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If b is finite, we suppose 

and place a boundary condition 

where h E R U {m) with h = m shorthand for the Dirichlet condition u(b) = 0. 
If b = m ,  we suppose 

is+'(1.4) 1q(x)1 dx < m for all y 

and 

Under condition (1.5), it is known that (1.1) is the limit point at infinity [15]. 
In either case, for each z E C\[p,m) with -/3 sufficiently large, there 

is a unique solution (up to an overall constant), u(x, z), of -ul' + qu = xu 
which obeys (1.3) at b if b < m or which is L~ at m if b = m.  The principal 
m-function m(z) is defined by 

We will sometimes need to indicate the q-dependence explicitly and write 

m(x; q) . If b < m ,  "q" is intended to include all of q on (0,b) , b, and the 
value of h. 

If we replace b by bl = b - xo with xo E (0,b) and let q(s) = q(xo+s) for 
s E (0,b l ) ,  we get a new m-function we will denote by m(z, xo). It is given by 

m(x, x) obeys the R.iccati equation 

Obviously, m(x, x) only depends on q on (x, b) (and on h if b < m). A 
basic result of the inverse theory says that the converse is true: 

THEOREM1.1 (Borg [3], Marchenko [12]). m determines q. Explicitly, if 
ql, q2 are two potentials and ml(z) = m2 (z), then ql = q2 (including hl = h2). 

We will improve this as follows: 
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THEOREM 1.2. If (ql, bl, hl), (q2, bl, h2) are two potentials and a < 
min(bl, b2), and if 

then as fi + co, 

Conversely, if ((1.10) holds, then (1.9) holds. 

In (1.10), we use the symbol 0 defined by f = o ( ~ )as x + xo (where 
I f ( x 1 i

ls(z)ll-"lim,,,, g(x) = ,,,, 0) if and only if lim = 0 for all E > 0. 

From a results point of view, this local version of the Borg-Marchenko 
uniqueness theorem is our most significant new result, but a major thrust of 
this paper are the new methods. Theorem 1.2 says that q is determined by 
the asymptotics of m(-fi2) as fi -+ co. We can also read off differences of the 
boundary condition from these asymptotics. We will also prove that 

THEOREM Let (ql , bl , hl),  (qz, b2, h2) be two potentials and suppose 1.3. 
that 

(1.11) bl = b2 - b < oo, lhll + lh21 < co, ql(x) = q:!(x) on (0, b). 

Then  

(1.12) lim e2b"lml(-fi2) -ma(-fi2)1 = 4(hl - ha).
n 4 o o  

Conversely, if (1.12) holds for some b < co with a limit in (0, oo), then (1.11) 
holds. 

Remark. That (1.11) implies (1.12) is not so hard to see. It is the converse 
that is interesting. 

To understand our new approach, it is useful to recall briefly the two 
approaches to the inverse problem for Jacobi matrices on 12({0, 1,2, . . . , )) [2], 

PI, P81: 
bo a0 0 0 
a0 b a 0 : : : )
0 a l  b2 a2 . . . 


. . . . . . . . . . . . . . . 


with ai > 0. Here the m-function is just (So, (A - x)-lSo) = m(z) and, more 
generally, m, (x) = (S,, (A(,) - z)-lS,) with A(,) on l2({n, n + 1,. . . , )) ob-
tained by truncating the first n rows and n columns of A. Here 6, is the 
Kronecker vector, that is, the vector with 1in slot n and 0 in other slots. The 
fundamental theorem in this case is that m(x) F mo(x) determines the b,'s 
and an's. 
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m,(z) obeys an analog of the Riccati equation (1.8): 

One solution of the inverse problem is to turn (1.13) around to see that 

which, first of all, implies that as x -+ co,m,(x) = -2-I + O(X-~) ;SO (1.14) 
implies 

Thus, (1.15) for n = 0 yields bo and a; and so ml (z) by (1.13)' and then an 
obvious induction yields successive bk, a:, and mk+l (2). 

A second solution involves orthogonal polynomials. Let P,(x) be the 
eigensolutions of the formal (A - x)P, = 0 with boundary conditions 
P-l (x) = 0, Po(z) = 1. Explicitly, 

Let dp(x) be the spectral measure for A and vector 6o so that 

Then one can show that 

Thus, P,(x) is a polynomial of degree n with positive leading coefficients 
determined by (1.18). These orthonormal polynomials are determined via 
Gram-Schmidt from p and by (1.17) from m. Once one has the P,, one can 
determine the a's and b's from the equation (1.16). 

Of course, these approaches via the R.iccati equation and orthogonal poly- 
nomials are not completely disjoint. The Riccati solution gives the an's and 
b,'s as continued fractions. The connection between continued fractions and 
orthogonal polynomials goes back a hundred years to Stieltjes' work on the 
moment problem [18]. 

The Gel'fand-Levitan-Marchenko [7], [I 11, [12], [13] approach to the con- 
tinuum case is a direct analog of this orthogonal polynomial case. One looks 
at solutions U (x, k) of 

obeying U(0) = 1, U'(0) = ik, and proves that they obey a representation 
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the analog of Pn(z) = czn+ lower order. One defines s(x, k) = (2ik)-' [U(x, k) 
- U(x, -k)] which obeys (1.19) with s(0) = 0, s'(0) = 1. 

The spectral measure dp associated to m(z) by 

obeys 

at least formally. (1.20) and (1.21) yield an integral equation for K depending 
only on dp and then once one has K ,  one can find U and so q via (1.19) (or 
via another relation between K and q). 

Our goal in this paper is to present a new approach to the continuum 
case, that is, an analog of the Riccati equation approach to the discrete inverse 
problem. The simple idea for this is attractive but has a difficulty to overcome. 
m(z, x) determines q(x) at  least if q is continuous by the known asymptotics 

([41): 

We can therefore think of (1.8) with q defined by (1.22) as an evolution equation 
for m. The idea is that using a suitable underlying space and uniqueness 
theorem for solutions of differential equations, (1.8) should uniquely determine 
m for all positive x, and so q(x) by (1.22). 

To understand the difficulty, consider a potential q(x) on the whole real 
line. There are then functions u*(x, z) defined for z E C\[P, co) which are 

L~ at f c o  and two m-functions m* (z, x) = ;;T;;i.u&(2,~) Both obey (1.8), yet 
m+(O, z) determines and is determined by q on (0, co) while m-(0, z) has the 
same relation to q on (-co, 0). Put differently, m+ (0, z) determines m+ (x, z) 
for x > 0 but not at  all for x < 0. m is the reverse. So uniqueness for (1.8) 
is one-sided and either side is possible! That this does not make the scheme 
hopeless is connected with the fact that m- does not obey (1.22); rather 

We will see the one-sidedness of the solubility is intimately connected with the 
sign of the leading f lc, term in (1.22) and (1.23). 

The key object in this new approach is a function A(a) defined for 
a E (0,b) related to m by 
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as K c.CQ. We have written A(a)  as a function of a single variable but we 
will allow similar dependence on other variables. Since m ( - K ~ ,  x) is also an 
m-function, (1.24) has an analog with a function A(a, x). We will also some- 
times consider the q-dependence explicitly, using A(a, x; q) or for X real and q 
fixed A(a, x; A) - A(a,  x; Xq). If we are interested in q-dependence but not x, 
we will sometimes use A(a; A). The semicolon and context distinguish between 
A(a,  x) and A(a; A). 

By uniqueness of inverse Laplace transforms (see Theorem A.2.2 in Ap- 
pendix 2), (1.24) and m near -oo uniquely determine A(a). 

Not only will (1.24) hold but, in a sense, A(a)  is close to q(a). Explicitly, 
in Section 3 we will prove that 

THEOREM1.4. Let m be the m-function of the potential q. Then there 
is a function A(a) E ~ ' ( 0 ,b) if b < oo and A(a) E L1(O,a) for all a < oo if 
b = CQ so that (1.24) holds for any a 5 b with a < CQ. A(a)  only depends on 
q(y) for y E [0, a ] .  Moreover, A(a) = q(a) + E(a) where E(a) is continuous 
and obeys 

Restoring the x-dependence, we see that A(a,  x) = q(a + x) + E(a,x) 
where 

lim sup IE(a,x)l = O  
4 0  O<x<a 


for any a > 0; so 

where this holds in general in L' sense. If q is continuous, (1.26) holds point- 
wise. In general, (1.26) will hold at any point of right Lebesgue continuity 
of q. 

Because E is continuous, A determines any discontinuities or singularities 
of q. More is true. If q is c', then E is c"~in a, and so A determines kth 
order kinks in q. Much more is true. In Section 7, we will prove 

THEOREM1.5. q on [0, a] is only a function of A on [0, a]. Explicitly, if 
ql ,q2 are two potentials, let A1, A2 be their A- functions. If a < bl, a < b2, 
and A1 ( a )  = A2(a) for a E 10, a], then ql (x) = q2(x) for x E [0, a]. 

Theorems 1.4 and 1.5 immediately imply Theorem 1.2. For by Theo- 
rem A.2.2, (1.10) is equivalent to Al(a) = Az(a) for a E 10, a]. Theorems 1.4 
and 1.5 say this holds if and only if ql (x) = q2 (x) for x E [0, a]. 
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which is essentially a result of Atkinson [I]. In Section 5, we turn to proofs 
of Theorems 1.6 and 1.3. Indeed, we will prove an analog of (1.27) for any 
a < oo. If a < nb, then there are terms CFn=1(A,fiep2m"b + Bme-2mnb) with 
explicit A, and B,. 

In Section 6, we prove (1.28), the evolution equation for A. In Section 7, 
we prove the fundamental uniqueness result, Theorem 1.5. Section 8 includes 
various comments including the relation to the Gel'fand-Levitan approach and 
a discussion of further questions raised by this approach. 

I thank P. Deift, I. Gel'fand, R. Killip, and especially F. Gesztesy, for 
useful comments, and M. Ben-Artzi for the hospitality of Hebrew University 
where part of this work was done. 

2. Existence of A: The L1 case 

In this section, we prove that when q E L', then (1.29), which is a strong 
version of (1.24), holds. Indeed, we will prove 

2.1. 

(0, oo) with A - q continuous, obeying 


THEOREM Let q E L1(O, oo). Then there exzsts a function A(a) on 

where 

(2.2) 

thus if fi  > illqlll, then 

(2.3) m - 2) = - -

Moreover, zf q, q are both in L1, then 

We begin the proof with several remarks. First, since m(-fi2) is analytic 
in @\[P,oo), we need only prove (2.3) for all sufficiently large fi. Second, since 
m(-fi2; q,) -+ m(-fi2; q) as n -+ oo if Ilq, - qlll -+ 0, we can use (2.4) to see 
that it suffices to prove the theorem if q is a continuous function of corrlpact 
support, which we do henceforth. So suppose q is continuous and supported 
in [0, B]. 

We will prove the following: 
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LEMMA2.2. Let q be a continuous function supported on  [0,B]. For 
X E R, let m(z; A)  be the m-function for Xq. Then  for any z E (C: with 

dist(z, LO, 4 )  > XIlqll00, 

where for K > 0, 

where 

and for n > 2, An(a) is  a continuous function obeying 

Moreover, i f  if is  a second such potential and n 2 2, 

Proof of Theorem 2.1 given Lemma 2.2. By (2.7), 

if K > 11q111. Thus in (2.5a) for X = 1,we can interchange the sum and integral 
to get the representation (2.3). (2.7) then implies (2.1) and (2.8) implies (2.4). 

Proof of Lemma 2.2. Let HAbe -& +Xq(x) on L2(0,m)with u(0) = 0 
boundary conditions at 0. Then 1 1  (Ho - z)-I 1 1  = dist (z, [O, m))-l . So, in the 
sense of L~ operators, if dist (x, [O, m))  > X 1 1  qll the expansion 

is absolutely convergent. 
As is well known, Gx(x,y ;  x), the integral kernel of (HA- x)-l, can be 

written down in terms of the solution u which is L~ at infinity, and the solution 
w of 
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obeying w(0) = 0, w'(0) = 1 

(2.11) GA(x, Y; z) = w(rnin(~ ,Y))
u(max(x, Y)) 

~ ( 0 )  

In particular, 


d2G

m(z) = lim -. 

X<Y dxdy
~ 1 0  


From this and (2.9), we see that (using ~ ( x ,dG y) I = ep") 

x=o 

where cp,(y) = q(y)ePKY. Since cp, E L2, we can use the convergent expansion 
(2.9) and so conclude that (2.5a) holds with (for n > 2) 

.. . G O ( X ~ - ~ ,  dxl . ..dx,.xn)q(xn)e-Kxn 


Now use the following representation for Go: 


to write 
(2.15) 

Wz-K2; q) 

where a is shorthand for the linear function 

and R, is the region 

Rn = { ( x ~ ,. . . ,xn,Q1,.. . ,Qn-1) E I 0 5 xi < B for i = 1 , .. .,n; 

lxi -xi+ll 5 ti 5 xi+xi- l  for i - 1,...,n - 1). 

In the region R,, notice that 
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Change variables by replacing by a using the linear transformation 
(2.16) and use for the linear function 

Thus, (2.5b) holds where 

2n-1 has become 2n-2 because of the Jacobian of the transition from tnP1 
to a .  R n ( a )  is the region 

(2.19) 


Rn(a)= { ( x l  , . . . ,x n , t l  ,...,tn-,) E 10 < x i  < B for i = 1, . . . ,n; 


Ixi 	 5 ti Ix i  + x i + l  for i = 1 ,...,n- 2; 

lxn-I + xnI < t n - l ( x l ,  - .  . ,xn7 t l ,- .  . ,t n - 2 ,  a )  I xn- I+  x n }  

with tnPlthe functional given by (2.17). 
We claim that 

(2.20) 

-Rn( a )  c &(a) 

n-2 


= 1 , . . ,x n , t l  ,...,en-,) E ~ ~ ~ - ~ 0 < x i < a ; t i > 0 ; ~ t ~ < 2 a  
i=l 

Accepting (2.20) for a moment, we note by (2.18) that 

since -b. > dyl . ..dyn = 5by a simple induction. This is just (2.7). 
z- ,Y%-O 

To prove (2.8), we note that 

Since Egoajbm--7' 5 C;l=o(7)a j  bm-j = ( a  + b)", (2.8) holds. 
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Thus, we need only prove (2.20). Suppose (xl , . . .,x,, tl, .. . ,& - a )  E 
R, (a). Then 

so 0 < x j  5 a, proving that part of the condition (XI,  tn -2)  cRn(a). For the 
second part, note that 

n,-2 

since xl , x,, and tnP2are nonnegative on R,(a). 

We want to say more about the smoothness of the functions A,(a) and 
A,(a, x) defined for x > 0 and n 2 2 by 

so that A(a, x) = Cr=oAn(a,x) is the A-function associated to r n ( - ~ ~ ,x). 
We begin with a smoothness for fixed x. 

PROPOSITION2.3. A,(a, x) i s  a function in a and obeys for n > 3 

Proof. Write 

Thus, formally, 
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Since j + 1 5 n - 1, we can successively integrate out ln-l,ln-2,. .. ,Qn-j_, 

using 

and 

(2.25) 

Then we estimate each of the resulting 2Jterms as in the previous lemma, 
getting 

which is (2.22). 
(2.24), (2.25), while formal, are a way of bookkeeping for legitimate move-

ment of hyperplanes. In (2.25), there is a singularity at c = a and c = b, but 
since we are integrating in further variables, these are irrelevant. 

PROPOSITION2.4. If q is Cm, then A,,(a) is c ~ ~ ( ~ ~ - ~ ) .  

Proof. Write R, as n! terms with orderings x,(~) < . - .  < x,(,). For 
jo = 2n - 2, we integrate out all 2n - 1, Q and x variables. We get a formula 

for -d'sa)as a sum of products of q's evaluated at rational multiples of a .  
We can then take m additional derivatives. 

THEOREM2.5. If q is Cm and i n  ~ ' ( 0 ,oo), then A(a) is Cm and A(a) 
- q(a) is Cm+2. 

d3A d3(A-q)Proof. By (2.2), we can sum the terms in the series for and 
for j = 0,1, ... ,m and j = 0,1, .. .,m - 2, respectively. With this bound and 
the fundamental theorem of calculus, one can prove the stated regularity. 0. 

Now we can turn to x-dependence. 

LEMMA2.6. If q is Ck and of compact support, then A,(a, x) for a fixed 
is Ck in  x, and for n > 2, j = 1 , .. .,k ,  

where 
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Proof. In (2.21), we can take derivatives with respect to x. We get a sum 
of terms with derivatives on each q, and using values on these terms and the 
argument in the proof of Lemma 2.2, we obtain (2.26). 

THEOREM2.7. If q is C' and of compact support, then A(a,x) for a 
fixed is cki n  x and 

for 6 large and j = 1 ,2 , .. .,k .  

Proof. This follows from the estimates in Lemma 2.6 and Theorem 2.1. 

3. Existence of A: General case 

By combining Theorem 2.1 and Theorem A.1.1, we immediately have 

THEOREM3.1. Let b < oo, q E ~ ' ( 0 ,b) ,  and h E R U {oo) or else let 
b = oo and let q obey (1.4), (1.5). Fix a < b. Then, there exists a function 
A(a) on ~ ' ( 0 ,a )  obeying 

where 

(3.2) 

S O  that as 6 + oo, 

Moreover, A(a) on  [0,a] is only a function of q on [0,a] .  

Proof. Let b = oo and @(x) = q(x) for x E [0,a] and @(x) = O for 
x > a. By Theorem A.l. l ,  rn - .iiz = O(Cza"), and by Theorem 2.1, m 

has a representation of the form (3.3). 

4. Asymptotic formula 

While our interest in the representation (1.24) is primarily for inverse 
theory and, in a sense, it provides an extremely complete form of asymptotics, 
the formula is also useful to recover and extend results of others on more 
conventional asymptotics. 
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In this section, we will explain this theme. We begin with a result related 
to Atkinson [ I ]  (who extended Everitt [5]) .  

THEOREM4.1. For any q (obeying (1.2)-(1.5)), we have that 
b 

(4.1) 
2m(-6 ) = -6 - Jo q(x)e-2xKdx + O ( K - I ) .  

Remarks. 1. Atkinson's "m" is the negative inverse of our m and he uses 
k = i ~ ,and so his formula reads ((4.3)in [ I ] )  

2. Atkinson's result is stronger in that he allows cases where q is not 
bounded below (and so he takes 1x1 -t oo staying away from the negative real 
axis also). [lo]will extend (4.1) to some such situations. 

3. Atkinson's method breaks down on the real x axis where our estimates 
hold, but one could use Phragm6n-Lindelof methods and Atkinson's results to 
prove Theorem 4.1. 

Proof. By Theorem 3.1, ( A-q)  + O as a L O so Soae-2a"(A(a)-q ( a ) )da 
= O ( K - I ) .  Thus, (3.3) implies (4.1). 

b
Proof. Since q E L1,  dominated convergence implies that Soq(x)e-2Kxdx  

= o(1).  

COROLLARY4.3. If limxloq ( x )= a (indeed, i f  q ( x )dx  -+ a as s 10 ) ,  
then 

2 a 
m ( - K  ) = -K - - K p l  + O ( K - I ) .

2 

COROLLARY4.4. If q ( x )  = ex-O" + o ( x P a )for O < a < 1, then 
2m(-K ) = -K - ~ [ 2 ~ - l I ? ( l -a)]na-I + O ( K ~ - ' ) .  

We can also recover the result of Danielyan and Levitan [4]: 

THEOREM4.5. Let q ( x )  E Cn[O,6 )  for some 6 > 0. Then as K t oo, for 
suitable Po,.. . ,Pn, we have that 
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Remarks. 1. Our m is the negative inverse of their m. 

2. Our proof does not require that q is Cn.  It suffices that q ( x )  has an 
asymptotic series CR=oamxm + o(xn)  as x 0. 

Proof. By Theorems 3.1 and 2.5, A(a) is C n  on [O,  6 ) .  It follows that 
6 

A(a)= bjaj  + o ( a j ) .  Since S, aje-2"i" d a  = ~-j - '2- j - ' j !  + ~ ( e - ~ ~ "> 7 

we have (4.2) PJ = 2 P 1 j ! b j= 2 i p 1 u ( a803  = 0 ) .  

Later we will prove that A obeys (1.28). This immediately yields a recur-
sion formula for /'3j( x ), viz.: 

see also [9, $21. 

5. Reading boundary conditions 

Our goal in this section is to prove Theorem 1.6 and then Theorem 1.3. 
Indeed, we will prove the following stronger result: 

THEOREM5.1. Let m be the m-function for a potential q with b < MI. 
Then there exists a measurable function A(a) on [O,  m) which is L' on any 
finite interval [O,  R], so that for each N = 1,2 ,  . . . and any a < 2Nb, 

(5.1) 
N N 

2( - ) = - - A ( ~ ) ~ - ~ ~ "da -x~ ~ ~ ~ - ~ " ~ j-x~ ~ ~ - ~ " ~ j+ ~ ( e - ~ " " ) ,  
j=1 j=1 

where 

(a) If h = m, then A, = 2 and Bj = -2j ~ , b ~ ( ~ )dy.  

(b) If i h  < m, then A, = 2 ( - l ) j  and B j  = 2(-l) j+'j[2h + ~ , bq(y )d l ] .  

Remarks. 1. The combirration 2h + 1;q ( y )dy is natural when 1 hl < m. 
It also enters into the formula for eigenvalue asymptotics [ l l ] ,[13]. 

2. One can think of (5.1) as saying that 

for any a where now A is only a distribution of the form ~ ( a )= A(a)+ 
E c l  Aj6 ' (a  - jb) + Cc, B j 6 ( a  - jb) where 6' is the derivative of a delta 

function. 
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3. As a consistency check on our arithmetic, we note that if q(y )  + q(y )  +c 
and n2 --t n2 - c for some c,  then m ( - n 2 )  should not change. K~ + n2 - c 
means 6 + n -& and so ne-2"bj --t ne-2Kbj+ cbjeUanbj+O(6- I )  terms. That 
means that under q -+ q + c ,  we must have that Bj 3 B j  - &Aj, which is 
the case. 

Proof. Consider first the free Green's function for -& with Dirichlet 
boundary conditions at  0 and h-boundary condition at b. It has the form 

sinh(6x) u+( y )  

G o ( x , y ) =  nu+(o) , X < Y  


where u+(y;6 ,h )  obeys -uff = -n2u with boundary condition 

Write 

for a = a ( h ,6 ) .  Plugging (5.4) into (5.3), one finds that 

Now one just follows the arguments of Section 2 using (5.2) in place of (2.14). 
All terms of order 2 or more in X~ contribute to locally L' pieces of ~ ( a ) .The 
exceptions come from the order 0 and order 1 terms. The order 0 term is 

lim 
x<y+O a x a y  

Now = 1 + 2 C r = l ( - l ) n z n ,  so 

(5.6) 
00 


Q = -n  - 26 C(-l)norne-2b"" 
n=l 


-6 - 2n CT=l  e-2b"n 


= { -K - 2n CT=l  (-l)ne-2bKn - 4 n=1(-l)n+1nhe-2bKn + regular, 

where "regular" means a term which is a Laplace transform of a locally L I  

function. We used (by (5.5)) that if h is finite, then 

where ~ 0 ( 6 - ~ )in this context is regular. 

The first-order term is 
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6. T h e  A-equation 

In this section, we will prove equation (1.28). We begin with the case -where q is C1. In general, given q (i.e., q, b, and h if b < oo), we can define 

m(z, x) = 
u;(x,z) for x E [0,b) and z E @\[p,oo) for suitable /3 E R. By
?I+("," 


Theorem 3.1, there is a function A(a,  x) defined for (a,x) E {(a,x) E R2 1 0 5 
x < b; 0 < a < b - x) = S so that for any a < b - x, 

Moreover, m obeys the Riccati equation (1.8), and by (3.1) if we define g,(x) 

on [O, bl by 

then 

in ~ ' ( 0 ,  a)  for any a < b. 
In (6.2), there is a potential difficulty in that A(a, x) is a priori only 

defined for almost every a for each x, so that g,(x) is not well-defined for 
all a .  One can finesse this difficulty by interpreting (6.2) in essential sense 
(i.e., for all a < b and E > 0, there is a A so that for almost every a with 
0 < a < A, we have Soa1g,(x) - q(x)l dx < E). Alternatively, one can pick 
a concrete realization of q and then use the fact that A - q is continuous to 
define A(x, a)- q(x + a) for all x, a and then (6.2) holds in traditional sense. 
Indeed, if q is continuous, it holds pointwise. 

THEOREM If q is C1, then A is jointly C1 on S and obeys 6.1. 

Proof. That A is jointly C1 when q is C1 of compact support follows from 
the arguments in Section 2 (and then the fact that A on [0, a) is only a function 
of q on [0, a)  lets us extend this to all C1 q's). Moreover, by Theorem 2.7, 

for all a < b - x. Now in (6.1), square m to see that 
(6.5) 
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where B(a,x )  = A(P,x ) A ( a  - p, x )  dp.  In the cross term in (6.5) ,  write 
2rcepZaNn= -&(e-"") and integrate by parts 

By (6.2),  limalo A(a,x )  = q ( x )  so (6.5) becomes 

The Riccati equation (1.8),  (6.4),  (6.6), and the uniqueness of inverse Laplace 
transforms (Theorem A.2.2) then imply that (6.3) holds pointwise. 

There are various senses in which (6.3) holds for general q. We will state 
three. All follow directly from the regularity results in Section 2,  the continuity 
expressed by (3.4) ,  and Theorem 6.1. 

THEOREM6.2. For general q,  (6.3) holds in distributional sense. 

THEOREM6.3. For general q,  define C ( y ,x )  o n  { ( y ,x )  E R2 I x < y < b ) )  

C ( y ,2)  = - x ,  2) .  

Then,  i f  X I  < x2 < y ,  we have that for all ( y ,x ) ,  

THEOREM6.4. If q is  continuous, then F ( a ,x )  r A(a,x )  - q ( a  + x )  is 
jointly C1 and obeys 

7. The uniqueness theorem 

In this section, wc will prove Theorem 1.5 and therefore, as already noted 
in the introduction, Theorem 1.2. Explicitly, 

THEOREM7.1. Let ql and q2 be two potentials and let a < min(b l ,b2). 
Suppose Al (a,0 )  = A2(a,0 )  for a E [0,a] .  Then  ql = q2 for a.e. for x in [0,a ] .  

Proof. We will use (6.7) and an elementary Gronwall's equality to con-
clude that A l ( a , x )  = A2(a,x )  on S = { ( x ,a )  E IR2 I x + a < a ) ,  and then 
conclude that ql = q2 on [0,a] by (6.2).  Pick an explicit realization of ql and 



NEW APPROACH 1'0INVERSE SPECTR.AL THEORY, I 1049 

q2 and then since Aj(a,  x) - qj(a + x) is continuous, an explicit realization of 
Aj (a,x) in which 

is continuous. Moreover, in this realization, 
ra-x 

D = sup 

since the integral is also continuous. By (6.7) for 0 5 xl  < x2 < a ,  

(7.1) d x 2 )  <- d x l )  + D JX2 g(y) 
x1 

Letting h(x) = S U P O < ~ < ~- - g(y), we see that (7.1) implies 

so if D(x2 - xl) < 1and h(xl) = 0, then h(x2) = 0. By hypothesis, h(0) = 0. 
So using this argument a finite number of times, h(x) - 0 for x E [0,a ] ,that 
is, A1 = A2 on S. 

8. Complements and open questions 

In this final section, we make a number of remarks about the ideas and 
results of the earlier sections as well as focus on some open questions and 
conjectures that we hope to address. We will also mention some results in a 
forthcoming paper with F. Gesztesy [lo] that will study the objects of this 
paper. 

1. Our reconstruction procedure is one-sided, as it must be since m(x,x) is 
a function of q on [x,b] and totally independent of q on [0,XI. The one-sidedness 

a A  - a Acomes from the fact that the differential equation for A begins - %, not 
-= -%. If one took an m function defined from the left of an interval 
ax 
and normalized so the Riccati equation (1.8) still holds, then m-(-K') has 
leading asymptotics +K rather than -6, and that leads precisely to leading 

aAasymptotics = -- + . . - consistent with the one-sidedness in the otheraa 
direction. 

2. We owe to Gel'fand [6] the remark that our basic results extend easily 
to matrix valued q's (and thus to some higher-order systems). One defines u 
as a matrix and m(x) = u'(0, z)u(O,x)-', in which case m obeys the matrix 
equation 

2r n 1 = q - x - m .  

A is matrix-valued. Everything goes through without significant changes. 
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3. One can ask about the relation of our A-function to the kernel K of 
Gel'fand-Levitan (see 131). In terms of the Gel'fand-Levitan kernel K(x ,  y) 
(defined if 1 y 1 < x),  one can define new kernels Kc, Ks defined on 0 5 y 5 x 
(and built out of K(x,  rty)) so that there are solutions C, Sof -uU+qu = - ~ ~ u  
of the form, 

C, Sare normalized so that u+ = C+m+S, and so defining u+by the boundary 

condition at b, one gets 


Now, 

for suitable B defined in terms of K and h and its derivatives. Similarly, 

By Theorem A.2.3, (1+J: ~ ( a ) e - ~ " "  has the form 1+J: ~ ( a ) e - ~ " "da)-' 
+ 0(epZb") and so we can deduce a representation 

More careful analysis shows that F(0) = 0 and F can be differentiated so that 
r n + ( ~ )= -PC - &b A(a)epZaKda  + 0 ( .  . . ). 

That is, one can discover the existence of our basic representation from the 
Gel'fand-Levitan representation; indeed, we first found it this way. Because 
of the need to invert (1+ J: ~(a)e- '""  da) ,  the formula relating A to K is 
extremely complicated. Subsequent to the preparation of this paper, Gesztesy 
and I [lo] found a simple relation between A and the second Gel'fand-Levitan 
kernel, L, related to K by 1+L = (1+K)-'. 

4. The discrete analog of A is just the Taylor coefficients of the discrete 
m-function at infinity. There is, of course, a necessary and sufficient condition 
for such a Taylor series to come from a discrete Jacobi matrix m-function. For 
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these Taylor coefficients are precisely the moments of the spectral measure, 
and there are a set of positivity conditions such moments have to obey. This 
suggests that A must obey some kind of positivity conditions. What are they? 
Is there perhaps a beautiful theorem that the differential equation obeyed by 
the A-function has a solution with a given initial condition if and only if these 
positivity conditions are obeyed? Subsequent to the preparation of this paper, 
Gesztesy and I [lo]found a simple relation between A and the spectral measure, 
which is the analog of the Taylor coefficient, 

where the divergent integral has to be interpreted as an Abelian limit. 

5. The sequence of S and 6' singularities that occur when b < oo must 
be intimately related to the distribution of eigenvalues of the associated H via 
some analog of the Poisson summation formula. 

6. There must be an analog of the approach of this paper to inverse 
scattering theory. Find it! 

7. In [lo],Gesztesy and I will compute the A-function in case q(x) = -y 
for some y > 0. Then 

where Il is the standard Bessel function denoted by Il ( . ). Since 

the 5 bounds in (2.7) are not good as n --t ca if q is bounded. This is discussed 
further in [lo]. 

Appendix 1: Localization of asymptotics 

Our goal in this appendix is to prove one direction of Theorem 1.2, viz.: 

THEOREMA.1.1. If (ql, bl, hl), (q2, b2, h2) are two potentials and a < 
min(bl, b2) and if 

then as 6 + cm, 

(A.1.2) ml ( - K ~ )-m 2 ( - ~ ~ )= 0(epZKa). 

While we know of no explicit reference for this form of the result, the 
closely related Green's function bounds have long been in the air, going back 
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at least to ideas of Donoghue, Kac, and McKean over thirty years ago. A basic 
role in our proof will be played by the Neumann analog of the Dirichlet relation 
(2.2). Explicitly, if GU(x, y; z, q) and GN (x, y; x, q) are the integral kernels of 
(H - 2)-' with H = -& + q(x) on L2(0, oo) with u(0) = 0 (Dirichlet) and 
ul(0) = 0 (Neumann) boundary conditions, respectively, then 

a2GD
(A.1.3) m(z) = lim -

X<Y dxdy 
Y l o  

and 

To see this, let u be the solution L' at  oo (or which obeys the boundary 
condition at b) and let G obey -GI1 + qG = zG with G(0) = 1, G1(0) = 0 
boundary conditions. Then 

-G(min(x, y)) u(max(x, 3)) ,
~ ' ( 0 )  

from which (A.1.4) is immediate. 
We will begin the proof of Theorem A.l . l  by considering the case where 

bl = b2 =a. 

A.1.2.PROPOSITION Let ql, q2 be defined on (0, cm)and obey (1.4)/(1.5). 
Then 

and zf (A.l . l)  holds, then 

Remark. (A. 1.4), (A. 1.6), and (A.1.7) imply (A. 1.2) in this case. 

Proof. Let P(x ,  y; t ,  q) be the integral kernel of ept" on L'(R, dx) where 
H = - d2 + q(lx1). The method of images implies that for x, y > 0, 

(A.1.8) GN(x, y; n 
2 ,q) = Irn[P(x, y; t ,  q) +P(x ,  -y; 1, q)]e-K2t dt. 

Simple path integral estimates (see [16]) imply that 

and if (A.l . l)  holds, then for any E > 0, there exists C, > 0 (depending only 
on the ,02for ql, q2), so that 
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(A.1.9) implies (A.1.6) since Jy2 ( 4 ~ t ) - ' / ~ e ~ ~ "  dt = lip' Jr( ~ t ) - ' / ~ e "dt 
= li-1. 

To obtain (A. 1.7)) we use (A. 1.8), (A.1.10), and 

since 

Next, we consider a situation where b < oo,q is given in ~ ' ( 0 ,  b), and h 
is 0 or oo.Define ij on R by requiring that 

q"(x+ 2mb) = @(x) m = 0, f l , f 2 , .  . .,all x E R 

q"(-x) = ij(x) all x E R 

i j (4  = q(x) x E [O, bl 

which uniquely defines q" (since each orbit {&x + 2mb) contains one point 
in [0, b]). Let G ( ~ , ~ )  be the Green's functions of d2and G ( ~ , ~ )  -=+ q(2) 
on ~ ~ ( 0 ,  = 0 ((N, N )  b) with u'(0) 0 boundary conditions at  zero and ul(b) = 

case) or u(b) = 0 ((N, D) case) boundary conditions at  b. Let G be the Green's 
function for -$+ ij on L'(w). Let P be the corresponding integral kernels 
for eptH. 

By the method of images for x, y E [0, b]: 

where 

i,(y) = y +mb m = 0 , & 2 , f  - - .  

= - y + m b + b  m = & l , f 3 , f  . . .  

(7, = -1 m = l , 2 , 5 , 6 , 9 , 1 0  , . . . ,-2,-3,-6,-7 ,... 

= 1 otherwise 

(i.e., a, = -1, if and only if m = 1,2  mod 4). 
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By a simple path integral (or other) estimate on P and Laplace transform, 
we have 

for any e > 0 and K sufficiently large. Since the images of 0 are f2b, &4b, . . . , 
(A.l . l l )  and (A.1.2) imply 

PROPOSITIONA.1.3. 

(A.1.14) I G ( ~ ~ ~ ) ( o ,0; - K ~ )  - ~ ( 0 , 0 ;- K ~ ) I = ~ ( e - ~ ~ ~ )  

and similar1.y for I G ( ~ ~ ~ ) ( o ,0; - K ~ )  - ~ ( 0 ,0; - K ~ )  1. 

Remark. (A.1.14) and (A.1.6) imply (A.1.2) for the pairs ql = q", bl = m 

and q2 = q, b2 = b, and ha = 0 or m. 

Finally, we compare b < oo fixed for any two finite values of h: 

PROPOSITIONA.1.4. Let q E ~ ' ( 0 ,b). For h < oo, let Gh be the integral 
kernel for (-&+ q - x)-' with boundary conditions u(0) = 0 and ul(b) + 
hu(b) = 0. Then 

Proof. Let H be the h = 0 operator and Hh the operator for h < oo. By 
the analysis of rank one perturbations (see, e.g., [17]), 

where Sb E 'I--'(H) is the function (6b,g) = g(b). 
Again, by the theory of rank one perturbations [17], let F (z ,h) = 

Gh(b,b; 2). Then 

and 

(A.1.16) 

Gh(O,O;X )  - ch=O(O,0; X) = -hch=O(O, b; x ) G ~ = O ( ~ ,0; 2)[l- hF(z,  h)] 

Now F(-K',0) = +o ( C 1 )  (this is essentially (A.1.6)) while (A.l . l l )  and 
(A.1.13) imply that 

(A.1.16) and (A.1.17) imply (A.1.15). 

Transitivity and Propositions A.1.2-A.2.4 imply Theorem A.1.1 
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We close the appendix with two remarks: 

1. Do not confuse the Laplace transform in (1.24) (which is in 26) with 
that in (A. 1.8) (which is K ~ ) .  

2. We used path integrals above. As long as q(x) = 0(eblx1) for some 
b < oo,one can instead use more elementary Green's function estimates. 

Appendix 2: Some results on Laplace transforms 

In this paper, I need some elementary facts about Laplace transforms. 
While I am sure that these facts must be in the literature, I was unable to 
locate them in the precise form needed, so I will give the simple proofs below. 

LEMMAA.2.1. Let f E ~ ' ( 0 , a ) .  Suppose that g(x) Joaf(~)e-zYdy 
obeys 

as x -t co. Then f z 0. 

Proof. Suppose first that f is real-valued. g(x) is an entire function which 
obeys 

1 9 ( 4  5 llf ll1e
aRe- (z) , 

where Re- (x) is the negative part of Rex. Moreover, along the real axis, g 
obeys (A.2.1). Because of this, 

is an analytic function of w in the region Im w > -a. Now for r > 0: 

where the interchange of integration variables is easy to  justify. (A.2.2) implies 
that 

holds for w with Imw > 0 and then allows analytic continuation into the 
region @\{is I s < 0). (A.2.3) and the reality of f implies that for almost 
every r E (0, a ) , f (r) = limELo&[ h ( ~- ir) - h(-E - ir)],so the analyticity of 
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h in Im w > -a implies that f r 0. For general complex valued f ,  consider 
the real and imaginary parts separately. 

An immediate consequence of this is the uniqueness of inverse Laplace 
transforms. 

THEOREMA.2.2. Suppose that f , g  E L1(O,a) and for some b 5 a,  

f (y)e-'Ydy - g(y)e-xYdy = O(ech"). Then f = g on [0,b). 

The other fact we need is that the set of Laplace transforms has a number 
of closure properties. Let C, be the set of functions, f ,  analytic in some region 
{z I IArg(z)l < E }  = REobeying 

in that region for some g E ~ ' ( 0 ,a). Denote g by Z(f ) .  

THE ORE MA.^.^. I f f , h ~ C ,soare  fh ,  f + h - 1 ,  and f - l .  

Proof. f + h - 1is trivial. f h is elementary; indeed, 

For the inverse, we start by seeking k obeying (where g =Z(f ) )  

This Volterra equation always has a solution (by iteration). Let h(z) = 1+ 
Soak(a)ePazda.  Then 

f h = 1+d(e-oRe(")) 

and so 

f-1 = h( l  + i)(e-,Re(l)))-l 

-- h + ( j(e-aRe(') ) 

as required. 

Notes added in proof. 

1. For the case of short-range potentials, a representation of the form (2.3) 
was obtained by A. Ramm in the paper, "Recovery of the potential from 
the I-function," C. R. Math. Rep. Acad. Sci. Canada IX (1987), 177-182. 

2. Recently, F. Gesztesy and the author obtained an alternate and simpler 
proof of Theorem 1.2 in the paper, "On local Borg-Marchenko uniqueness 
results," which will appear in Commun. Math. Physics. 






