\(x)�(1+zx) where \
is a von Neumann solution of the Hamburger problem.

Proof. (i) The proof that (5.12) holds (Proposition 5.6) is the same as
in the Stieltjes case, and from there we get (5.34) as in the Stieltjes case.
Since limz � 0 zNPN((1�z)){0, we see f [N&1, N](z) exists and is given by
(5.83).

(iii) Since

|zf [N&1, N](z)|=|($0 , (A[N]
F +z&1)&1 $0)|�|Im(z&1)|&1,

we see that

| f [N&1, N](z)|�|z| |Im(z)|&1

is bounded on compacts. By the Weierstrass�Vitali theorem, such functions
are precompact.

(ii), (iv) By the proof of Proposition 4.13, if d\ is any measure whose
first M+2 moments are #0 , #1 , ..., #M+2 , then

}yM+1 _G\(iy)+ :
M

n=0

(&i)n+1 y&n&1#n& }�ay&1 (5.85)

with a only depending on [#] (either a=#M+1 or a= 1
2 [#M+#M+2]).

Since ($0 , (A[N]
F ) j $0)=#j for j�2N&1, we see that for M fixed, (5.85)

holds uniformly for N large if GN(z)=&z&1f [N&1, N](&(1�z)), so any limit
point of the G's obeys (5.85) and is Herglotz. Thus by Proposition 4.13, it
is of the form G\(z) with \ # MH(#). Thus the limit for f [N&1, N](z) as
N � �, call it f (z), has the form

f (z)=|
d\(x)
1+xz

with \ # MH(#). In the determinate case, \ must be the unique solution, so
all limit points are equal. Thus compactness implies convergence, and we
have proven (ii).

In the indeterminate case, we note that $j=Pj (A[N]
F ) $0 for j=0, ...,

N&1 so

(A[N]
F &z)&1 $0= :

N&1

j=0

(Pj (A[N]
F ) $0 , (A[N]

F &z)&1 $0) $ j .
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As in the proof of Theorem 4.3, we conclude that (with GN(z)=
($0 , (A[N]

F &z)&1 $0) ),

:
N&1

j=0

|Qj (z)+GN(z) Pj (z)|2=
Im GN(z)

Im z
.

Thus, since Q, P # l2 if GN(z) � G(z) through a subsequence, the limit
`=G(z) obeys equality in (4.5). By Theorem 4.14, any such solution of the
moment problem is a von Neumann solution. K

We want to show that in many cases, lim f [N&1, N](z) will not exist.
Consider a set of Stieltjes moments, [#n]�

n=0 and the associated even
Hamburger problem with moments

12n=#n , 12n+1=0. (5.86)

Given \ # MS(#), let \~ # MH(1 ) be given by

d\~ (x)= 1
2 (/[0, �](x) d\(x2)+/(&�, 0](x) d\(x2)) (5.87)

so that Theorem 2.12 says that this sets up a one-one correspondence
between even integrals in MH(1 ) and MS(#). Let P� n , Q� n be the ortho-
gonal polynomials for 1 and Pn , Qn , Mn , Nn for #. Define dn by
d 2

n � Mn(x)2 x&1 d\(x)=1. Then we claim that

G\~ (z)=zG\(z2) (5.88)

P� 2n(x)=Pn(x2) (5.89)

P� 2n&1(x)=
dnMn(x2)

x
(5.90)

Q� 2n(x)=xQn(x2) (5.91)

Q� 2n&1(x)=dnNn(x2). (5.92)

To prove (5.89) and (5.90), we note that the right sides have the correct
degree, and since Pn(x2) is even and Mn(x2)�x is odd, they are d\~
orthogonal to each other. Easy calculations prove the d\~ orthogonality of
two Pn(x2)'s and two Mn(x2)�x 's. The formulae for Q� and G\~ follow by
direct calculations using Theorem 4.2 for Q.

Theorem 5.30. Let #, 1 be related by (5.86) and let d\~ (F ), d\~ (K) be the
images of d\F , d\K ( for #) under the map \ [ \~ given by (5.87). Let
f� [N, M](z) be the Pade� approximants for ��

n=0 (&1)n 1n zn. Then
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lim
N � �

f� [2N&1, 2N](z)=|
d\~ (F )(x)
1+xz

(5.93)

lim
N � �

f� [2N, 2N+1](z)=|
d\~ (K)(x)
1+xz

. (5.94)

In particular, if the 1 problem is indeterminate, lim f [N&1, N](z) does not
exist.

Proof. This follows directly from Theorem 6 for the # problem and
(5.88)�(5.92). K

Of course, in the special case, the non-convergence of f [N&1, N](z) is
replaced by something almost as nice since the even and odd subsequences
separately converge. But there is no reason to expect this to persist if 1 is
not even and indeed, simple numerical examples ([14]) illustrate non-con-
vergence is the rule. One can understand why this happens. In the inde-
terminate case, there is a one-parameter family of extensions, each with
discrete spectrum. There is, in general, nothing to tack down A[N]

F so it
wanders. In the even case, two self-adjoint extensions are even, one with an
eigenvalue at 0 and one without, and the A[N]

F for odd N and even N track
these. This suggests that A[N]

K , which is tacked down to have a zero eigen-
value, should converge in strong resolvent sense and the corresponding
f [N, N]'s should converge. This is true and is not a previously known result:

Theorem 5.31. Let [#n]�
n=0 be a set of Hamburger moments and let

��
n=0 (&1)n #nzn be the associated series of Hamburger. Then the f [N, N](z)

Pade� approximants exist if and only if

PN(0){0. (5.95)

Moreover, (5.95) holds if and only if there exists :N so that the matrix
A[N+1]

K given by (5.2b) has a zero eigenvalue, and then

f [N, N](z)=($0 , (1+zA[N+1]
K )&1 $0). (5.96)

If N � � through the sequence of all N 's for which (5.95) holds, then

lim
N � �

N : PN (0){0

f [N, N](z)=|
d\(x)
1+xz

, (5.97)

where d\ is the unique solution of the moment problem in case it is deter-
minate and the unique von Neumann solution with +([0])>0 if the moment
problem is indeterminate.
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Remarks. 1. If PN(0)=0, then, by the second-order equation PN(0)
obeys, we have that PN+1(0){0{PN&1(0), so (5.95) can fail at most half
the time. Typically, of course, it always holds (e.g., under a small generic
perturbation of the Jacobi matrix, one can prove that it will hold even if
initially it failed).

2. If the # 's are a set of even moments, then (5.95) holds exactly for
N even and

f [2M, 2M](z)=
z2MQ2M+1(&(1�z))

z2M+1P2M+1(&(1�z))
,

so we get convergence of those measures we called d\~ above.

3. The non-existence of f [N, N] is using the Baker definition that we
have made. There is a classical definition which would define f [N, N](z)
even if PN(0)=0, (but (5.26) and (5.27) would both fail!). Under this
definition, f [N, N](z) would be f [N&1, N&1](z) when PN(0)=0 and (5.97)
would hold using all N rather than just those N with PN(0){0.

Proof. Define

M� N(z)=PN&1(0) PN(z)&PN(0) PN&1(z) (5.98)

N� N(z)=PN&1(0) QN(z)&PN(0) PN&1(z). (5.99)

Then by the Wronskian calculations (see Proposition 4.1); also see (5.70)),

N� N(0)=
1

aN&1

{0 (5.100)

M� $N(0)= :
N&1

j=0

Pj (0)2

aN&1

{0 (5.101)

and, of course,

M� N(0)=0. (5.102)

Define

AN(z)=zNN� N+1 \&
1
z+ (5.103)

BN(z)=zN+1M� N+1 \&
1
z+ . (5.104)
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By (5.100), deg AN=N and by (5.101�5.102), deg Bn=N. Moreover, by the
definition (5.98),

BN(0)=0 � PN(0)=0 (5.105)

and

BN(0)=0 O P$N(0){0 (5.106)

since PN(0)=0 O PN&1(0){0.
Moreover, we claim that

AN(z)&BN(z) :
2N

j=0

#jz j=O(z2N+1). (5.107)

This can be seen either by algebraic manipulation as in the remark
following the proof of Theorem A.5 or by noting that we have proven it in
(5.39) for Stieltjes measures. So if \ # MH(#) and +0 is a Stieltjes measure
and \t=(1&t) +0+t\, then BN(&z), AN(&z) are real analytic functions of
t and (5.107) is true for all small t in (0, 1) since A[N+1]

F (t)>0 for small
t (and fixed N ) and that is all the proof of (5.106) depends on.

If PN(0){0, BN(0){0, so B[N, N](z)=BN(z)�BN(0), and A[N, N](z)=
AN(z)�BN(0) yield denominator and numerator of f [N, N](t); so f [N, N]

exists.
Moreover, the proof of Lemma 5.1 shows that an :N exists giving

A[N+1]
K a zero eigenvalue if and only if PN(0){0. In that case, the proof

of Proposition 5.8 is valid, and we have that (5.17) holds. Noting that
NN �MN=N� N �M� N, we see that (5.96) is then valid.

On the other hand, suppose that PN(0)=0 and that f [N, N](z) exists.
Then by (5.107), we have that

AN(z) B[N, N]&BN(z) A[N, N](z)=O(z2N+1)

and so it is zero since the left side of this is of degree 2N.
Since PN(0)=0, M� N+1(z)=&PN+1(0) PN(z)=cM� N(z) where c=

&PN+1(0) PN&1(0)&1, and similarly, N� N=1(z)=cN� N(z). It follows that

AN(z)=czAN&1(z), BN(z)=czBN&1(z).

Thus, if PN(0)=0 but f [N, N](z) exists, then

f [N, N](z)= f [N&1, N&1](z),

that is, the [N&1, N&1] Pade� approximant would need to have an error
of order O(z2N+1).
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Since PN(0) = 0, A[N]
K = A[N]

F and so we would have that
($0 , (A[N]

F ) j $0) =#j for j=0, 1, ..., 2N. But as noted in the remark
following the proof of Proposition 5.11, this can never happen. We
conclude that if PN(0)=0, f [N, N] must fail to exist.

To complete the proof, define AK to be A� if the problem is determinate
and the unique von Neumann extension with eigenvalue zero if the
problem is indeterminate (so AK ?(0)=0). Then the proof of Proposition
5.3 goes through without change and shows that A[N]

K converges to AK in
strong resolvent sense. This implies (5.97). K

As for other f [N+l&1, N](z) for series of Hamburger, we can only define
#( j) moment problems for j an even integer (positive or negative). This
means that we can use (5.49)�(5.59) if l is an even integer and (5.50)�(5.60)
if l is an odd integer. The result is the following:

Theorem 5.32. Let [#n]�
n=0 be a set of Hamburger moments and let

��
n=0 (&1)n #nzn be the associated series of Hamburger. Then:

(i) If l is any odd integer, the Pade� approximants f N+l&1, N](z) exist
if and only if P ( j)

M (0){0 where for l>0, j=l&1, and M=N and if l<0,
j=l+1 and M=N+l&1. The functions that exist converge to a finite
limit fl(z).

(ii) If l is any even integer, the Pade� approximants f [N+l&1, N](z) all
exist and lie in a compact subset in the topology of uniform convergence
on compact subsets of C+ . Any limit point, fl(z), is associated to a von
Neumann solution, \(l), of the #(l) moment problem via

fl(z)= :
l&1

j=0

(&1) j #j z j+(&1)l #lzl |
�

&�

d\(l)(x)
1+xz

if l>0 and

fl(z)={1&#1z& :
&l&1

j=0

(&1) j # (0)
j z j+2

+(&1)l+1 # (0)
&lz&l+2 |

�

&�

d\ (l)(x)
1+xz =

&1

if l<0. In particular, if the #(l) problem is determinate, f [N+l&1, N](z) is
convergent.

(iii) Let l be an even integer. If the #(l) problem is determinate (as a
Hamburger problem), then for l�0, fl+1(z)= fl(z)= } } } = f0(z)= f&1(z),
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and for l�0, fl&1(z)= fl(z)= } } } = f0(z)= f1(z). In particular, if |#j |�
C j+1j!, then all f [N+l&1, N](z) converges to the same l-independent limits as
N � �.

6. SOLUTIONS OF FINITE ORDER

In this section, we will continue the analysis of the indeterminate Ham-
burger moment problem. Throughout, [#n]�

n=0 will be a set of indeter-
minate Hamburger moments and \ will be a solution of (1.1), the moment
problem for #.

We have picked out the von Neumann solutions as coming from self-
adjoint extensions of the Jacobi matrix, A. But in a certain sense, every \
does come from a self-adjoint extension of A ! For let H\=L2(R, d\), let
D(B)=[ f # H\ | � x2 | f (x)| 2 d\(x)<�], and let

(Bf )(x)=xf (x).

Let C[X] be the set of polynomials in x which lies in H\ since all moments
are finite, and let H0=C[X]. Corollary 4.15 says that H0=H\ if and only
if \ is a von Neumann solution. Let A\=B � C[X]. Then to say \ is a
solution of the Hamburger moment problem is precisely to say that A\ is
unitarily equivalent to the Jacobi matrix, A, associated to # under the
natural map (so we will drop the subscript \). In that sense, B is a self-
adjoint extension of A, but not in the von Neumann sense.

B is minimal in the sense that there is no subspace of H\ containing H0

and left invariant by all bounded functions of B (equivalently, left invariant
by all (B&z)&1, z # C"R or by all eiBs, s # R). So (if \ is not a von
Neumann extension) we are in the strange situation where D(B) & H0 is
dense in H0 , B[D(B) & H0]/H0 , but H0 is not invariant for the resolvents
of B !

It is not hard to see that the set of all solutions of the moment problem
is precisely the set of all self-adjoint ``extensions'' of A in this extended
sense, which are minimal (H0 is cyclic for B) and modulo a natural unitary
equivalence. This is a point of view originally exposed by Naimark
[24�27] and developed by Livsic [21], Gil de Lamadrid [7], and Langer
[20]. See the discussion of Naimark's theory in Appendix 1 of [2].

In the language of Cayley transforms, the extensions associated to \ 's
that we will call of order at most n below are parametrized by unitary
maps, U, from K+ �Cn to K& �Cn with U1 , U2 equivalent if and only if
there is a unitary map V : Cn � Cn so U1(1�V)=(1�V) U2 . From this
point of view, these extensions are then parametrized by the variety of con-
jugacy classes of U(n+1) modulo a U(n) subgroup. This has dimension
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(n+1)2&n2=2n+1. Our parametrization below in terms of a ratio of two
real polynomials of degree at most n also is a variety of dimension 2n+1,
showing the consistency of the parametrization. (The \ 's of exact order n
will be a manifold.)

Given any \, we define the order of \,

ord(\)=dim(H\ �H0)

so the von Neumann solutions are exactly the solutions of order 0. Our
main result in this section will describe all solutions of finite order which
turn out to correspond precisely to those \ 's whose Nevanlinna function
8\ are ratios of real polynomials.

They will also be \ 's for which d\�>n
i=1 |x&zi |

2 is the measure of a
determinate moment problem. We will therefore need some preliminaries
about such problems. Given z1 , ..., zn # C+ , by using partial fractions we
can write for x real,

xm

>n
i=1 |x&zi|

2=Pm&2n(x; z1 , ..., zn)+ :
n

i=1
_ zm

i

zi&z� i

1
x&zi

+
z� m

i

z� i&zi

1
x&z� i &

(6.1)

where Pm&2n is a polynomial in x of degree m&2n. To see (6.1), write
>n

i=1 |x&zi |
2=>n

i=1 (x&zi)(x&z� i) and analytically continue. The sum
in (6.1) comes from computing the residues of the poles of these functions.
Define

1 (0)
m (z1 , ..., zn)=E #

x(Pm&2n(x; z1 , ..., zn)), (6.2)

where, as usual, E #
x is the expectation with respect to any solution of the

moment problem. For `1 , ..., `n # C+ , let

1m(z1 , ..., zn ; `1 , ..., `n)=1 (0)
m (z1 , ..., zn)+ :

n

i=1
_ zm

i

zi&z� i
`i+

z� m
i

z� i&zi

�̀ i & . (6.3)

Theorem 6.1. Fix z1 , ..., zn and `i , ..., `n in C+ . There is a one-one corre-
spondence between & # MH(1(z1 , ..., zn ; `1 , ..., `n)) and those \ in MH(#)
which obey

|
d\(x)
x&zi

=`i , i=1, ..., n (6.4)
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under the association

d\(x) W d&(x)= `
n

i=1

|x&zi |
&2 d\(x). (6.5)

That is, \ has moments [#m]�
m=0 with subsidiary conditions (6.4) if and only

if & given by (6.5) has the moments [1m(z1 , ..., zn ; `1 , ..., `n)]�
m=0 .

Proof. This is pure algebra. The functions [xm]�
m=0 , [1�(x&zi)]n

i=1

are linearly independent as analytic functions (finite sums only). (6.1) says
that each function xm�>n

i=1 (x&zi)(x&z� i)#Qm(x) is in the span, S, of
these functions. On the other hand, since >n

i=1 (x&zi)(x&z� i)#L(x) is a
polynomial in x, and xlQm(x)=Ql+m(x), L(x) Qm(x) is in the span of the
[Qm(x)]. Similarly, since L(x)�(x&z i) is a polynomial, L(x) Q0(x)
1�(x&zi) lies in that span.

Thus, [Qm(x)] is also a basis of S. It follows that there is a one-one
correspondence between assignments of numbers Qm(x) [ 1m and of
assignments xm [ #m , 1�(x&zi) [ `i , 1�(x&z� i) [ *i since each defines a
linear functional on S. For the linear functional to be real in 1m represen-
tation, all 1m must be real. For reality in (#, `, *) representation, we must
have #m real and *i= �̀ i . (6.3) is just an explicit realization of the map from
#, `, �̀ to 1. Thus, a real d\ has moments #m with ` i conditions if and only
if � xm >n

i=1 |x&zi |
&2 d\(x)=1m for all m. Since (6.5) shows & is positive

if and only if \ is, we see that the claimed equivalence holds. K

As an aside of the main theme of this section, we can construct deter-
minate Hamburger moments quite close to indeterminate ones. The result
is related to Corollary 4.21.

Theorem 6.2. Let [#n]�
n=0 be a set of Hamburger moments. Then for

any a # (0, �), there is a ca so that the moment problem with moments

#~ 2n+1=0

#~ 2n=#2n&a2#2n&2+a4#2n&2+ } } } +(&1)n a2n#0

+(&1)n+1 caa2n+2 (6.6)

is a determinate moment problem.

Proof. Let \1 be any solution for the Hamburger problem. Since
1
2 [d\1(x)+d\1(&x)]=d\~ has moments

| xm d\~ (x)={0
#2m

m odd
m even

##$2m ,
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we can suppose #2m+1=0. Let \ be a von Neumann solution to the #$m
moment problem which is invariant under x � &x. If the #$m problem is
determinate, then the unique solution is invariant. Otherwise, this follows
from the proof of Theorem 2.13. Let d+(x)=d\(x)�(1+a2x2). By Corollary
4.15 and Theorem 6.1, \ is the unique solution of the #$ moment problem
with � d\(x)�(x&ia&1)#`a&1 . Thus, the 1m(ia&1, `a&1) problem is deter-
minate. If ca=a&1 Im `a&1 , then a calculation using the geometric series
with remainder shows that 1m(&ia&1, `a&1)=#~ m given by (6.6). K

Returning to the main theme of this section, we next examine when a
Herglotz function is a real rational function. Define for z # C+ ,

.z(x)#
1+xz
x&z

(6.7a)

viewed as a continuous function on R _ [�] with

.z(�)=z. (6.7b)

If d_(x)=[d+(x)�(1+x2)]+c$� as a finite measure on R _ [�], then
(1.19) can be rewritten as

8(z)=d+|
R _ [�]

.z(x) d_(x). (6.8)

If _([�])=0 and � |x| d_(x)<�, define d� =d&� x d_(x).

Proposition 6.3. A Herglotz function is a ratio of two real polynomials
if and only if the representation (6.8) has a _ with finite support. If _ has
exactly N points in its support, there are three possibilities for the degrees of
P, Q in 8(z)=P(z)�Q(z) with P, Q relatively prime polynomials:

(i) (_([�])=0, d� =0), deg P=N&1, deg Q=N

(ii) (_([�])=0, d� {0), deg P=deg Q=N

(iii) (_([�]){0), deg P=N, deg Q=N&1

In all cases, we say N=max(deg(P), deg(Q)) is the degree of 8.

Proof. Elementary. K

Remark. The set of _'s with exactly N pure points is a manifold of
dimension 2N (N points, N weights). d # R is another parameter so the set
of such 8's is a manifold of dimension 2N+1.
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As a final preliminary, for any z # C"_(B)#C"supp(d\) and n=1, 2, ...,
we introduce the functions en(z) on supp(d\),

en(z)(x)=
1

(x&z)n ,

thought of as elements of H\=L2(R, d\).
The main result of this section is:

Theorem 6.4. Let # be a set of indeterminate Hamburger moments and
let \0 # MH(#). Fix N # [0, 1, ...]. Then the following are equivalent:

(1) \0 has order at most N.

(2) For some set of distinct z1 , ..., zN # C"R, H0 _ [e1(zj)]N
j=1 span H\0

.

(3) For any set of distinct z1 , ..., zN # C"R, H0 _ [e1(zj)]N
j=1 span H\0

.

(4) For some z0 # C"R, H0 _ [ej (z0)]N
j=1 span H\0

.

(5) For any z0 # C"R, H0 _ [ej (z0)]N
j=1 span H\0

.

(6) For some set of z0 , z1 , ..., zN # C+ and `j=G\0
(zj) there is no

other \ # MH(#) with G\(zj)=`j .

(7) For all sets of z0 , z1 , ..., zN # C+ and `j=G\0
(zj), there is no

other \ # MH(#) with G\(zj)=`j .

(8) For some z0 , z1 , ..., zN # C+ and `j=G\0
(z j), the 1(z0 , ..., zN ;

`0 , ..., `N) moment problem is determinate.

(9) For any z0 , z1 , ..., zN # C+ and `j=G\0
(z j), the 1(z0 , ..., zN ;

`0 , ..., `N) moment problem is determinate.

(10) For some z1 , ..., zN # C+ and ` j=G\0
(zj), \0 is a von Neumann

solution of the 1(z1 , ..., zN ; `1 , ..., `N) moment problem.

(11) For any z1 , ..., zN # C+ and `j=G\0
(zj), \0 is a von Neumann

solution of the 1(z1 , ..., zN ; `1 , ..., `N) moment problem.

(12) The Nevanlinna function 8 of \0 is a rational function of degree
at most N.

In particular, the Nevanlinna function 8 of \0 has degree N if and only if
\0 has order N. Moreover, if one and hence all those conditions hold, \0 is
an extreme point in MH(#) and is also a pure point measure.

Remark. The measures obeying (1)�(12) are what Akhiezer calls
canonical solutions of order N.

Lemma 6.5. If . # H0 and z � _(B), then

(B&z)&1 . # H0+[e1(z)].
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Proof. Since (B&z)&1 is bounded and H0+[e1(t)] is closed, it suffices
to prove this for .(x)=P(x), a polynomial in x. But then

(B&z)&1 .=(x&z)&1 P(x)=P(z)(x&z)&1+
(P(x)&P(z))

x&z

=P(z) e1(z)+R(x)

for a polynomial R, that is, (B&z)&1 . # H0+e1(z). K

Lemma 6.6. Suppose that z0 , z1 , ..., zl # C"_(B) are distinct. If em(z0)
is in the span of H0 _ span[[ej (z0)]m&1

j=1 ] _ span[[e1(zk)]l
k=1], then so is

em+1(z0).

Remark. l can be zero.

Proof. By hypothesis, for some . # H0 and [:j]m&1
j=1 and [;k]l

k=1 in C,

em(z0)=.+ :
m&1

j=1

:jej (z0)+ :
l

k=1

;ke1(zk).

Apply (B&z0)&1 to this using (B&z0)&1 ej (z0)=ej+1(z0), Lemma 6.5,
and (B&z0)&1 e1(zk)=(z0&zk)&1 [e1(z0)&e1(zk)] and we see that
em+1(z0) is in the requisite span. K

Proposition 6.7. Let l=ord(\)<�. Then for any set [zi]l
i=1 of l

distinct points in C"_(B), H0 _ [e1(zi)]l
i=1 span H\ .

Proof. By the Stone�Weierstrass theorem, linear combinations of
[(x&z)&1 | z # C"_(B)] are dense in the continuous functions on _(B)
vanishing at infinity, and so they are dense in L2(R, d\). It follows that we
can find [zi]l

i=1 so that H0 _ [e1(zi)]l
i=1 span H\ .

Pick z0 # C"_(B) and let W=(B&zl)(B&z0)&1. Then W is bounded
with bounded inverse, so it maps dense subspaces into dense subspaces. By
Lemma 6.5, W[H0]/H0+[e1(z0)]. For i=1, ..., l&1, We1(zi)=e1(zi)+
((z0&zl)�(z0&zi))[e1(z0)&e1(zi)] and We1(zl)=e1(z0). Thus, W maps
the span of [e1(zi)]l

i=1 into [e1(zi)]l&1
i=0 . So H0 _ [e1(zi)]l&1

i=0 span H0 . By
successive replacement, we can move the zi 's to an arbitrary set of distinct
points. K

Remark. Proposition 6.7 shows (1)�(3) of Theorem 6.4 are equivalent.

Proposition 6.8. Suppose that l=ord(\)<�. Then for any z0 # C"_(B),
H0 _ [ej (z0)]l

j=1 span H\ .
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Proof. By hypothesis, there must be some dependency relation

.+ :
l+1

j=1

:jej (z0)=0 (6.10)

for . # H0 and some (:1 , ..., :l+1){0. Let k+1=max[ j | :j {0]. Then
solving (6.10) for ek+1(z0), we see that ek+1(z0) lies in the span of
H0 _ [ej (z0)]k

j=1 ; and so by induction and Lemma 6.6, all em(z0) lie in this
span and so in the span of H0 _ [ej (z0)]l

j=1 . e1(z) is an analytic function
in C"R with Taylor coefficients at z0 equal to en(z0), so e1(z) lies in the
span of H0 _ [ej (z0)]l

j=1 for z in the same half plane as z0 . By Proposi-
tion 6.7, these e1 's together with H0 span H\ . K

Remark. Proposition 6.8 shows that (1), (4), (5) of Theorem 6.4 are
equivalent.

Proposition 6.9. Fix distinct points z1 , ..., zl # C"R. Let

d+(x)= `
l

i=1

|x&zi |
&2 d\(x).

Then the polynomials are dense in L2(R, d+) if and only if H0 _
[e1(zj)]l

j=1 span H\ .

Proof. Let U be the unitary map from H\ to H+ given by

(U f )(x)= `
l

i=1

(x&zi) f (x).

Then U maps the span of C[X] _ [e1(zi)]l
i=1 onto C[X] for P(x) is a

polynomial of degree m if and only if >l
i=1 (x&z)&1 P(x) is a linear com-

bination of a polynomial of degree max(0, m&l) and [(x&zi)
&1]l

i=1 .
Thus, the density assertions are equivalent. K

Remark. Proposition 6.9 and Corollary 4.15 show the equivalence of
(2), (3), (10), and (11) of Theorem 6.4 (given that we already know that
(2) and (3) are equivalent).

Proposition 6.10. If ord(\0) is finite, then \0 is a pure point measure
with discrete support.

177CLASSICAL MOMENT PROBLEM



File: DISTL2 I72897 . By:CV . Date:11:06:98 . Time:10:45 LOP8M. V8.B. Page 01:01
Codes: 2931 Signs: 1878 . Length: 45 pic 0 pts, 190 mm

Proof. Let l=ord(\0). Pick distinct [zi]l
i=1 in C+ . Then by Proposi-

tions 6.7 and 6.9, the polynomials are dense in L2(R, d+l) where for
k=0, 1, ..., l, we set

d+k(x)= `
k

j=1

|x&zi |
&2 d\(x).

Let k0 be the smallest k for which the polynomials are dense in L2(R, d+k).
If k0=0, then d\ is a von Neumann solution of the # problem. If k0>0,
then d+k0&1 is not a von Neumann solution of its moment problem. So by
Proposition 4.15 and Theorem 6.1, the moment problem for 1 (0)

m #
1m(z1 , ..., zk0&1 , zk0

; `1 , ..., `k0&1 , `k) is indeterminate. But since the polyno-
mials are dense in L2(R, d+k), d+k0

is a von Neumann solution of an
indeterminate problem.

Either way, d+k0
is a von Neumann solution of an indeterminate

problem. It follows Theorem 4.11 that d+k0
and so d\ is a discrete point

measure. K

As a final preliminary to the proof of Theorem 6.4, we need a known
result about interpolation of Herglotz functions. Given z1 , ..., zn ; w1 , ...,
wn # C+ with the z's distinct, define the n_n matrix D by

Dij (z1 , ..., zn ; w1 , ..., wn)=
wi&w� j

zi&z� j
. (6.11)

Theorem 6.11. Pick z1 , ..., zn # C+ with n�1. There exists a Herglotz
function 8 with

8(zi)=wi , i=1, ..., n (6.12)

if and only if D(z1 , ..., zn ; w1 , ..., wn) is a (not necessarily strictly) positive
definite matrix. Moreover, the following are equivalent, given such a 8:

(1) det D(z1 , ..., zn ; w1 , ..., wn)=0.

(2) There is a unique Herglotz function 8 obeying (6.12).

(3) 8 is a real rational polynomial of degree at most n&1.

Remark. Since (3) is independent of the choice of [zi]n
i=1 , so are (1), (2).

We will sketch a proof of this result (fleshing out some arguments in
Ref. 1) below.

Proof of Theorem 6.4. As already noted, Propositions 6.7, 6.8, and 6.9
show that (1), (2), (3), (4), (5), (10), and (11) are equivalent. Theorem 6.1
and Corollary 4.15 prove the equivalence of (10) and (11) with (6), (7), (8),
and (9). By Theorems 4.14 and 6.11, (6) and (12) are equivalent.
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Since ord(\)=N is equivalent to ord(\)�N and the negation of
ord(\)�N&1, we see that 8\0

has degree precisely equal to ord(\0). That
\0 is then an extreme point is proven in Appendix B. K

We conclude this section by proving Theorem 6.11.

Proposition 6.12. Let 8 be a Herglotz function and let wi=8(zi),
i=1, ..., n for distinct z1 , ..., zn # C+ . Let D be given by (6.11). Then
D(z1 , ..., zn ; w1 , ..., wn) is (not necessarily strictly) positive definite and det
D=0 if and only if 8 is a real ratio of polynomials of degree n&1 or less.

Proof. Using the Herglotz representation (1.19), we get a representa-
tion of Dij ,

wi&w� j

zi&z� j
=c+| d+(x)

1
x&zi

1
x&z� j

,

from which we obtain for : # CN:

:
n

i, j=1

:� i :j Dij=c } :
n

i=1

:j }
2

+|
�

&�
d+(x) } :

n

i=1

:i

x i&zi }
2

, (6.13)

proving the positivity.
Suppose det(D)=0. Then there is a non-zero : # Cn so that the right side

of (6.13) is 0. Note that �n
i=1 :i �(x&zi)=>n

i=1 (x&zi)
&1 Q(x), where Q

is a polynomial of degree n&1 if �n
i=1 :i {0 and of degree at most n&2

if �n
i=1 :i=0. Thus, for the right side of (6.13) to vanish for some non-zero

: in Cn, either c{0 and + is supported at n&2 or fewer points, or else
c=0 and + is supported at n&1 or fewer points. Either way, by Proposi-
tion 6.3, 8 is a real rational function of degree at most n&1.

Conversely, suppose 8 is a real rational function of degree precisely
n&1. Then either + is supported at n&1 points (say, x1 , ..., xn&1) or
c{0 and + is supported at n&2 points (say, x1 , ..., xn&2). The map
� : Cn � Cn&1 given by

�j (:)= :
n

i=1

: i

xj&zi

(with �n&1(:)=�n
i=1 :i if c{0) has a non-zero kernel by dimension

counting. Thus, the right side of (6.13) is zero for some : # CN. If degree 8
is smaller than n&1, we can find (:1 , ..., :l) # Cl so that �l

i, j=1 :� i :j Dij=0,
which still implies that det(D)=0. K
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Proposition 6.13. Let z1 , ..., zn ; w1 , ..., wn lie in C+ with the zi distinct.
Suppose the matrix Dij given by (6.11) is (not necessarily strictly) positive
definite. Then there exists a Herglotz function with 8(zi)=wi , i=1, ..., n.

Proof. This is a fairly standard use of the Hahn�Banach theorem. We
will use the representation (6.8) for 8 and the function .z of (6.7). Begin
by noting that without loss of generality, we can suppose zn=i (by map-
ping C+ � C+ with a linear map that takes the original zn to i) and that
Re wn=0 (by adjusting the constant d in (6.8)). Indeed, since

.i (x)#i, (6.14)

this choice Re 8(i)=0 is equivalent to d=0 in the representation (6.8).
Let V be the 2n&1-dimensional subspace of C(R _ [�]), the real-

valued continuous functions on R _ [�] spanned by 1, [Re .zj
( } )]n&1

j=1

and [Im .zj
( } )]n&1

j=1 . Any f # V can be written:

f =An+ :
n&1

j=1

Aj.j (x)+A� j .j (x) (6.15)

with A1 , ..., An&1 # C and An # R. Define a linear functional f : V � R by

l( f )=An Im wn+ :
n&1

j=1

Ajwj+A� jw� j (6.16)

if f has the form (6.15).
We will prove shortly that

f (x)<0 for all x O l( f )>0. (6.17)

Assuming this, we let X=[ f # C(R _ [�] | f (x)>0 for all x] and Y=
[ f # V | l( f )=0]. Since X is open and Y closed, by the separating hyper-
plane version of the Hahn�Banach theorem (see Ref. 33), there is a linear
functional L on C(R _ [�]) so L>0 on X and L�0 on Y. If L is nor-
malized so L(1)=Im wn , it is easy to see that L extends l, and so defines
a measure _ on R _ [�] with

8(zi)#| .zi
(x) d_(x)=wi , i=1, ..., n.

Thus, if (6.17) holds, we have the required 8.
Since f (x)>0 on the compact set R _ [�] implies f #=+ g with g�0

and =>0 (by hypothesis, 1 # V) and Im wn>0, we need only show f �0
implies l( f )�0.
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If f has the form (6.15), we can write

f (x)=
Q(x)

>n&1
j=1 |x&zj |

2 ,

where Q is a polynomial. f�0 implies Q�0. Any real non-negative poly-
nomial has roots either in complex conjugate pairs or double real roots, so
Q must have even degree and have the form

Q(x)=c2 `
l

k=1

|x& yk |2

for suitable y1 , ..., yl # R _ C+ . Thus, with R(x)=c >l
k=1 (x& yk),

f =|h|2 with h(x)=
R(x)

>n&1
j=1 (x&zj)

.

Since f is bounded on R _ [�], deg(R)�n&1, and thus h has the form

h(x)=;n+ :
n&1

j=1

;j (x&zj)
&1. (6.18)

Since (x&zj)
&1=(zj&i)&1[(x&i)�(x&zj)&1], we can rewrite (6.18) as

h(x)= :
n

j=1

:j
x&i
x&z j

for real x. Thus,

f (x)=|h(x)|2= :
n

j=1

:� i :j
x2+1

(x&z� j)(x&zj)
= :

n

j=1

:� i :j _
.zj

(x)&.zi
(x)

zj&z� i &
so that

l( f )= :
n

i, j=1

:� i:j Dij ,

which is non-negative by hypothesis. K

Proof of Theorem 6.11. The first assertion is a direct consequence of
Propositions 6.12 and 6.13. Proposition 6.12 shows the equivalence of (1)
and (3).

To prove (1) O (2), suppose (1) holds and, as in the last proof, we can
suppose that zn=i and Re wn=0. Then by our proof of Proposition 6.12,
the set of points where the measure _ of (6.8) is supported is determined
by the : with �i Dij:j=0 as an n&1 point set x1 , ..., xn&1 (with xn&1=�
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allowed). Thus, any such 8 is of the form P�Q where deg (P)�n&1 and
Q(z)=>n&1

j=1 (z&xj) (if xn&1=�, the product only goes from 1 to n&2).
If 81 and 82 are two solutions of (6.12), they have the same Q but they
could be distinct P 's, say P1 and P2 . But by (6.12), P1(z)&P2(z) vanishes
at z1 , ..., zn . Since P1&P2 is a polynomial of degree n&1, this is only
possible if P1&P2=0, that is, 81=82 . Thus, (1) O (2).

For the converse, suppose the determinant

D(z1 , ..., zn ; w1 , ..., wn)>0. (6.19)

If n=1, since z, w # C+ , it is easy to see there are multiple 8's obeying
(6.12). (For example, as usual we can consider the case z=w=i and then
that 8(z)=z or 8(z)=&z&1.) So we suppose n�2.

Consider the function g(w)=det[D(z1 , ..., zn ; w1 , ..., wn&1)] where we
vary wn . g(w) is of the form c |w|2+dw+d� w� +e with c<0, e real, and d
complex. (c is strictly negative since it is &det(D(z1 , ..., zn&1 ; w1 , ..., wn&1)
and we are supposing (6.19) and n�2.) Thus, the set g(w)�0 is a disk and
since g(wn)>0, wn is in its interior. Let w0 be the center of this disk, R its
radius, and let w(%)=w0+Rei%. Since we have proven (1) O (2), there is a
unique 8 with

8% (zi)=wi , i=1, ..., n&1; 8% (zn)=w(%) (6.20)

and it is a rational function of degree at most n&1.
As usual, we can suppose z1=w1=i so each 8% (z) has the form

8% (z)=|
1+xz
x&z

d_% (x), (6.21)

where d_% is a probability measure on R _ [�]. If %k � %� , and
d_%k

� d\, then the Herglotz function associated to d\ obeys (6.20) for %�

and so it must be 8%�
. It follows (since the probability measures are com-

pact) that d\=d_%�
and thus [d_%] is closed and d_% [ 8% is continuous.

Since a continuous bijection between compact sets has a continuous
inverse, % [ d_% is continuous.

Since 8% is unique, d_% is a pure point measure with at most n&1 pure
points. Since the function is not determined by (z1 , ..., zn&1), there must be
exactly n&1 points. It follows that the points in the support must vary
continuously in %.

Note next that for any %, we can find %$ and t% # (0, 1) so that

wn=t% w(%)+(1+t%) w(%$).
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Suppose that there is a unique 8 obeying (6.12). It follows that
for any %,

8(z)=t%8% (z)+(1&t%) 8%$(z) (6.22)

and thus 8(z) has a representation of the form (6.21) with d_ a point
measure with at most 2n&2 pure points. By (6.22) again, each d_% must
be supported in that 2n&2 point set, and then by continuity, in a fixed
n&1 point set. But if d_% is supported in a fixed %-independent n&1 point
set, so is d_, and thus (6.19) fails. We conclude that there must be multiple
8's obeying (6.12). K

APPENDIX A: THE THEORY OF MOMENTS AND
DETERMINANTAL FORMULAE

The theory of moments has a variety of distinct objects constructed in prin-
ciple from the moments [#n]�

n=0 : the orthogonal polynomials [Pn(x)]�
n=0 ,

the associated polynomials [Qn(x)]�
n=0 , the sums �n

j=0 Pj (0)2 and
�n

j=0 Qj (0)2, the Jacobi matrix coefficients, and the approximations
&(Qn(x)�Pn(x)) and &(Nn(x)�Mn(x)). It turns out most of these objects
can be expressed as determinants These formulae are compact and elegant,
but for some numerical applications, they suffer from numerical round-off
errors in large determinants.

We have already seen two sets of determinants in Theorem 1. Namely,
let HN be the N_N matrix,

HN=\
#0

#1

b
#N&1

#1

#2

b
#N

} } }
} } }

} } }

#N&1

#N

b
#2N&2

+ (A.1a)

and SN , the matrix

SN=\
#1

#2

b
#N

#2

#3

b
#N+1

} } }
} } }

} } }

#N

#N+1

b
#2N&1

+ (A.1b)

and define

hN=det(HN), sN=det(Sn) (A.2)
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(for comparison, DN from Ref. 1 is our hN+1). We will use hN(#) if we need
to emphasize what moments [#n]�

n=0 are involved. Thus, Theorem 1 says
hN>0 for all N is equivalent to solubility of the Hamburger problem and
hN>0, sN>0 for all N is equivalent to solubility of the Stieltjes problem.

There is an interesting use of determinants to rewrite hN and sN in terms
of the moment problem that makes their positivity properties evident.
Suppose d\ obeys (1.1). Then

hN=| det((xa+b
a )0�a, b�N&1) `

N&1

a=0

d\(xa)

=| _ `
n

a=1

xa
a & det((xb

a))0�a, b�N&1 `
N&1

a=0

d\(xa).

Permuting over indices, we see that in >n
a=1 (xa

a) det(xb
a), we can replace

xa by x?(a) for any permutation, ?. Since det(xb
?(a))=(&1)? det(xb

a), we see
that

hN=(N !)&1 | [det((xb
a)0�a, b�N&1)]2 `

N&1

a=0

d\(xa).

Recognizing the Vandermonde determinant, we have

hN=(N !)&1 | `
0�a<b�N&1

(xa&xb)2 `
N&1

a=0

d\(xa). (A.3a)

Similarly,

sN=(N !)&1 | x0 } } } xN&1 `
0�a<b�N&1

(xa&xb)2 `
N&1

a=0

d\(xa). (A.3b)

The most basic formula is:

Theorem A.1. Pn(x) is given by

#0 #1 } } } #n

#1 #2 } } } #n+1

Pn(x)=
1

- hn hn+1

det\ b b b + . (A.4)

#n&1 #n } } } #2n&1

1 x } } } xn

Proof. Let Sn(x) be the determinant on the right side of (A.4). Then for
any solution \ of the moment problem, we have that � Sn(x) x j d\(x) is
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given by the same determinant, but with the last row replaced by #j

#j+1 } } } #j+n . It follows that

| x jSn(x) d\(x)=0 j=0, 1, ..., n&1 (A.5)

=hn+1 j=n.

In particular, since

Sn(x)=hnxn+lower order, (A.6)

we see that

| Sn(x)2 d\(x)=hnhn+1 . (A.7)

From (A.5)�(A.7), it follows that Pn(x)=Sn(x)�- hnhn+1 . K

From (A.4), we can deduce formulae for the coefficients an , bn of a
Jacobi matrix associated to the moments [#n]�

n=0 . Let h� n be the n_n
determinant obtained by changing the last column in HN :

#0 #1 } } } #n&2 #n

h� n=det \ b b b b + .

#n #n+1 } } } #2n&3 #2n&1

Thus (A.4) implies that

Pn(x)=� hn

hn+1 _xn&
h� n

hn
xn&1+lower order& . (A.8)

Theorem A.2. For n�0,

(i) an=\hn hn+2

h2
n+1 +

1�2

(ii) :
n

j=0

bj=
h� n+1

hn+1

.

Proof. By the definition of an and bn , we have that

xPn(x)=an Pn+1(x)+bnPn(x)+an&1Pn&1(x). (A.9)
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Identifying the xn+1 and xn terms in (A.9) using (A.8), we see that

� hn

hn+1

=an �hn+1

hn+2

(A.10)

� hn

hn+1 \&
h� n

hn+=an �hn+1

hn+2 \&
h� n+1

hn+1++bn � hn

hn+1

. (A.11)

(A.10) implies (i) immediately, and given (A.10), (A.11) becomes

bn=
h� n+1

hn+1

&
h� n

hn
,

which implies (ii) by induction if we note the starting point comes from
looking at the constant term in xP0(x)=x=a0 P1(x)+b0 P0(x), which
implies that b0=h� 1 �h1=#1 �#0. K

Remark. (ii) has an alternate interpretation. (A.8) says that h� n+1 �hn+1

is the sum of the n+1 roots of Pn+1(x). But Pn+1(x) is a multiple of the
determinant of the Jacobi matrix A[n+1]

F . So the sum of the roots is just
the trace of A[n+1]

F , that is, �n
j=0 bj .

From (A.4) and Theorem 4.2, (i.e., Qn(x)=EX (Pn(X )&Pn(Y))�(X&Y ),
we immediately get

Theorem A.3.

#0 #1 } } } #n

#1 #2 } } } #n+1

Qn(x)=
1

- hn hn+1

det\ b b b + (A.12)

#n&1 #n } } } #2n&1

Rn, 0(x) Rn, 1(x) } } } Rn, n(x)

where

Rn, j (x)= :
j&1

k=0

#j&1&kxk, j�1 (A.13a)

Rn, j=0(x)=0. (A.13b)

Proof. (x j& y j)�(x& y)=� j&1
k=0 y j&1&kxk so EX ((x j& y j)�(x& y))=

Rn, j (x). K
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Remark. By (A.4), Pn(x) �2n&1
k=0 #kx&k&1 has the same form as (A.4)

but with the bottom row replaced by Sn, 0(x) } } } Sn, n(x) where

Sn, j (x)= :
2n&1

k=0

#kx j&k&1= :
j&1

l=&(2n& j )

#j&1&lxl

=Rn, j (x)+x&1#j+x&2#j+1+ } } } +x&n#j+n&1+O(x&n&1).

Recognizing x&1#j+x&2#j+1+ } } } +x&n&1#j+n&1 as x&1 times the first
row of the matrix in (A.4) plus x&2 times the second row plus . . ., we con-
clude that

Pn(x) \ :
2n&1

k=0

#k x&k&1+=Qn(x)+O(x&n&1)

and thus

&
Qn(x)
Pn(x)

=& :
2n&1

k=0

#k x&k&1+O(x&2n&1)

consistent with the f [N&1, N] Pade� formula (5.28).
We saw the quantity L of (5.29) is important. Here is a formula for it.

Theorem A.4. L=limn � �&(Qn(0)�Pn(0)) and

&
Qn(0)
Pn(0)

=
tn

sn
, (A.14a)

where sN=det(SN) and

tn=&det \
0
#0

b
#n

#0

#1

b
#n+1

#1

#2

b
#n+2

} } }
} } }

} } }

#n

#2n+1

b
#2n&1

+ . (A.14b)

Proof. Follows by putting x=0 in our formula for Pn(x) and Qn(x). K

Next we have explicit formulae for Mn(x) and Nn(x), the polynomials
introduced for Section 5 (see (5.15) and (5.16)).
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Theorem A.5.

#1 #2 } } } #n

#2 #3 } } } #n+1

Mn(x)=
1

sn&1 �
hn

hn+1 \ b b b + (A.15)

#n&1 #n&2 } } } #2n&2

x x2 } } } xn

#1 #2 } } } #2

#2 #3 } } } #n+1

Nn(x)=
1

sn&1 �
hn

hn+1 \ b b b + (A.16)

#n&1 #n&2 } } } #2n&2

Rn, 1(x) Rn, 2(x) } } } Rn, n(x)

where Ri, j (x) is given by (A.13).

Remarks. 1. Pn is given by a (n+1)_(n+1) matrix. To get Mn ,
which has an n_n matrix, we drop the first column and next to last row.

2. It is interesting that (A.15) does not obviously follow from the
basic definition (5.15).

Proof. The right side of (A.15) (call it M� n(x)) has the following proper-
ties:

(1) It is a polynomial of degree n.

(2) It obeys M� n(0)=0.

(3) It obeys Ex(x jM� n(x))=0 for j=0, 1, ..., n&2 since the corre-
sponding matrix has two equal rows.

(4) It obeys M� n(x)=- hn �hn+1 xn+lower order so it has the same
highest degree term as Pn(x).

These properties uniquely determine Mn(x) so (A.15) is proven. (A.16)
then follows from (5.24). K

Remark. By mimicking the argument following Theorem A.3, one finds
that

Mn(x) :
2n&2

k=0

#kx&k&1=Nn(x)+O(x&n)
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so that

&
Nn(x)
Mn(x)

=& :
2n&2

k=0

#k x&k&1+O(x&2n),

consistent with the f [N&1, N&1] Pade� formula used in the proof of
Theorem 6 (at the end of Section 5).

Remarkably, there are also single determinant formulae for �n
j=0 Pj (0)2

and �n
j=0 Qj (0)2.

Theorem A.6. We have that

:
n

j=0

Pj (0)2=
vn

hn+1

(A.17)

:
n

j=0

Q j (0)2=&
wn+2

hn+1

, (A.18)

where vn is given by the n_n determinant,

vn=det \
#2

#3

b
#n+1

} } }
} } }

} } }

#n+1

#n+2

b
#2n
+ (A.19)

and wn+2 by the (n+2)_(n+2) determinant,

0 0 #0 #1 } } } #n&1

0 #0 #1 #2 } } } #n

wn=det \ #0 #1 #2 #3 } } } #n+1+ (A.20)

b b b b b
#n&1 #n #n+1 #n+2 } } } #2n

Remark. Thus by Theorems 3 and 7, indeterminacy for both the Ham-
burger and Stieltjes problems can be expressed in terms of limits of ratios
of determinants. In the Hamburger case, we need (A.17) and (A.18) to have
finite limits in order that the problem be indeterminate. In the Stieltjes
case, (A.17) and (A.14) must have finite limits for indeterminacy to hold.

Proof. We actually prove a stronger formula. Let

Bn(x, y)= :
N

n=0

Pn(x) Pn( y). (A.21)
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We will show that

0 1 x } } } xN

1 #0 #1 } } } #N

Bn(x, y)=&h&1
n+1 det\ y #1 #2 } } } #N+1+ (A.22)

b b b b
yN #N #N+1 } } } #2N

(A.17) then follows by setting x= y=0 and noting that if C=
[Cij]1�i� j�N is an N_N matrix with C11=0, C1j=$2j , and C i1=$i2 ,
then

det((Cij)1�i, j�N)=&det((Cij)3�i, j�N).

(A.18) then follows from Qj (z)=Ex([Pj (x)&Pj (z)]�(x&z)), since

:
N

n=0

Qn(0)2=ExEy([BN(x, y)&BN(x, 0)&BN(0, y)+BN(0, 0)] x&1y&1).

Thus we need only prove (A.22). To do this, let B� N(x, y) be the right
side of (A.22). Consider Ex(B� N(x, y) x j) for 0� j�N. This replaces the
top row in the determinant by (0 #j #j+1 } } } #N+ j). The determinant is
unchanged if we subtract the row ( y j #j } } } #N+ j) from this row. That is,
Ex(B� N(x, y) x j) is given by the determinant with top row (&y j 0 0 } } } 0).
Thus,

Ex(B� N(x, y) x j)=&h&1
n+1(&y j) hn+1= y j.

So, B� N(x, y) is a reproducing kernel. For any polynomial P(x) of degree
N or smaller, Ex(B� N(x, y) P(x))=P( y). But

B� N(x, y)= :
N

j=0

Ex(B� N(x, y) Pj (x)) P j (x)=BN(x, y)

since [Pj (x)]N
j=0 is an orthonormal basis in the polynomials of degree N

or less. Thus (A.22) is proven. K

In terms of the #(l) moment problems (with moments #(l)
j =#l+ j �#l), we

recognize vn as (#2)n&1 hn&1(#(2)). By (A.17) for the #(2) problem,

:
n&1

j=0

P (2)
j (0)=

vn&1(#(2))
hn(#(2))

.
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But hn(#(2))=vn(#)(#2)&n and vn&1(#(2))=#1&n
2 yn&1(#) where

yn&1=\
#4

#5

b
#n+1

} } }
} } }

} } }

#n+2

#n+3

b
#2n
+ . (A.23)

Thus, using Proposition 5.13:

Theorem A.7.

#&1
2 \ :

n

j=0

P j (0)2+ \ :
n&1

j=0

P(2)
j (0)2+=

yn&1

hn+1

.

In particular, the Hamburger problem is determinate if and only if
limn � � yn&1 �hn+1=�.

So we have a simple ratio of determinants to determine determinacy.

APPENDIX B: THE SET OF SOLUTIONS OF THE MOMENT
PROBLEM AS A COMPACT CONVEX SET

In this appendix, we will prove (following [1]) that MH(#) and MS(#)
are compact convex sets whose extreme points are dense. Each set is a sub-
set of M+(R _ [�]), the set of measures on the compact set R _ [�].
This set, with the condition � d\(x)=#0 , is a compact space in the topol-
ogy of weak convergence (i.e., � f (x) d\n(x) � � f (x) d\(x) for continuous
functions f on R _ [�]).

Theorem B.1. MH(#) and MS(#) are closed in the weak topology and so
are compact convex sets.

Remark. Since the xn 's are unbounded, this does not follow from the
definition of the topology without some additional argument.

Proof. By Propositions 4.4 and 4.13, + # MH(#) if and only if

| (x&z0)&1 d+(x) # D(z0) (B.1)

for all z0 # C. The set of +'s that obey (B.1) for a fixed z0 is closed since
D(z0) is closed and (x&z0)&1 is in C(R _ [�]). Thus, the intersection
over all z0 is closed.

MS(#)=MH(#) & [+ | � f (x) d+(x)=0 if supp f /(&�, 0)] is an inter-
section of closed sets. K
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Remark. To get compact sets of measures, we need to consider
R _ [�] rather than R. Thus a priori, the integral in (B.1) could have a
point at infinity giving a constant term as z0=iy with y � �. Since
D(z0) � [0] as z0=iy with y � �, this term is absent.

Theorem B.2 (Naimark). + # MH(#) (resp. MS(#)) is an extreme point
if and only if the polynomials are dense in L1(R, d\).

Remark. Compare with density in L2(R, d\) which picks out the
von Neumann solutions.

Proof. This is a simple use of duality theory. The polynomials fail to be
dense if and only if there exists a non-zero F # L�(R, d\) so that

| xnF(x) d\(x)=0 (B.2)

for all n. We can suppose that &F&�=1, in which case d\\=(1\F ) d\
both lie in MH(#) with \= 1

2 (\++\&), so \ is not extreme.
Conversely, suppose \= 1

2 (\++\&) with \+ {\& and both in MH(#).
Then \\�2\ so \+ is \-absolutely continuous, and the Radon�Nikodyn
derivative, d\+ �d\, obeys &d\+�d\&��2. Let F=1&(d\+ �d\), so
&F&��1 and F{0 since \+ {\& . Then

| F(x) xn d\=| xn d\&| xn d\+=0.

Thus, we have proven the result for MH(#). Since MS(#)=
[\ # MH(#) | � f (x) d\(x)=0 for f in C(R _ [�]) with support in
(&�, 0)], MS(#) is a face of MH(#), so extreme points of MS(#) are
exactly those extreme points of MH(#) that lie in MS(#). K

Theorem B.3. Let \ # MH(#) have ord(\)<�. Then \ is an extreme
point.

Proof. By Theorem 6.4, for some z1 , ..., zn # C+ , we have that the poly-
nomials are dense in L2(R, >n

j+1 |x&z j |
&2 d\). For any polynomially

bounded continuous function

| | f (x)| d\(x)� \| | f (x)|2 `
n

j=1

|x&zj |
2 d\(x)+

1�2

\| `
n

j=1

(x&zj)
2 d\(x)+

1�2

by the Schwarz inequality. It follows that the identification map is con-
tinuous from L2(R, >n

j=1 (x&z)&2 d\) into L1(R, d\), so the polynomials
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are dense in L1-norm in the continuous functions, and so in L1(R, d\).
By Theorem B.2, \ is an extreme point. K

Theorem B.4. The extreme points are dense in MH(#) (and in MS(#)).

Proof. The finite point measures are dense in the finite measures on
R _ [�]. Thus, by the Herglotz representation theorem in form (6.8), if 8
is a Herglotz function, there exist real rational Herglotz functions 8n so
that 8n(z) � 8n(z) for each z # C+ .

Now let \ # MH(#) and let 8\ be the Nevanlinna function of \. Let 8n

be as above and \n=\,n
. Then by (4.35), G\n

(z) � G\(z) for each z # C+

and so \n � \ weakly. By Theorems 6.4 and B.3, each such \n is an
extreme point.

For the Stieltjes case, we need only note that by Theorem 4.18 and the
remark after it, if \ # MS(#), then the approximating 8n 's can be chosen so
that \,n

# MS(#). K

Theorem B.5. For any indeterminate set of Hamburger moments [#n]�
n=0 ,

MH(#) has extreme points \ with ord(\)=�.

Proof. We first pick positive :j strictly decreasing so that for any
\ # MH(#) we have that

sup
n

| `
n

j=1

(1+:2
j x2)2 d\(x)�2. (B.3)

We can certainly do this as follows: Since the integral only depends on the
moments #j we need only do it for some fixed \0 # MH(#). Since

lim
:1 a 0 | (1+:2

1 x2)2 d\(x)=1,

we can pick :1>0 so

| (1+:2
1 x2)2 d\(x)<2.

We then pick :2 , :3 , ... inductively so the integral is strictly less than 2.
Then the sup in (B.3) is bounded by 2. The product must be finite for a.e.
x w.r.t. d\, so

:
�

j=1

:2
j <�. (B.4)
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So if

gn(x)= `
n

j=1

(1+:2
j x2),

then for any real x,

g(x)= lim
n � �

gn(x)

exists, and by (B.3),

| g(x)2 d\(x)<�

for any \ # MH(#).
Now pick `1 , `2 , ... in C+ and \1 , \2 , ... in MH(#) inductively so \k

obeys

| (x&i:&1
j )&1 d\k(x)=`j , j=1, ..., k (B.5)

and then `k+1 is the middle of the disk of allowed values for
� (x&i:&1

j+1)&1 d\(x) for those \ in MH(#) which obey (B.5). Pick a sub-
sequence of the \j 's which converges to some \� # MH(#). Then \� obeys
(B.5) for all k.

Let

Mk=[\ # MH(#) | \ obeys (B.5)]

and

M�=, Mk .

Define for all n, m,

1 (n)
m =| xm `

n

j=1

(1+:2
j x2)&1 d\n(x).

By Theorem 6.1, + # MH(1 (n)) if and only if d\# gn d+ lies in Mk . 1 (n)
m is

decreasing to 1 (�)
m and

1 (�)
m =| xmg(x)&1 d\(x)

by a simple use of the monotone convergence theorem.
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We claim that + # MH(1 (�)) if and only if d\= g d+ lies in M� . For

#n= lim
n � � | xmg(x)&1 gn(x) d\(x)

and the right side only depends on the moments 1 (�)
m and similarly for

calculation of � (x&i:j)
&1 d\(x).

Now let + be a von Neumann solution of the 1 (�) moment problem and
d\= g d+. Since � g2 d\<� by construction, the proof of Theorem B.3
shows that \ is an extreme point. On the other hand, since \ obeys (B.5)
and `j is not in the boundary of its allowed circle, ord(\)=�. K

APPENDIX C: SUMMARY OF NOTATION AND
CONSTRUCTIONS

Since there are so many objects and constructions associated to the
moment problem, I am providing the reader with this summary of them
and where they are discussed in this paper.

C1. Structure of the Set of Moments

[#n]�
n=0 is called a set of Hamburger moments if there is a positive

measure \ on (&�, �) with #n=� xn d\(x) and a set of Stieltjes moments
if there is a \ with support in [0, �). We take #0=1 and demand supp (\)
is not a finite set. Theorem 1 gives necessary and sufficient conditions for
existence. If there is a unique \, the problem is called determinate. If there
are multiple \'s, the problem is called indeterminate. If a set of Stieltjes
moments is Hamburger determinate, it is a fortiori Stieltjes determinate.
But the converse can be false (see the end of Section 3).

MH(#) (resp. MS(#)) denotes the set of all solutions of the Hamburger
problem (resp. all \ # MH(#) supported on [0, �)). They are compact
convex sets (Theorem B.1) whose extreme points are dense (Theorem B.4).
Indeterminate Hamburger problems have a distinguished class of solutions
we have called von Neumann solutions (called N-extremal in Ref. 1 and
extremal in Ref. 35). They are characterized as those \ # MH(#) with the
polynomials dense in L2(R, d\). They are associated to self-adjoint exten-
sions Bt of the Jacobi matrix associated to # (see C4 below for the defini-
tion of this Jacobi matrix). The parameter t lies in R _ [�] and is related
to Bt and the solution +t # MH(#) by

t=($0 , B&1
t $0)=| x&1 d+t(x). (C.1)
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In the indeterminate Stieltjes case, there are two distinguished solutions:
+F , the Friedrichs solution, and +K , the Krein solution. Both are
von Neumann solutions of the associated Hamburger problem and are
characterized by inf[supp(+F)]>inf[supp \] for any other \ # MH(#)
and by +K ([0])>0 and +K ([0])>\([0]) for any other \ # MH(#) (see
Theorems 3.2 and 4.11 and 4.17). All solutions of the Stieltjes problem lie
between +F and +K in the sense of (4.42) (see Theorem 5.10).

We define

C+=[z # C | Im z>0].

For any probability measure \, we define its Stieltjes transform as a func-
tion of C"supp(\) by

G\(z)=|
d\(x)
x&z

.

These functions map C+ to C+ and have an asymptotic series

G\(z)t &z&1 \ :
�

j=0

#jz& j+ (C.2)

as |z| � � with min( |Arg(z)|, |Arg(&z)| )>=. (C.2) characterizes MH(#)
and the asymptotics are uniform over MH(#) (Proposition 4.13).

For an indeterminate moment problem, we defined ord(\), the order
of \, to be the codimension of the closure of the polynomials in L2(R, d\).
The solutions of finite order are dense in MH(#) and in MS(#), and each
is an extreme point. Solutions of finite order (and, in particular, the von
Neumann solutions) are discrete pure point measures; equivalently, their
Stieltjes transforms are meromorphic functions (Theorems 4.11 and 6.4).

C2. Nevanlinna Parametrization

We used F to denote the analytic maps of C+ to C� + where the closure
is in the Riemann sphere. The open mapping theorem implies that if 8 # F,
either 8(z)#t for some t # R _ [�] or else 8 is a Herglotz function which
has a representation of the form (1.19).

Associated to any indeterminate moment problem are four entire
functions, A(z), B(z), C(z), D(z), obeying growth condition of the form
| f (z)|�c= exp(= |z| ). We defined them via the transfer matrix relation
(4.16), but they also have explicit formulae in terms of the orthogonal poly-
nomials, P and Q (defined in C4 below)��these are given by Theorem 4.9.
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We define a fractional linear transformation F(z) : C _ [�] � C _ [�]
by

F(z)(w)=&
C(z) w+A(z)
D(z) w+B(z)

. (C.3)

For indeterminate Hamburger problems, there is a one-one corre-
spondence between \ # MH(#) and 8 # F given by

G\(z)=F(z)(8(z))=&
C(z) 8(z)+A(z)
D(z) 8(z)+B(z)

(C.4)

for z # C+ (Theorem 4.14). 8 is called the Nevanlinna function of \,
denoted by 8\ . The von Neumann solutions correspond precisely to
8(z)=t where t is given by (C.1) (Theorem 4.10). The solutions of finite
order correspond precisely to the case where 8 is a ratio of real polyno-
mials (Theorem 6.4).

Given a set of Stieltjes moments, the \ # MS(#) are precisely those
\ # MH(#) whose Nevanlinna function has the form (Theorem 4.18)

8(z)=d0+|
�

0

d+(x)
x&z

with � d+(x)<� and d0�tF=� d\F (x)=($0 , A&1
F $0).

For z # C+ , the image of C� + _ [�] under F(z) is a closed disk denoted
by D(z). Von Neumann solutions \ have G\(z) # �D(z) for all z while other
solutions have G\(z) # D(z) int for all z (Theorem 4.3, Proposition 4.4, and
Theorem 4.14).

C3. Derived Moment Problems

Any set of moments has many families of associated moments. For each
real c, #(c) is defined by

#n(c)= :
n

j=0
\ n

j+ c j#n& j . (C.5)

There is a simple map (\ [ \( }&c)) that sets up a bijection between
MH(#) and MH(#(c)) and, in particular, # is Hamburger determinate if and
only if #(c) is Hamburger determinate. But the analog is not true for the
Stieltjes problem. Indeed, (end of Section 3), if # is a set of indeterminate
Stieltjes moments and cF=&inf supp(d+F), then #(c) is a set of Stieltjes
moments if and only if c�cF , and it is Stieltjes determinate if and only if
c=cF . The orthogonal polynomials for #(c) and # are related via P (#(c))

N (z)=
PN(z&c).
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Given a set of Stieltjes moments [#n]�
n=0 , one defines Hamburger

moments [1n]�
n=0 by

12m=#m , 12m+1=0. (C.6)

There is a simple map (d\ [ d+(x)= 1
2/[0, �)(x) d\(x2)+ 1

2/&�, 0](x) d\(x2))
that sets up a bijection between MH(#) and those + # MH(1 ) with
d+(&x)=d+(x). Then # is Stieltjes determinate if and only if the 1 problem
is Hamburger determinate (Theorem 2.13). There are simple relations
between the orthogonal polynomials for # and those for 1 ((5.89)�(5.92)).

For l=1, 2, ..., define

# (l)
j =

#l+ j

#l

. (C.7)

If # is a set of Stieltjes moments, so are #(l) for all l, and if # is a set of
Hamburger moments, so are #(l) for l=2, 4, .... The map \ [ d\(l)=
xl(d\(x)�#l) is a map from MH(#) to MH(#(l)) which is injective. But in
the indeterminate case, it is not, in general, surjective. If # is indeterminate,
so is #(l), but the converse may be false for either the Hamburger or
Stieltjes problems (Corollary 4.21). For general l, the connection between
the orthogonal polynomials for # and #(l) is complicated (see the proof of
Proposition 5.13 for l=2), but (see the remarks following Theorem 5.14)

P (1)
N (z)=

dN[PN(0) PN+1(z)&PN+1(0) PN(z)]
z

Given a set of Hamburger moments [#j]�
j=0 , one defines a new set

[# (0)
j ]�

j=0 by the following formal power series relation:

_ :
�

n=0

(&1)n #nzn&
&1

=1&#1z+(#2&#2
1) z2 \ :

�

n=0

(&1)n # (0)
n zn+ . (C.8)

This complicated formula is simple at the level of Jacobi matrices. If
[an]�

a=0 , [bn]�
n=0 (resp. [a (0)

n ]�
n=0 , [b (0)

n ]�
n=0) are the Jacobi matrix coef-

ficients associated to # (resp. #(0)), then

a (0)
n =an+1 , b (0)

n =bn+1 .

The map \ [ \~ given by (5.53) sets up a bijection between MH(#) and
MH(#(0)), and, in particular, # is a Hamburger determinate if and only if
#(0) is (Proposition 5.15). This is not, in general, true in the Stieltjes case
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(see Proposition 5.17). There is a simple relation between the orthogonal
polynomials for # and for #(0); see Proposition 5.16. In particular,

P (0)
N (z)=a0QN+1(z). (C.9)

For l=&1, &2, ..., we defined

#(l)=(#(0)) (&l)=
# (0)

j&l

# (0)
&l

. (C.10)

C4. Associated Polynomials

Given a set of Hamburger moments, the fundamental orthogonal poly-
nomials PN(z) are defined by requiring for any \ # MH(#) that

| P j (x) Pl(x) d\(x)=$jl (C.11)

and PN(x)=cNNxN+ lower order terms with cNN>0. They obey a three-
term recursion relation

xPN(x)=aN PN+1(x)+BNPN(x)+aN&1 PN&1(x). (C.12)

The Jacobi matrix A associated to # is the tridiagonal matrix given by
(1.16).

The associated polynomials QN(x) are of degree N&1 and defined to
obey (C.12) but with the starting conditions, Q0(x)=0, Q1(x)=1�a0. They
are related to PN by (Theorem 4.2)

QN(x)=|
PN(x)&PN( y)

x& y
d\( y) (C.13)

for any \ # MH(#). As noted in (C.9), they are up to constants, orthogonal
polynomials for another moment problem, namely, #(0).

In the Stieltjes case, we defined polynomials MN by

MN(x)=PN(x)&
PN(0) PN&1(x)

PN&1(0)
. (C.14)

They vanish at x=0 so MN(x)�x is also a polynomial. It is of degree N&1
and is up to a constant, the principal orthogonal polynomial of the
moment problem #(1). NN(x) is defined analogously to (C.13) with PN

replaced by MN . In Section 5, it was useful to change the normalizations
and define multiples of PN(&x), QN(&x), MN(&x), and NN(&x) as func-
tions UN(x), VN(x), GN(x), HN(x) given by (5.71)�(5.74).

199CLASSICAL MOMENT PROBLEM



File: DISTL2 I72919 . By:CV . Date:11:06:98 . Time:10:46 LOP8M. V8.B. Page 01:01
Codes: 2677 Signs: 1812 . Length: 45 pic 0 pts, 190 mm

C5. Pade� Approximants and Finite Matrix Approximations

If [#n]�
n=0 is a set of Hamburger (resp. Stieltjes) moments, the formal

power series ��
n=0 (&1)n #nzn is called a series of Hamburger (resp. a series

of Stieltjes). Formally, it sums to

|
d\(x)
1+xz

if \ # MH(#). The Pade� approximants f [N, M](z) to these series, if they exist,
are defined by (5.25)�(5.27) as the rational function which is a ratio of a
polynomial of degree N to a polynomial of degree M, whose first
N+M+1 Taylor coefficients are [(&1)n #n]N+M

n=0 .
For a series of Stieltjes, for each fixed l=0, \1, ...,

lim
N � �

f [N+l&1, N](z)# fl(z)

exists for all z # C"(&�, 0) and defines a function analytic there. Indeed,
for x # [0, �), (&1)l f [N+l&1, N](x) is monotone increasing (Theorem 6,
Theorem 5.14, and Theorem 5.18). Moreover,

f0(z)=|
d\F (x)
1+xz

, f1(z)=|
d\K (x)
1+xz

,

where \F , \K are the Friedrichs and Krein solutions of the moment
problem. In particular, the moment problem is Stieltjes determinate if and
only if f0= f1 .

There is a connection between f [N+l&1, N](z) and the moment problems
#(l) and #(l&1) (if l<0, #(l) and #(l+1)) given in Theorem 5.14 and
Theorem 5.18. In particular, if l>0 and #(l) is Stieltjes determinate, then
f&1(z)= f0(z)= } } } = fl+1(z), and if l<0 and #(l) is Stieltjes determinate,
then f1(z)= f0(z)= } } } = fl(z)= fl&1(z).

The situation for series of Hamburger is more complicated, but, in general,
f [N+l&1, N](z) converges for z # C+ and l=\1, \3, ... (Theorem 5.31
and Theorem 5.32; see Theorem 5.31 for issues of existence of the Pade�
approximant).

There are connections between the Pade� approximants and the polyno-
mials P, Q, M, N as well as two finite matrix approximations A[N]

F and
A[N]

K to the Jacobi matrix, A. A[N]
F is the upper right N_N piece of A.

A[N]
K differs by adjusting the NN matrix element of A[N]

F so det(A[N]
K )=0.

Then
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f [N&1, N](z)=($0 , (1+zA[N]
F )&1 $0) =&

zN&1QN(&(1�z))
zNPN(&(1�z))

f [N, N](z)=($0 , (1+zA[N+1]
K )&1 $0) =&

zNNN+1(&(1�z))
zN+1MN+1(&(1�z))

.

The connection to the continued fractions of Stieltjes is discussed after
Theorem 5.28.

C6. Criteria for Determinacy

Criteria for when a Hamburger problem is determinate can be found in
Proposition 1.5, Theorem 3, Corollary 4.5, Proposition 5.13, Theorem A.6,
and Theorem A.7.

Criteria for when a Stieltjes problem is determinate can be found in
Proposition 1.5, Theorem 7, Corollary 4.5, Theorem 5.21, Corollary 5.24,
Theorem A.4, and Theorem A.6. In particular, if one defines

c2j=lj=&[aj&1Pj (0) Pj&1(0)]&1

c2j&1=m j=|Pj&1(0)|2

(the c's are coefficients of Stieltjes continued fractions; the m's and l 's are
natural parameters in Krein's theory), then the Stieltjes problem is deter-
minate if and only if (Theorem 5.21 and Proposition 5.23) ��

j=0 cj=�.
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