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inverse spectral theory, 11. 


General real potentials and the 

connection to the spectral measure* 


By FRITZ GESZTESY and BARRY SIA'ION 

Abstract 

We continue the study of the A-amplitude associated to  a half-line 
d2Schrodinger operator, -=t 4 in L2((0, b ) ) ,  b 5 oo.A is related to the iieyl- 

Titchmarsh m-function via m(-fi2) = A(a)e-2ff" d c x + ~ ( e - ( ~ ~ - & ) " )  -6-J: for 
all E > 0. We discuss five issues here. First, we extend the theory to general q 
in L1((O, a ) )  for all a ,  including q's which are limit circle at  infinity. Second, we 
prove the following relation between the A-amplitude and the spectral measure 
p: A(a)  = -2 JFw x-+ sin(2cuA) dp(X) (since the integral is divergent, this 
formula has to be properly interpreted). Third, we provide a Laplace trans- 
form representation for m without error term in the case b < GO. Fourth, we 
discuss m-functions associated to other boundary conditions than the Dirichlet 
boundary conditions associated to the principal Weyl-Titchmarsh m-function. 
Finally, we discuss some examples where one can compute A exactly. 

1. Introduction 

In this paper we will consider Schrodinger operators 

in ~ ~ ( ( 0 ,  b ) )  for 0 < b < oo or b = GO and real-valued locally integrable q. 
There are essentially four distinct cases. 
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Case 1. b < oo. We suppose q E ~ ~ ( ( 0 ,b)). We then pick h E IR U {oo) 
and add the boundary condition at  b 

where h = oo is shorthand for the Dirichlet boundary condition u(b-) = 0. 
For Cases 2-4, b = 'ccand 

Case 2. q is "essentially" bounded from below in the sense that 

Examples include q(x) = c(xt 1)P for c > 0 and all /3 E IR or q(x) = -c(z +1)P 
for all c > 0 and ,8 5 0. 

Case 3. (1.4) fails but (1.1) is limit point at  cc (see [6, Ch. 91; [33, 
Sect. X.11 for a discussion of limit pointllimit circle), that is, for each 
z E C+ = {z E C 1 Im(z) > O),  

has a unique solution, up to a multiplicative constant, which is L~ at  oo. An 
example is q(x) = -c(x i-1)P for c > 0 and 0 < P 5 2. 

Case 4. (1.1)is limit circle at  infinity; that is, every solution of (1.5) 
is L2((0, oo)) at  infinity if z E C+. We then pick a boundary condition by 
picking a nonzero solution uo of (1.5) for z = i. Other functions u satisfying 
the associated boundary condition at  infinity then are supposed to satisfy 

(1.6) x--100 ub (x)u(x)] = Olini [uO (x)uf (x) -

Examples include q(z) = -c(x + 1)P for c > 0 and /3 > 2. 

The Weyl-Titchmarsh m-function, ,m(z), is defined for z E C+ as follows. 
Fix z E C+. Let u(x,  z) be a nonzero solution of (1.5) which satisfies the 
boundary condition at  b. In Case 1, that means u satisfies (1.2); in Case 4, it 
satisfies (1.6); and in Cases 2-3, it satisfies lu(x, z) l 2  dx < cc for some (and 
hence for all) R _> 0. Then, 

and, more generally, 
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m(z,  x)  satisfies the Riccati equation (with m' = ) , 

m is an analytic function of z for z E C+, and moreover: 

Case I .  m is meromorphic in (@ with a discrete set X I  < X2 < . . . of 
poles on R (and none on (-GO, X I ) ) .  

Case  2. For some p E W, m has an analytic continuation to C\[p,  oo) 
with m real on (-oo, p) .  

Case 3. In general, m cannot be continued beyond (@+(there exist q's 
where m has a dense set of polar singularities on W).  

Case 4. m is nierornorphic in C with a discrete set of poles (and zeros) 
on IW with limit points at  both +GOand -oo. 

Moreover, 


if z E C+ then m(z, x) E C+; 


so m satisfies a Herglotz representation theorem, 

where p is a positive measure called the spectral measure, which satisfies 

where w-lim is meant in the distributional sense. 
All these properties of m are well known (see, e.g. [23, Ch. 21). 
In (1.10), c (which is equal to Re(m(i))) is determined by the result of 

Everitt [lo] that for each E > 0, 

(1.13) m - )  = - + ( 1  as I & /  i oo with - -
T + E < a r g ( ~ )< -E < 0.
2 


Atkinson [3] improved (1.13) to read, 


again as 161 i oo with -5 + E < arg(r;) < -E < 0 (actually, he allows 
a r g ( ~ )i 0 as / & I  -+ GO as long as Re(&) > 0 and Im(6) > - exp(-DIKI) for 
suitable D) .  In (1.14), a0 is any fixed a0 > 0. 

One of our main results in the present paper is to go way beyond the two 
leading orders in (1.14). 
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THEOREM There exists a function A(a)  for a E [0,b) so that A1.1. 
E ~ l ( ( 0 , a ) )for all a < b and 

as K /  i oo with -; < 0. Here we say f = o ( ~ )  0+ E < arg(6) < -E if g i 
and for all E > 0, (f /g)/glC i 0 as 161 i GO. Moreover, A - q is continuous 
and 

This result was proven in Cases 1and 2 in [35]. Thus, one of our purposes 
here is to prove this result if one only assumes (1.3) (i.e., in Cases 3 and 4). 

Actually, in [35], (1.15) was proven in Cases 1 and 2 for K real with 
161 i oo. Our proof under only (1.3) includes Case 2 in the general /+region 
arg(6) E (-; + E ,  - E )  and, as we will remark, the proof also holds in this 
region for Case 1. 

Remark. At first sight, it may appear that Theorem 1.1as we stated it 
does not imply the K real result of [35], but if the spectral measure p of (1.10) 
has supp(p) E [a,GO) for some a E R, (1.15) extends to all K in /arg(K)/ < 2- E ,  

K /  2 a + 1. To see this, one notes by (1.10) that m'(z) is bounded away from 
[a,GO) so one has the a priori bound /m(z)  1 5 C / z /  in the region Re(z) < a -1. 
This bound and a Phragmkn-Lindelof argument let one extend (1.15) to the 
real K axis. 

Here is a result from [35] which we will need: 

THEOREM1.2 ([35, Theorem 2.11). Let q E ~ ' ( ( 0 ,oo)). Then there exists 
a function A(&) o n  (0, oo) so that A -q is continuous and satisfies (1.16) such 

that for Re(&)> ~11q111, 
00 


(1.17) m(-K 2 ) = -K -1 A(a)epzffKda. 

Remark. In [35], this is only stated for K real with K > / / q / / l ,but (1.16) 
implies that A(&)  - so the right-hand side of (1.17) q ( a )  5 / / q ~ e x p ( a / / q / l )  
converges to an analytic function in Re(&) > / / q / / l .  Since m(z) is analytic 
in C\[a ,oo)  for suitable a,  we have equality in {K E C Re(6) > i / /q// l)/ by 
analyticity. 

Theorem 1.1in all cases follows from Theorem 1.2 and the followiilg result 
which we will prove in Section 3. 
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THEOREM L e t  ql, q2 be potentials  o n  (0,bj)  w i t h  bj > a1.3. defined 
f o r  j = 1,2.  Suppose  t h a t  ql = q2 o n  [0, a] .  T h e n  in t h e  region arg(6) E 
(-; + E ,  -E), 161 2 KO,w e  have  t h a t  

where  CE!6depends  on l y  o n  i,6, a n d  supo5x5a(~xx+6q j ( y )  dy), where  6 > 0 i s  
a n y  n u m b e r  s o  t h a t  a i-6 5 bj,  j = 1,2.  

R e m a r k s .  1. An important consequence of Theorem 1.3 is that if ql(x) 
= q2(x) for x E [O,a], then A l ( a )  = A2(a)  for a E [O,a]. Thus, A(a)  is only a 
function of q on [0, a].At the end of the introduction, we will note that q(x) 
is only a function of A on [0, x]. 

2. This implies Theorem 1.1by taking ql = q and q2 = and using ~ x [ ~ , ~ I  
Theorem 1.2 on q2. 

3. Our proof implies (1.18) on a larger region than arg(r;) E (-: t E ,  - E ) .  

Basically, we will need Im(6) 2 -Cl exp(-C2 161) if Re(6) + o. 

We will obtain Theorem 1.3 from the following pair of results. 

THEOREM L e t  q be defined o n  (0, a i- a + 6)). T h e n1.4. 6) a n d  q E ~ ' ( ( 0 ,  
in a n y  region arg(6) E (-; t E ,  -E) ,  161 1 KO,w e  have  for  all x E [0, a] t ha t  

(1.19) l m ( - ~ ~ ,  61 < C E , ~ ,2) t 

where  C&,jdepends  on l y  o n  E,  6 a n d  s ~ p ~ ~ , ~ ~ ( ~ ~ + " q ( ~ )1 d y ) .  

THEOREM L e t  ql q2 o n  [0, a] a n d  suppose  ml  a n d  m2 obey (1.19)1.5. = 

for  x E [0, a] .  T h e n  in the  s a m e  6-region ,  

We will prove Theorem 1.5 in Section 2 using the Riccati equation and 
Theorem 1.4 in Section 3 by following ideas of Atkinson [3]. 

In Sections 5-9, we turn to the connection between the spectral measure 
dp and the A-amplitude. Our basic formula says that 

In this formula, if p gives nonzero weight to (-m, 01, we interpret 

consistent with the fact that A-4  s in (2af i )  defined on (0, w) extends to an 
entire function of A. 



~ ~ 
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The integral in (1.21) is not convergent. Indeed, the asymptotics (1.13) 

imply that J: dp(h) Y &RT
3 

so (1.21) is never absolutely convergent. As we 
will see in Section 9, it is never even conditionally convergent in case b < oo 
(and also in many cases with b = oo). So (1.21) has to be suitably interpreted. 

In Sections 5-7, we prove (1.21) as a distributional relation, smeared in a 
on both sides by a function f E C r ( ( 0 ,  oo)). This holds for all q's in Cases 1-4. 
In Section 8, we prove an Abelianized version of (1.21), viz., 

at  any point, a, of Lebesgue continuity for q. (1.23) is only proven for a 
restricted class of q's including Case 1,2 and those q's satisfying 

for some R > 0, C > 0, which are always in the limit point case at  infinity. We 
will use (1.23) as our point of departure for relating A(&) to scattering data 
at  the end of Section 8. 

In order to prove (1.21) for finite b, we need to analyze the finite b case 
extending (1.15) to all a including a = oo (by allowing A to have 6 and 6' 
singularities at  multiples of b ) .  This was done in [35] for tc real and positive 
and a < oo. We now need results in the entire region R ~ ( K )  2 KO,and this is 
what we do in Section 4. Explicitly, we will prove 

1.6. 
function A(a)  on (0, oo) with 

THEOREM In Case 1, there are A,, B, for n = 1 , 2 , .. . , and a 

(iii) J: IA(a)I d a  < Cexp(Kolal) so that for Re(6) > +KO: 

00 00 


(1.24) m(-tc2) = -tc -C ~ ~ t c e - ~ ~ ~ ~C ~ ~-Luu~ ( a ) e - ~ ~ ~  ~- e - da .  ~ 
n=l n=l 

In Section 6, we will use (1.21) to obtain a priori bounds on Jnn dp(X) as 
R + oo. 

Section 9 includes further discussion of the significance of (1.21) and the 
connection between A and the Gel'fand-Levitan transformation kernel. 

Sections 10 and 11present a few simple examples where one can compute 
A explicitly. One of the examples, when combined with a general comparison 
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theorem, allows us to prove the general bound 

IA(a)l l a - l m  e2ay(,), 

where ~ ( a )= sup,,,,,, lq(x)li and this lets us extend (1.17) to  bounded q. 
In the appendix we discuss analogs of (1.15) for the other m-functions 

that arise in the TVeyl-Titchmarsh theory. 
While we will not discuss the theory in detail in this paper, we end this 

introduction by recalling the major thrust of [35] - the connection between 
A and inverse theory (which holds for the principal m-function but not for the 
m-functions discussed in the appendix). Namely, there is an A(a ,  x) function 
associated to m(z,  x)  by 

for a < b - x. This, of course, follows from Theorem 1.1 by translating the 
origin. The point is that A satisfies the simple differential equation in the 
distributional sense 

dA dA
(1.26) -

a x  
(a,2) = -aa (a,x) + A(&- P, x)A(P, x) dP 

This is proven in [35] for q E ~ ' ( ( 0 ,a ) )  (and some other q's) and so holds in 
the generality of this paper since Theorem 1.3 implies A(a ,  x) for a t x 5 a is 
only a function of q(y) for y E [0, a]. 

Moreover, by (1.16), we have 

lim lA(a, x) - q(a  t x)I = 0 
a.Lo 

uniformly in x on compact subsets of the real line, so by the uniqueness theorem 
for solutions of (1.26) (proven in [35]), A on [0, a] determines q on [0, a]. 

In the limit circle case, there is an additional issue to discuss. Namely, 
that m(z,  x = 0) determines the boundary condition at  oo.This is because, as 
we just discussed, m determines A which determines q on [0, m ) .  m(z,  x = 0) 
and q determine m(z,  x) by the Riccati equation. Once we know m ,  we can 
recover u(z = i,x)  = exp(J: m(z = i,y) dy), and so the particular solution 
that defined the boundary condition at  m .  

Thus, the inverse spectral theory aspects of the framework easily extend 
to the general case of potentials considered in the present paper. 

With the exception of Theorem 2.1 for potentials q E ~ ' ( ( 0 ,m ) )  of the 
first paper in this series [35], whose method of proof we follow in Section 4, 
we have made every effort to keep this paper independently readable and self- 
contained. 

F.G. would like to thank C. Peck and T .  Tombrello for the hospitality of 
Caltech where this work was done. 
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2. Using the Riccati equation 

As explained in the introduction, the Riccati equation and a priori control 
on m j  allow one to obtain exponentially small estimates on ml - m2 (Theo- 
rem 1.5). 

PROPOSITION Let ml(x),  m2(x) be two absolutely continuous func- 2.1. 
tions on [a, b] so that for some Q E ~ ' ( ( a ,b)) ,  

Then 
b 

[m1 (a) -m2 ( a )  = [,I (b) - (l[ m ~  .m2(b)I ~ X P  (Y) +m2 ( ~ 1 1d ~ )  

proof. Let f (x) = ml (x) -m2 (x) and g (x) = ml (x) +m2 Then 

from which it follows that 

f (4= f (a) exp [Lb9(Y) dy] . 

As an immediate corollary, we have the following (this implies Theo- 
rem 1.3) 

THEOREM Let mj  (x, -tc2) and2.2. be functions defined for x E [a,b] 
tc E K some region of C. Suppose that for each tc in K ,  mj  is absolutely 
continuous in x and satisfies (N.B.:q is the same for ml and m2), 

2m$(x , - tc )=q(x)+tc  2 -mj(x,-tc2)2, j = 1 , 2 .  

Suppose C is such that for each x E [a,b] and tc E K ,  

(2.2) lmj(x, -tc2) + tcI 5 C, j = 1,2,  

then 

(2.3) Iml(a, -tc2) - m2(a, -tc2)1 5 2Cexp[-2(b - a)[Re(tc)- C]]. 

3. Atkinson's method 

Theorem 2.2 places importance on a priori bounds of the form (2.2). 
Fortunately, by modifying ideas of Atkinson [3], we can obtain estimates of 
this form as long as Im(tc) is bounded away from zero. 
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Throughout this section, b 5 oo and q E ~ ' ( ( 0 ,a ) )  for all a < b. For each 
K with Im(6) # 0 and Re(") > 0, we suppose we are given a solution u(z ,  - K ~ )  

of 

which satisfies (note that z = - K ~ ,  so Im(z) = -2Re(")Im(~)) 

where u' = b)),2.The examples to bear in mind are firstly b < ca,q E ~ ~ ( ( 0 ,  
and u satisfies (3.1) with 

u'(b-,-K 2 ) + hu(b-,-K 2 ) = 0 (lhl < oo) 

and secondly, b = oo, and either q limit point at  infinity or q limit circle with 
some boundary condition picked at  b. Then take u to be an L~ solution of 
(3.1). In either case, u can be chosen analytic in 6 although the bounds in 
Propositions 3.1 and 3.2 below do not require that .  

Atkinson's method allows us to estimate l m ( - ~ ~ )  + K /  in two steps. We 
will fix some a < b finite and define m o ( - ~ ~ )  by solving 

(3.3a) mb(-K 2 ,z) = q(z) + K~ - mo(-" 2 ,z)2 , 

(3.3b) mo(-" 2 , a )  = - K  

and then setting 

( 3 . 3 ~ )  mo(-" 2 ) :=mo(-" 2 ,O+). 

We will prove 

3.1. 
constant E > 0 so that if Re(") 2 C and Im(") # 0, then 

PROPOSITION There is a C > 0 depending only on q and a universal 

In fact, one can take 

3 . 2  . 1 2 ~  
a-' ln(6), 4 laiq(z)dz) , E = 5 

3.2. 
a and q), so that for Re(") > Dl ,  

PROPOSITION There exist constants Dl and D2 (depending only on 
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Indeed. one can take 

Dl  = D2 = 2 Laq ( s )  d z .  

These propositions together with Theorem 1.2 yield the following explicit 
form of Theorem 1.3. 

THEOREM3.3. Let ql, q2 be defined on  (0, bj)  with bj  > a for j = 1,2.  
Suppose that ql = q2 on  [0,a]. Pick 6 so that a + 6 5 min(bl, b2) and let 
1) = S U P O < ~ < ~ ; ~ = ~ , ~ ( J Z + ~Then  if Re(&)t max(41),6-' ln(6)) andIqj(y)/ dy). 
Im(&)# 0, we have that 

where 

Remarks. 1. To obtain Theorem 1.3, we need only note that in the region 

a r g ( ~ )E (-; + E ,  - E ) ,  2 KO,F ( K )is bounded. 

2. We need not require that a r g ( ~ )  < -E to obtain F bounded. It suffices, 
for example, that Re(&) 2 /Im(&)/2 eCaRe(") for some a < 26. 

3. For F to be bounded, we need not require that arg(6) > -$ + E. It 
suffices that l I m ( ~ )  1 2 Re(&)2 a ln[lIm(&)I ]  for some a > (26)-l. Unfortu-
nately, this does not include the region I ~ ( - K ~ )= c, R ~ ( - K ~ )+ oo, where 
Re(&) goes to zero as / & I - ' .  However, as R ~ ( - K ~ )+ GO, we only need that 
I1rn(-&~)12 2ct.1~1l n ( / r / ) .  

As a preliminary to the proof of Proposition 3.1, we have 

LEMMA 3.4. Let A, B ,  C, D E C so that AD - B C  = 1 and so that 
D # 0 f 1rn(%). Let f be the fractional linear transformation 

Then  f [IR U {GO}] is  a circle of diameter 

Remark.  If I D  = 0 or 1m(%) = 0, then f [R U {GO}] is a straight line. 

Proof. Consider first g(C) = & = &. Then g(0) = 0 and g'(0) = 1, 
so g[R U {GO}] is a circle tangent to the real axis. The other point on the 

1 1imaginary axis has 5= ---- with g ( - m )  so diam(g[IR U {oo}])= --
Re(a) Im(a) 

- 1-
IIm(a)l ' 
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Now write (using AD - B C  = 1) 

Thus letting a = CID,  g(() = a;+T and writing D = lDleie, we have that 

B I D  is a translation and e-2iQ a rotation, and neither changes the diameter 
of a circle. So diam(f [R U {oo}]) = I ~ i - ~ d i a m ( ~ [ RU {oo}]). 

Now let cp(x, - K ~ ) ,  O(x,- K ~ )  solve (3.1) with 

Define 

u'(0,-fi2) -LEMMA3.5. If u solves (3.1) and t[,",'1,"22/ = C,  then u(0,-K2)  - f (C) 
with f given by (3.7). 

y'(a, - K ~ )  8'(a, - K ~ )
p r o d  ~ e tT = ( ) Then T (

y(a,  - K ~ )  8(a, - K ~ )  

U'(a' ) by linearity of (3.1). By constancy of the Wronskian, T has( .(a, -6 

determinant 1 and thus 

and so 
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Proof. We consider the case I r n ( ~ )< 0. Let r n l ( - ~ ~ ,x) be any solution of 
m i ( - ~ . ~ , x )  = q(x) + K . ~  - m q ( - ~ ~ , x ) .  Then 1m(m; ( - K . ~ ,  x))  
= 2 R e ( ~ ) 1 m ( ~ )- 2 lm(ml( - K . ~ ,  x ) ) ~ e ( r n l( - K ~ ,  x)).  It follows that at a point 
where Im(ml) = 0, that Im(m:) < 0. Thus if ~ m ( m ~ ( - ~ ~ ,y)) = 0 for y E [0,a], 
then ~ r n ( m ~ ( - ~ ~ ,z) )  < 0 for x E (y,a]. Thus I r n ( r n l ( - ~ ~ ,a))  2 0 implies 

2lm(ml ( - K . ~ ,  0)) > 0, so f maps C+ onto a circle in C+. Since m o ( - ~,a)  = -6 

and m ( - ~ ~ ,a)  are in C+, both points are in C+ and so at x = 0, both lie in-
side the disc bounded by f [R U {m)]. By det (T) = 1 and Lemma 3.4, (3.8) 
holds. 

Proof of Proposition 3.1. B y  (3.8),we need to estimate y(a,  - K . ~ ) .  Define 
~ ( x ,- K . ~ )  = 1m(y(z,- K . ~ )  y'(z, - K . ~ ) ) .  Then, w(O+ ,  - K . ~ )  = 0 and 
by a standard Wronskian calculation, w'(x, - K . ~ )  = - I ~ ( - K ~ )  lcp(x,- K . ~ )  l 2  
= 2Re(~.)Im(~.) lp(z ,- K . ~ ) / ~ .Thus, 

2 2
(3.9) 1m(y(a ,-k2) y'(a, -k2))1 = 2~e(ic)lIm(ic)/la/y(x,K . ) dx. 

0 

y(x,  - K . ~ )  satisfies the following integral equation ([5, §1.2]), 

s i n h ( ~ x )+ 1%sinh(ic(x - y))
(3.10) cp(x,-6 ) = 

K. K. 
~ ( Y ) Y ( Y ,  dY 

Define P(x, - K . ~ )  = ~ . e - ~ ~ ~ ( ~ )cp (x , -~ .~ ) .Then, by (3.10) and / s inh (~ .< ) /5 
eISIRe(~),< E R, 

Wloreover, (3.10) becomes 

which implies that 

Pick K. so that 

Then (3.12) implies 
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so that 

(3.14) SUP 1P(x,-6 2 ) I  I-4 
Of xf a 3 


Using (3.13) and (3.14) in (3.11), we get 


Now I sinh(z)l 2 sinh(lRe(z))= [elRe(")l- e-Re(z)] ,so (3.15) implies 

Now suppose 

(3.17) aRe(6) 2 ln(6). 


Thus for x 2 q ,  (3.16) implies ~ ( x ,  and we obtain 
- K ~ )  2 'elcRe(")
1 2 1 ~ 1  

5 1 ,2aRe(~)2---

6 2881~1~  Re(6) 

Putting together (3.8), (3.9), and (3.18), we see that if (3.13) and (3.17) hold, 
then 

Proof of Proposition 3.2. Let 

Let z(x, - K ~ )  solve (3.1) with boundary conditions z(a, - K ~ )  = 1, zf(a,- K ~ )  

= -6, and let 

y(x, -6 
2 ) = 6 + z'(x, - K ~ )  

X(X,  -bC2) ' 

Then the Riccati equation for m o ( - ~ 2 ,  a) becomes 

(3.20) yf(x,- K ~ )  = q(x) - Y(X,  -62)2+ ~ / € Y ( x ,- K ~ )  

and we have 

(3.21) ~ ( a ,-6 2 ) = 0. 

Thus y (x, - K ~ )  satisfies 
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Define r ( x ,  - K ~ )  = S U ~ ~ , ~ , ,- - lr(y, - K ~ ) .  Since Re(&)> 0, (3.22) implies 
that 

Suppose that 

Then (3.23) implies 

(3.25) implies r ( x ,  - K ~ )  # 27. Since T(a, - K ~ )  = 0 and I' is continuous, we 
conclude that r(O+,- K ~ )  < 27, so ly(O+, - K ~ ) / < 27; hence 1 ( r n O ( - ~ ~ )+ K /  

I 27. 

Remark. There is an interesting alternate proof of Proposition 3.2 that 
has better constants. It begins by noting that r n O ( - ~ ~ )is the m-function for 
the potential which is q(x) for x 5 a and 0 for x > a. Thus Theorem 1.2 applies. 
So using the bounds (1.16) for A, we see immediately that for Re(&)> illqlll, 

4. Finite b representations with no errors 

Theorem 1.2 says that if b = oo and q E L1((O,oo)),then (1.17) holds, 
a Laplace transform representation for m without errors. It is, of course, of 
direct interest that such a formula holds, but we are especially interested in a 
particular consequence of it -namely, that it implies that the formula (1.15) 
with error holds in the region Re(&) > KOwith error uniformly bounded in 
Im(6); that is, we are interested in 

THEOREM4.1. If q E L1((O,oo)) and Re(&)> llqlll, then for all a: 

Proof. An immediate consequence of (1.17) and the estimate 

I A ( 4  - q(ct.11 I1lq112ex~(@llqIll). 
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Our principal goal in this section is to prove an analog of this result in 
the case b < oo. To do so, we will need to first prove an analog of (1.17) in 
the case b < oo - something of interest in its own right. The idea will be 
to  mimic the proof of Theorem 2 from [35] but use the finite b, q(O)(s) = 0, 
x > 0 Green's function where [35] used the infinite b Green's function. The 
basic idea is simple, but the arithmetic is a bit involved. 

We will start with the h = cc case. Three functions for q(O)(z) = 0, 
s > 0 are significant. First, the kernel of the resolvent (-$ + ri2)-' with 
u(O+) = u(b-) = 0 boundary conditions. By an elementary calculation (see, 
e.g., [35, 55]), it has the form 

with x <  = min(x, y), x>  = max(x, y). 
The second function is 

(0) (0)and finally (notice that $h=m(O+, -ri2) = 1 and $h=m satisfies the equations 
-$" = -ri2$ and $(b-,  -ri2) = 0): 

In (4.4), prime means dldx. 
Fix now q E CF( (0 ,b)). The pair of formulas 

and 

m(-ri 2 ) = lim d2G(x, y, -ri2) 

z<y;ylO dxBy 

yields the following expansion for the m-function of -& + q with u(b-) = 0 
boundary conditions. 

PROPOSITION4.2. Let q E CF((0 , b) ) ,  b < oo. Then 
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and for n 2 2, 

The precise region of convergence is unimportant since we will eventu- 
ally expand regions by analytic continuation. For now, we note it certainly 
converges in the region K, real with K~ > IlqllCO. 

We want t o  write each term in (4.5) as a Laplace transform. We begin 
with (4.6), using (4.4) 

Next, note by (4.3) that 

hence, 
00 00 


(4.12) q) = q(r) dz] je-2b"- A~(a)eCZffLda ,2 [lb 	 Soi,(-~~; 

j=1 


where 
(4.13) 

q ( 4 ,  O < a < b ,  

A&) 	 = ( n  + l ) q ( a  - nb) + nq((n + l ) b  - a), nb Ia < ( n  + l ) b ,  
n =  1 ,2 , . . . .  

To manipulate Mn for n > 2, we first rewrite (4.10) as 
00 


(4.14) 
 $h=COC O ) (,,
 -&2) = x$(0) . ( i ) (x ,  -&2) 

j=O 
where 

(4.15) 	 $'O'l'j '(~,-/c2) = (- l ) jmp(-/cXj (x)), 
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with 

and then for n 2 2 

where 

Next use the representation from [ 3 5 ] ,  

to rewrite (4.2) as 

where 
CO 


S + ( x ,  y )  = U [ x- y + 2nb, x + y + 2nb] 
n=O 


and 
CO 


S - ( x , y )  = U [2b(n+ 1 )  - x - y ,  2b(n  + 1 )  - 1x - Y I ] . 
n=O 


Each union consists of disjoint intervals although the two unions can overlap. 
The net result is that 

where U is +1, -1,  or 0. The exact values of U are complicated -that I U / 5 1 
is all we will need. 
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Plugging (4.19) in (4 .18) ,we obtain 

Letting a = ;[el + . . . + en-1 + X:, ( X I )  + X p ( x n ) ]and changing from to 
d a  (since n 2 2,  there is an we see that 

where 
(4.21) 

where R ( x l , . . . , x,, e l , . . . , is the region 

n-2 

= ( ( ' 1  , en-2) t i  2 0 and X j ( x l ) + X P ( x n )+ tk5 2~ 
k=l 


In (4 .20) , the integral starts at  i b ( j  + p)  since a 2 ; [ x j ( z l )+ X p ( x n ) ]  
and (4.16) implies that X j  ( x )  2 b j .  For each value of x ,  R is contained in the 

simplex { ( e l ,. . . ,On-2)  1 Oi 2 0 and cE: tt 5 2 a }  which has volume -.(2a)n-2 

This fact and IUI 5 1 employed in (4.21) imply 

l A n r , P ( ~ I  l d x )  d x )I I5 (ib 
Moreover, by (4 .20);  

(4 .24)  An,j,p(a)= 0 if a < ;b ( j + p) .  

For any fixed a,  the number of pairs ( j , p )  with j , p  = 0 , 1 , 2 . . . so that 

a > i b ( j  + p)  is 
1 2a + I ) ( [ ? ]  + 2 ) ; thus, 

with 



611 INVERSE SPECTRAL THEORY. 11 

As in [35], we can sum on n from 2 to infinity and justify extending the 
result to all q E LI ((0, b)). We therefore obtain 

THEOREM 	 = GO). Let b < GO, h = oo, and 4.3 (Theorem 1.6 for h 
q E L1((O, b)). Then for Re(&) > $ l q l l l ,  we have that 

00 CO 

= A j ~ e p Z K b jC~ , ~ - 2 " b ~Am~ ( a ) e - ~ " "  

where j=1 j=1 
(4.27) r r c ( - ~ ~ )  - K - 	 - - da ,  

(i) Aj = 2. 

(ii) B j  = -2 j  ~ i g ( z )d ~ .  

(2a+b) (2a+2b) (iii) 	 I A ( a )  - A ~ ( a )  I 2b2 1q11?exp(aqlll) with A1 given by (4.13). 
In particular, 

As in the proof of Theorem 4.1, this implies 

COROI~LARY4.4. If q E L1((O, oo)) and R ~ ( K )  2 llq + E ,  then for all 
a E (0,b) ,  b < oo, we have that 

5 ~ ( a ,+ K + S,"A(a)eKza" d a  ~ ) e - ~ " ~ ~ ( ~ ) ,  

where C(a,  E )  depends only on a and E (and Ilq 1 )  but not on Im(6). 

Remark. One can also prove results for a > b if b < GO but this is the 
result we need in the next section. 

The case h = 0 (Neumann boundary conditions at b) is almost the same. 
(4.2)-(4.4) are replaced by 

The only change in the further arguments is that U can now take the values 
0,311, and 1 2  so IU 5 2. That means that (4.26) becomes 

The net result is 
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THEOREM4.5 (Theorem 1.6 for h = 0 ) .  Let b < GO, h = 0 ,  and q E 
~ ' ( ( 0 ,b ) ) .  Then for Re(K) > q l ,  (4.27) holds, where 

( i )  Aj = 2(-1)j .  

(ii) Bj = 2(- l ) j t l  j J: s ( z )  dz .  

(2a+b)\2a+2b) 1 q :  exp(2a q l  with A1 given by(iii) IA(a)- A1 ( a )1 i b 

Al,h=0 ( a )  

O I a < b ,  
( - l )"[(n+ l ) q ( a- nb) - n q ( ( n+ l ) b- a ) ] ,  nb I a < (n+ l ) b ?  

n =  l , 2 , . . . .  

In particular, 

A n  analog o f  Corollary 4.4 holds, but we will wait for the  general h E R 
case t o  state i t .  

Finally, we turn  t o  general 1 h J< GO. In this case, (4.2)-(4.4) become 

( 0 )  2 C(h, ~ ) e - ~ ~ ~  
rnh (-6 ) = -6 + 26 

1 + ( ( h ,  &)ec2"b ' 

where 

T o  analyze this further, we need Laplace transform formulas for C. 

PROPOSITION4.6. The following formulas hold in  the &-region h +Re(K) 
> 0. 

( i )  C(h,K )  = 1 - 4 h  Jre-a(2"t2h) da.  

(ii) ( ( h ,K)"' = J=I ( - 1 )  ( )  JW - 1 e -42~+2h) da .  1 +Em 3 ( 3 - I ) !  0 

(iii) ~ ( ( h ,K )  = K - 2h + 4h2Jre-a(2"t2h) d a. 

(4h)3+I( i v )  ~ ( ( h ,K)"' = K - 2 m h  - a xY=, (- I)j [ ( y )+ 2( jy l ) ]-JFa'-' 

x e-a(2K+2h)d a ,  where is interpreted as 0. 
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Proof. Straightforward algebra. 


Rewriting (4.33) as 


and then using Proposition 4.6(iv), we find that 

where 

Using the crude estimates (4h)i-'(a-2mb)3-1X[2m,b)(a ) / ( j - l ) !  5 exp(4 hla),  
xcl (7)5 2"", xyIl(31;1)5 2", and m 5 a/2b, we see that 

(4.37) 

3 a (;CXP(%)55lAo.h(a)l ex~(61hla). 

A similar analysis of J: q(z)$osn(x,- K ~ ) ~dz  shows that 

(4.38)

lb 00 

(0)
- q(z)$jh (x, -n2)2 dz = -

where A I , ~  satisfies for suitable constants C1 and C2 

(4.39) 

IAl,h(a)l 5 Clexp(C2(1h f 1f b - ' ) ~ )  

x [Iq(a - n b )  + Iq(n + l ) b  - a)l] for nb 5 a < (n  + 1 ) b .  

Finally, using (4.31) and Proposition 4.6, we write 

(4.40) G,(0)(x, 9,  -6 2 = lee1 U(X,  y, h, t)e-"' dt. 

where 
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for suitable constants C3 and C4. From it, it follows that 
b 

nrn(-r2; q) = (-1In/ dxl . . . Lbdx, q (x l ) .  . .q(xn) 
0 

where 

We conclude 

THEOREM4.7 (Theorem 1.6 for general hl < oo). Let b < oo, hl  < oo, 
and q E L1((O, b)). Then for Re(&) > i ~ l[llql+ h + b-' + 11 for a suitable 
universal constant Dl ,  (4.27) holds, where 

(i) A j  = 2(- 1)i. 

(ii) Bi = 2(-l)j+'j[2h + J,G q(x) dx]. 

(iii) IA(a) - q(a)l I 11q?exp(~l lq1)if la: < b, and for any a > 0, 

Hence we immediately get 

COROLLARY4.8. Fix b < oo, q E ~ ' ( ( 0 ,b ) ) ,  and Ihl < oo. Fix a < b. 
Then there exist positive constants C and KO so that for all complex tc with 
Re(r)  > KO, 

5. The relation between A and p: Distributional form, I. 

Our primary goal in the next five sections is to discuss a formula which 
formally says that 

(5.1) A-4 s i n ( 2 a A )  d p ( ~ ) ,  

where for X I 0, we define 
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In a certain sense which will become clear, the left-hand side of (5.1) should 
be A(a)  -A(-a) + St(a).  

To understand (5.1) at a formal level, note the basic formulas, 
00 


(5.2) m(-c 2) = -6 -1 ~ ( a ) e - ~ ~ ~da ,  

and 

(5.4) (A + c2)-' = 2 LO0A-i~ i n ( 2 a f i ) e - ~ " "da ,  

which is an elementary integral if 6 > 0 and X > 0. Plug (5.4) into (5.3), 
formally interchange order of integrations, and (5.2) should only hold if (5.1) 
does. However, a closer examination of this procedure reveals that the inter- 
change of order of integrations is not justified and indeed (5.1) is not true as 
a simple integral since, as we will see in the next section, J: dp(X) R S

3 ,N 

R-Gc 37T 
which implies that (5.1) is not absolutely convergent. We will even see (in 59) 
that the integral sometimes fails to be conditionally convergent. 

Our primary method for understanding (5.1) is as a distributional state- 
ment, that is, it will hold when smeared in a for a in (0, b).  We prove this in 
this section if q E L I  ((0, oo)) or if b < oo. In Section 7, we will extend this 
to all q (i.e., all Cases 1-4) by a limiting argument using estimates we prove 
in Section 6. The estimates themselves will come from (5.1)! In Section 8, we 
will prove (5.1) as a pointwise statement where the integral is defined as an 
Abelian limit. Again, estimates from Section 6 will play a role. 

Suppose b < oo or b = oo and q E ~ ' ( ( 0 ,b ) ) .  Fix a < b and f E CT((0,  a ) ) .  
Define 

for Re(&) 2 0. Fix co real and let 

with 60,a as real parameters and y E R a variable. As usual, define the Fourier 
transform by (initially for smooth functions and then by duality for tempered 
distributions [33, Ch. 1x1) 

Then by (5.5), 

(5.7) $(k, co,a)  = 6 ) - 6 S t ( k )-*e-"OA (k).-6 ($)x ( ~ , ~ ~ )
2 
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Thus, since f (O+)  = f l ( O + )  = 0, in fact, f has support away from 0 and a ,  

(5.8) la~ ( a )(a)d a  = --4%la(2a, no, a)e2a"0 f (a)d a  
0 

-- -
1 2 a ,

g(a,no, a)eonO f (;)0 d a  

-- g(y,6 0 ,  a)F(y,6 0 )  dy, 

where we have used the unitarity of andA 

(5.9) ea(n~+bY) daf (;) 
2 a- S- f (a)do!. 
- 0 e2"'n0+zy) 

Notice that 

since f is smooth and supported in (0, a - E )  for some E > 0. 
By Theorem 4.1 and Corollary 4.8, 

for large no, uniformly in y. From (5.8), (5.10), and (5. ll),one concludes that 

LEMMA5.1. b ) ) .Let f E C r ( ( 0 ,  a ) )  with 0 < a < b and q E ~ ~ ( ( 0 ,  Then 

(5.12) 

[Lae20(*o+zy)laA(a)f (a)da  = lim [-11m(-(no + i ~ ) ~ )  
noTm R 

As a function of y, for no fixed, the alpha integral is O((1 + y2)-N) for a11 
N because f is Cm.  Now define 

where c~ is chosen so that fiR -+ m. Because JR dp(X) < m, the convergence 
R+w 

is uniform in y for no fixed and sufficiently large. Thus in (5.12) we can replace 
m by mR and take a limit (first R -+ oo and then no oo). Since f (O+)  = 0, 
the J dy c~ da-integrand is zero. Moreover, we can now interchange the dy da  
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and dp(X) integrals. The result is that  

(5.14) 

LaA(a)f (a)d a  = lim lim /
noTm R+m AIR 

In the case a t  hand, dp is bounded below, say X > -KO. As long as we take 
KO > KO,the poles of (KO + iy)2+ X occur in the upper half-plane 

Closing the contour in the upper plane, we find that  if X 2 -KO, 

- -2e-2ar;o s i n ( 2 a f i )  -

6 

Thus (5.14) becomes 

KO has dropped out and the a integral is bounded by C(1+ X2)-I,  so we take 
the limit as R i oo since j, 3< no. We have therefore proven the following 
result. 

THEOREM Let f E C F ( ( 0 , a ) )  with a < b and either b < oo or5.2. 
q E ~ ' ( ( 0 ,oo)) with b = oo. Then 

1"~ ( a )(a)d a  = -2 

We will need to  strengthen this in two ways. First, we want to  allow a > b 
if b < oo. As long as A is interpreted as a distribution with 6 and 6' functions 
a t  a = nb, this is easy. We also want to  allow f to  have a nonzero derivative 
a t  a = 0. The net result is 

THEOREM5.3. Let f E C F ( R )  with f (-a) = -f (a), a E R and either 
b < oo or q E ~ ' ( ( 0 ,oo)) with b = oo. Then 

ou s i n ( 2 a f i )  
d a] dp(X) = i:;A(a)f ( a )  d a ,  

where A is the distribution 

i f b = o o  and 
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if b < ca,where Aj, Bj are h dependent and given in Theorems 4.3, 4.5, 
and 4.7. 

The proof is identical to the argument above. f (0) is still 0 but since 
f f (0)  # 0, we carry it along. 

Example. Let b = cc, q(0)(x) = 0, z 2 0. Then dp(0)(X) = $X[o,,)(A) 
x 6 d A .  Thus, 

= f (a)s i n ( 2 a 4 )  d a  I dA.-1Lrn[l",

iTT 

Next, change variables by k = 2 4 ,  that is, X = $,and then change from 
Jpdlc to $ JrWdk to obtain (recall f (-a) = -f ( a ) )  

(5.18) = -11"[I"f (a )  sin(ak) d a  1 lc dk 
27r -oo -a 

a,s claimed in (5.16) and (5.17a) since A(') ( a )  = 0, a 2 0. 

6. Bounds on ~ : ~ d p ( X )  

As we will see, (1.13) implies asymptotic results on &dp(A) and (5.1) 

will show that J!, eb-dp(A) < cc for all b > 0 and more (for remarks on 
the history of the subject, see the end of this section). It follows from (5.3) 
that 



619 INVERSE SPECTRAL THEORY, 11 

Thus, Everitt's result (1.13) (which also follows from our results in 552 and 3) 
implies that 

Standard Tauberian arguments (see, e.g., [34, §III.10], which in this case shows 
3


that on even functions ~ i d ~ ( i )  i7r-' / A /) dA) then imply 
R+w 


Remarks. 1. This holds in all cases (1-4) we consider here, including some 
with supp(dp) unbounded below. 

2. Since we will see J!, dp is bounded, we can replace & by J: in (6.1). 

We will need the following a priori bound that follows from Proposi- 
tions 3.1 and 3.2 

PROPOSITION Let dp be the spectral measure for a Schrodinger op- 6.2. 
erator in Cases 1-4. Fix a < b. Then there is a constant C, depending only 
on a and J: /q(y)l dy so that 

Proof. By Propositions 3.1 and 3.2, we can find Cl and zl E C+ depending 
only on a and Soa q(y) 1 dy so that 

Im(z1)l 5 C1. 

Thus, 
d p ( 4  -- Im(m(z1)) c1I---

(A  - + Im(zl) Im(zl) 'R e ( ~ 1 ) ) ~( I m ( ~ 1 ) ) ~  

and 

Our main goal in the rest of this section will be to bound J!, e2aa 
xdp(A) for any a: < b and to find an explicit bound in terms of supol,la+l 
[-q(y)] when that sup is finite. As a preliminary, we need the following result 
from the standard limit circle theory [6, $9.41. 
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PROPOSITION6.3. Let  b = m and let dp be the  spectral measure for a 
problem of types 2-4. Let  dpR,h be the  spectral measure for the problem wi th  
b = R < m ,  h, and potential equal t o  q ( x )  for x < R. T h e n  there exists h(R) 
so that  

~ P R . ~ ( R )R,adp, 

w h e n  smeared wi th  a n y  funct ion f of compact support. I n  particular, i f f  2 0, 
t hen  

This result implies that  we need only obtain bounds for b < m (where we 
have already proven (5.15)). 

LEMMA6.4. If pl has  support  in [-Eo,oo), Eo> 0, t h e n  

Proof. Obvious. 

Now let f be fixed in C r ( ( 0 , l ) )  with f > 0 and 1; f (y) dy = 1. Let 
fao(a)= f (a - aO).Let dp2 be the spectral measure for some problem with 
b 2 a 0  +1and let dpl be the spectral measure for the problem with b = a 0  +1, 
h = oo, and the same potential on [O, a 0  + 11. Then, by Theorem 1.3, A l ( a )  = 

Az ( a )  for a E 10,ao + I] so J::+' fa0(a)[A1( a )-A2 (a)]d a  = 0, and thus by 
Theorem 5.2, 

where 

LEMMA6.5. (i) For X > 0, G,, ( A )  < 2(1 + ao ) .  

(ii) IG,, (A)  I 5 XP2 J; fU'(u)du := for X > 0. 

(iii) For X _< 0, G,,(X) < 2(a0 + l ) e 2 ( " 0 + l ) a .  

(iv) For X 5 0, G,, ( A )  -'- 2 " o G  - 11. 
2m[e 

Proof. (i) Since Isin(x)l < 1x1, 1 s i n ( 2 a f i ) / f i l  5 2a. Thus, since 
ao+l~ u p p ( f a ~ ) ~ [ ~ 0 , ~ 0 + 1 ] a n d J , ,faO(a)da=l , IGao(X)I I2(1+ao).  

d3 c o s ( 2 a A )  = s in (2af i ) ,  SO this follows upon integrating(ii) -(2!+)3 dru3 
by parts repeatedly. 
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(iii), (iv) For y 2 0, 

sinh(y) Y ---= 1/"cosh(u) du 
Y Y 0 

so $eu 5 coshu < eu < eY, 0 5 u5 y implies 

ey - 1 sinh(y)< -< eY. 
2~ -

-
Y 

This implies (iii) and (iv) given supp(fa,) c [ao,a 0  + 11, fa, (a) > 0, and 

JE;" f f fo(a)d a  = 1. 

We can plug in these estimates into (6.4) to obtain 

where, 

and we have used 

Thus, Propositions 6.2, 6.3 and Lemma 6.4 together with 

for any u > 0 and any 6 E R imply 

THEOREM6.6. Let  p be the  spectral measure for s o m e  problem of the  
types 2-4. Let  

T h e n  for all S > 0 and a 0  > 0, 
(6.7) 
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where C1, C2 only depend on J: q (x ) 1 dx. In particular, 

0 

(6.8) eBG dp(A) < m 

for all B < m. 

As a special case, suppose q(x) 2 -C(x + I ) ~ .Then E(ao)  2 -C(ao + 2)2 
and we see thak 

This implies 

THEOREM Ifdp is the spectral measure for a potential which satisfies 6.7. 

for some R > 0, C > 0, then for E > 0 suficiently small, 

Remarks. 1. Our proof shows ill terms of the D2 of (6.9), one only needs 
that E < 1/4D2. 

2. Our proof implies that if 


1

lim - max(0, -q(x)) = 0,
x400 x2 

then (6.11) holds for all E > 0. 

Proof. (6.9) implies that 

Taking B = n/2D2, we see that 

Thus, 
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Remark. If in addition q E ~ ' ( ( 0 ,oo)), then the corresponding Schro-
dinger operator is bounded from below and hence dp has compact support on 
(-oo, 01. 'This fact will be useful in the scattering theoretic context at the end 
of Section 8. 

The estimate (6.8), in the case of non-Dirichlet boundary conditions at 
x = 0+, appears to be due to Marchenko [26]. Since it is a fundamental 
ingredient in the inverse spectral problem, it generated considerable attention; 
see, for instance, [12],[18],[19],[20],[22],[27],[28,52.41. The case of a Dirichlet 
boundary at x = O+ was studied in detail by Levitan [20]. These authors, in 
addition to studying the spectral asymptotics of p(X) as X J, -m, were also 
particularly interested in the asymptotics of p(X) as X 'T' oo and established 
Theorem 6.1 (and (A.9)). In the latter context, we also refer to Bennewitz 
[4],Harris [16],and the literature cited therein. In contrast to these activities, 
we were not able to find estimates of the type (6.7) (which implies (6.8)) and 
(6.11) in the literature. 

7. The relation between A and p: Distributional form, I1 

We can now extend Theorem 5.2 to all cases. 

THEOREM7.1. Let f E CF((0 ,oo)) and suppose b = oo. Assume q 
satisfies (1.3) and let dp be the associated spectral measure and A the associated 
A-function. Then (5.16) and (5.17) hold. 

Proof. Suppose f E CF((0 ,a)).  For R > a ,  we can find h(R) so dpR ,h (~ )  
--t dp (by Proposition 6.3) weakly. By Proposition 6.2 we have uniform 

R i m  

bounds on SF(l+X2)-'d p R l h ( ~ )and by Theorem 6.6 on J!, e2a(adPR,h(R). 
Since the a integral in (5.15) is bounded by C(l + X2)-I for X > 0 and by 
~e~~~ for X 5 0, the right-hand side of (5.15) converges as R --t oo to the 
dp integral. By Theorem 1.3, A is independent of R for a E (0,a )  and R > a ,  
so the left-hand side of (5.15) is constant. Thus, (5.15) holds for dp. 

8. The relation between A and p, 111: Abelian limits 

For f E CF(R) ,  define for X E R 
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and then 

We have proven in (5.16),  (5.17) that for f E C r ( R ) ,the two expressions 
(8 .2 ) ,  (8.3) define the same T ( f ) .  We only proved this for odd f ' s  but both 
integrals vanish for even f 's. We will use (8.2) to extend to a large class of f ,  
but need to exercise some care not to use (8 .3) except for f E C r ( R ) .  

Q ( f )  can be defined as long as f satisfies 

for all k > 0.  In particular, a simple calculation shows that 

We use f (a ,ao,E )  for the function f in (8 .5) .  
For X 2 0 ,  repeated integrations by parts show that 

where 1 1  . I l l  represents the L1(IR)-norm. Moreover, essentially by repeating 
the calculation that led to ( 8 . 5 ) ,we see that for X 5 0 ,  

We conclude 

PROPOSITION If < oo (always true!)  and8.1. J R d p ( X ) ( l  + X 2 ) - I

J!, e - & ~ ' d ~ ( X )< cc (see Theorem 6.7 and the remark following its proof) ,  

then using (8 .2) ,  T ( . ) can be extended to  C3(IR)f ' s  that satisfy ea2/'0 f E 

L w ( R )  for some EO > 0 and 3E L' ( R ) ,and moreover, 

Next, fix ao and EO > 0 so that J!, < m. If 0 < E < ~ o ,e - E O A d p ( ~ )  
f (a ,ao,E )  satisfies 1 1 1 f 1 1 I,, < oo so we can define T (f ) . Fix g E C r( R )with 
g := 1 on ( - 2 a o , 2 a o ) .  Then I l l f ( . , a o , ~ ) ( l-g) l l lEo -+ 0 as E J, 0 .  So 
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For gf ,  we can use the expression (8.3). f is approximately &(a- ao)so 
standard estimates show if ao is a point of Lebesgue continuity of A ( a ) ,  then 

1,
00 

f (a,a o ,  & ) g ( a ) A ( ~ )da;;o A(ao). 

Since A -q is continuous, points of Lebesgue continuity of A exactly are points 
of Lebesgue continuity of q. We have therefore proven 

8.2. or b 
then either q E L1((O,oo)) or q E L1((O, a)) for all a < oo and 

THEOREM Suppose either b < oo and q E L1 ((0, b)) = oo, and 

for some R > 0, C > 0. Let a o  E (0,b) and be a point of Lebesgue continuity 
of q. Then 

We briefly illustrate the rate of convergence as E J 0 in (8.9) in the special 
case where qio)(x) = 0, x 2 0. Then dp(0)(A) = T - ~ ~ ~ ~ , ~ ) ( X ) ~ J ~ Xand 
formula 3.9521 of [15] (changing variables to k = fiL 0) yield 

00 

(8.10) A(O)(a)=-2s-'lim/ epE%in(2a&)dX 
&LO 0 

Finally, we specialize (8.9) to the scattering theoretic setting. Assuming 
q E ~ ' ( ( 0 ,oo); (1+x) dx), the corresponding Jost solution f (x, z) is defined by 

(8.11) f (x, z) = e q(xf)f (x', 2) dx', I m ( f i ) L 0& 
and the corresponding Jost function, F ( @ ) ,  and scattering matrix, S(X), 
X L 0, then read 

The spectrum of the Schrodinger operator in L2((0, oo)) associated with the 
differential expression -$+ q(x) and a Dirichlet boundary condition at 
x = O+ is simple and of the type 
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Here J is a finite (possibly empty) index set, tsj > 0, j E J, and the essential 
spectrum is purely absolutely continuous. The corresponding spectral measure 
explicitly reads 

where 

are the norming constants associated with the eigenvalues 4= -ts; < 0. Here 
~ ( x ,z) (which has been introduced in (3.6a) and (3.10)) and f (x, z) in (8.11) 
are linearly dependent precisely for z = -632, j E J. 

Since 

where P Somdenotes the principal value symbol and S(X) the corresponding 
scattering phase shift, that is, S(X)= exp(2iS(X)), S(X) 0, the scattering 

data 

{-., c j > j E ~u { ~ ( X ) ) X > O  

uniquely determine the spectral measure (8.14) and hence A(a)  . Inserting 
(8.14) into (8.9) then yields the following expression for A(a)  in terms of scat- 
tering data. 

THEOREM8.3. Suppose that q E L1((O, m ) ;  (1+ x) dx). Then 

at points a > 0 of Lebesgue continuity of q .  

Remark. In great generality IF(k)l --t 1as k oc,so one cannot take the --t 

limit in E inside the integral in (8.16). In general, though, one can can replace 
l ~ ( f i ) I - ~  by - 1)-. X(X) and ask if one can take a limit there. 
As long as q is C2((0, m ) )  with q" E ~ ' ( ( 0 ,m ) ) ,  it is not hard to see that as 
X--tm 
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Thus, if q(0) = 0, then 

The integral in (8.17) is only conditionally convergent if q(0) # 0. 

We note that in the present case where q E ~ ' ( ( 0 ,oo);(1+ x) dx), the 
representation (1.17) of the m-function in terms of the A(a)-amplitude was 
considered in a paper by Ramm [31] (see also [32, pp. 288-2911). 

9. The relation between A and p, IV: Remarks 

Here is a totally formal way of understanding why (5.1) is true. We start 
with the basic representation without errors, 

00 


(9.1) m ( - ~ ~ )m o ( - ~ ' )  - da.= ~ ( a ) e - ' ~ l  

Pretend we can analytically continue from n real to n = -ik (at which point 
-K' is k2 + iO). Then 

00 


m(k2+ iO) = mg(k2+ iO) -1 A(a)ezi"* da.  

This normally cannot be literally true. In many cases, A(a)  7- cc at infinity 
(although for the case q(x) = constant > 0, which we discuss later, it is true). 
But this is only a formal argument. 

Taking imaginary parts and using for a,a 0  > 0 that 

(which follows from JFWeiak dk = 27rS(a)), we conclude that for a 0  > 0, 

which, given (1.12), is just (5.1). 
As explained in [35], a motivation for A is the analogy to the m-function 

for a tridiagonal Jacobi matrix. For this point of view, the relation (5.1) is an 
important missing link. The analog of (1.7) in the discrete case is 
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The coefficients of yn of the Taylor series at  infinity are the analog of A(a) .  
In this case, the spectral measure is finite and of finite support (if the Jacobi 
matrix is bounded) and 

so that (9.5) implies that 

(5.1) should be then thought of as the analog of (9.7) for the continuum case. 
Perhaps the most important consequence of (9.7) is the implied positivity 

condition of the 7's explicitly, that -

N 


for all (ao, . . . , aN)  E CN+l.  
Recall (see, e.g., Gel'fand-Vilenkin [13, 511.51) that Krein proved the fol- 

lowing fact: 

THEOREM9.1. A cont inuous  even  funct ion f o n  R has  the  property that  

for all even  functions cp E C r ( R )  if and only  if there are finite positive mea-
sures d p l  and dp2 o n  [0, cc) so that  JreaXdp2(A)< cc for all a > 0 and so 
that  

00 

f (x) = Lmcos(Ax)d p ~(A)  + 1 cosh(Ax) dp2 (A). 

Using the extension in Gel'fand-Vilenkin to distributional f (cf. [13, 511.6.3, 
Theorem 5]), one obtains 

THEOREM9.2. Let  ~ ( a )be the  distribution of Theorem 5.3. Let 
B ( a )  = -A'(,) be the  distributional derivative of A. T h e n  

for all even cp E C r ( R ) .  Moreover,  if A is  a distribution related t o  a signed 
measure,  d p ,  by (5.16), t h e n  (9.10) i s  equivalent t o  the  positivity of the  
measure dp.  
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As discussed in [13], the measures dpj in (9.9) may not be unique. Our 
theory illuminates this fact. If q is in the limit circle case at infinity, then 
distinct boundary conditions lead to distinct spectral measures but the same 
A-function, so the same A and the same B = A'. Thus, we have additional 
examples of nonuniqueness. The growth restrictions on f which guarantee 
uniqueness in (9.9) (e.g., S,e P X 2f (x) dx < cc for all c > 0) are not unrelated 
to the standard q(x) 2 - c x 2  that leads to the limit point case at cc for the 
SchrGdinger differential expression -$+ q(x), 

Next we turn to the relation between A and the Gel'fand-Levitan trans- 
formation kernel L in [12]. For the function L(x, y) associated to Dirichlet 
boundary conditions at x = 0, satisfying (cf. (3.6a), (3.10)) 

we claim that 

We will first proceed formally without worrying about regularity conditions. 
Detailed discussions of transformation operators can be found, for instance, in 
[ll],[21, Ch. 11, [22], [24], [25], [26], [28, Ch. 11, [30, Ch. VIII], [36], [37], and, 
in the particular case of scattering theory, in [2, Chs. I and V], [8], and [29]. 
Let dp(X) be the spectral measure for -& + q(x) and 

the spectral measure for -$ (both corresponding to the Dirichlet boundary 
condition parameter h = oo at x = O) ,  and define da = dp - dp(0). Then L is 
defined as follows [12]. Let 

1....[l- c o s ( A  x)] [1- cos(Ay)]
(9.13) F ( x ,Y)  = X2 da(X) 

where the final "=" is formal since the integral may not converge absolutely. 
L satisfies the following nonlinear Gel'fand-Levitan equation, 

Thus, formally by (9.15) and (9.16), 
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and then by (9.14) 

which, by (5. I ) ,  says that (9.11) holds. 
Alternatively, one can derive (9.11) as follows. Suppose Q E L1 ((0, m ) )  

coincides with q on the interval [0, a],is real-valued, and of compact support. 
Denote by fQ(x, z),  FQ(fi),and LQ(x, x') the Jost solution, Jost function, 
and transformation kernel (satisfying (9.15), (9.16)) associated with Q. Then 

(cf. [5, §V.21), 

and 

is the unique Weyl solution association with Q. Thus, the normalization of UQ 

in (9.20a), (9.19), LQ(O+, O+) = 0, and (1.7) then yield 

Identifying z = - K ~ ,  x' = 2a,  a comparison with (1.17) then implies 

Since by Theorem 1.3 and the following remark, A(a)  only depends on q(x) = 

Q(x) for x E [0,a],and L(x, y) depends on q(xf) = Q(xf) for x' E [0, (x +y)/2] 
with 0 5 y < x < 2a (cf. [5, eq. (III.1.11)], [28, pp. 19, 20]), one concludes 
(9.11). 

Next, we want to note that (5.1) sometimes does not represent a condi- 
tionally convergent integral; that is, 

can fail. Indeed, it even fails in the case b < oo, h = m ,  and q(0)(x) = 0, 
0 < x < b. For in that case (see (4.4)), 
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Straightforward residue calculus then implies that 

00 

dp(0)(A)= C wn6(E -E,), 
n=l 

with 

(9.2313) 

and 

(9 .23~)  

(the reader might want to check that this is consistent with J: dp(A) 

& ~ ~ 1 ' ) .  
R+oo 

Thus, 

is not conditionally convergent as R i oo. 
Given the known asymptotics for the eigenvalues and weights when b < m 

(cf., e.g., [23, §1.2]), one can see that (9.22) never holds if b < oo.There are also 
cases with b = m ,  where it is easy to see the integral cannot be conditionally 
convergent. If 

q (x )=xP ,  p > o  

then WKB analysis (see, e.g., [38, 57.11) shows that 

En = [Cn+ 0(1)IY, 

where y-l = + and wn = cE;-'l8 (1+ o(1)). As long as p > 2, 
1 


w n E i 5  -+ m ,  and so the integral is not conditionally convergent. 
ndoo 

Another canonical scenario displaying this phenomenon is provided by the 
scattering theoretic setting discussed at  the end of Section 8. In fact, assuming 
4 E L1((O, m ) ;  (1+ x) dx), one sees that 

(cf. [5, eq. 11.4.131 and apply the Riemann-Lebesgue lemma. Actually, one 
only needs q E ~ ' ( ( 0 ,m ) )  for the asymptotic results on F (k )  as k oo but 
we will ignore this refinement in the following.) A comparison of (9.24) and 
(8.16) then clearly demonstrates the necessity of an Abelian limit in (8.16). 
Even replacing dp in (8.9) by da  = dp - dp(0) (cf. (8.10)); that is, effectively 
replacing IF(^) I - 2  - 11 in (8.16) still does not necessarily by [ ~ ( 6 )  
produce an absolutely convergent integral in (8.16). 
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The latter situation changes upon increasing the smoothness properties 
of q since, for example, assuming q E L1((O, m ) ;  (1+ x) dx), q' E ~ ' ( ( 0 ,m ) ) ,  
yields 

as detailed high-energy considerations (cf. [14]) reveal. Indeed as we saw at 
the end of Section 8, if q" E L1((O, m) ) ,  then the integral one gets is absolutely 
convergent if and only if q(0) = 0. 

Unlike the oscillator-like cases, though, the integrals in the scattering the- 
ory case are conditionally convergent. 

These examples allow us to say something about the following question 
raised by R. del Rio [9]. Does lm( -K~)  + stay bounded as z = -r;2 moves 
along the curve Im(z) = ao > 0 with Re(z) -+m ?  In general, the answer is 
no. The m ( - ~ ~ )  of (4.4) has 

(En = n( ~ n l b ) ~ ,E N denoting the corresponding eigenvalues) showing 
m ( - ~ ~ )  Similarly, in the case is not even bounded by C r ;  on the curve. 
q(z) = xP, one infers that l m ( - ~ ~ )  + r;l/r; is unbounded at En+ iaoas long 
as /3 > 2. 

As a final issue related to the representation (5.1), we discuss the issue 
of bounds on A when Iq(x) 5 Cx2. We have two general bounds on A: the 
estimate of [35] (see ((1.16)), 

and the estimate we will prove in the next section (Theorem 10.2), 

where Ir(a)1 = 1 q(x) ' I2  and I' ( . ) is the modified Bessel function of 
order one (cf., e.g., [I ,  Ch. 91). Since ([I ,  p. 3751) 

we conclude that 

(9.28) A(a) l  5 

if q ( x )  5 Cx2. This is a pointwise bound related to the integral bounds on 
A(a)  implicit in Lemma 6.5. 
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10. Examples, I: Constant q 

We begin with the case b = m ,  q(x) = qo, x > 0, with qo a real constant. 
We claim 

THEOREM10.1. If b = o~ and q(x) = qo, x > 0, then if qo > 0, 
1-

402(10.1) A(u) = -~l(2aq:). 
a 

where J l ( . )  is the Bessel function of order one (cf., e.g., [ I ,  Ch. 91); and if 

40 < 0, 

with Il( . ) the corresponding modified Bessel function. 

Proof. We use the following formula ([15, 6.6233]), 

(10.4) I" dx d n - a
e-""Il (bx) -= 

b , a > 0, Ibl < a ,  b E R. 
x 

From this we see that 
I-

-K -1" e - ~ a x  402 
1 \(2K)2 + (2q32 - 2iC 

-J1( 2 ~ ~ : )da! = -
2 

- K 
a! 

= -4.2 + yo. 

which is the m-function for b = m ,  q(x) = qo, x 2 0. By the uniqueness 
of inverse Laplace transforms, this proves (10.1) and incidentally a formula 
like (1.17) without error term holds. The argument for (10.2) using (10.4) is 
similar. 

Remarks. 1. This suggests that a formula like (1.17) holds if q is bounded. 
We will prove that below (see Theorem 10.3). 

2. Our original derivation of the formula used (5.1), the known formula 
for dp(X), and an orgy of Besselology. 

This example is especially important because of a monotonicity property: 

THEOREM10.2. Let q l ( x )  I -q2(x) on [0,a] with a Imin(bl, b2) .  
Then A l  (a) 5 -Az (a)on [0,a]. In particular, for any q satisfying supo<zla-

q(x)  < m ,  we have that 

(10.5) I A ( 4 1 I -?(a)I 1 ( 2 ~ 7 ( ~ ) ) ,
a 
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where 

In particular, (9.27) implies 

(10.7) A(a)I  I a-l?(a)e2ay(ff),  

and if q is bounded, 

P~oof.Since A(a)  is only a function of q on [0,a),we can suppose that 
bl = b2 = m and ql(x) = q2(x)= 0 for x > a .  By a limiting argument, we can 
suppose that qj are Cm([O,a]).  We can then use the expansion of [35, $21, 

x dxl . . . dx, dtl  . . .den-2, 

where R,,(a) is a complicated region on {x , t )  space that is q independent 
(given by (2.19) from [35]).The monotonicity result follows immediately from 
this expression. (10.5) then follows from (10.2), and (10.7), (10.8) from (9.27). 

Remarks. 1. The expansion 

allows one to compute exactly the volume of the region R,(a) of [35],viz., 

a2n-2
The bounds in [35] only imply R , ( a )  I and are much worse than the 
actual answer for large n! 

2. For a small, (10.7) is a poor estimate and one should use (9.25) which 
implies that IA(a) < Iqll, + a21qll&eff2iiq11m. 

This lets us prove 

THEOREM10.3. Let h = cc and q E Lm((O,m)). Suppose K~ > qll,. 
Then 

(with a convergent integral and no error term). 

Proof. Let q, = ~X[O, , ](x). Let m,, A, be the m-function and A-amplitude, 
respectively, for q,. Then 



INVERSE SPECTRAL THEORY. I1 

(2) A,(a) 4 A(a)  pointwise (since A,(a) = A(a)  if n > a). 

(3) (10.10) holds for q, since q, E ~ ' ( ( 0 ,m ) )  (see Theorem 1.2). 

(4) IA,(a) < a-'qllk e x p ( 2 a q k ) .  This is (10.8). 

(5) A n ( a )  I llqllm[l+ ~ 2 1 1 ~ 1 m e ~ ~ ( ~ 2 1 1 ~ l l m ) IThis is (9.25). 

The dominated convergence theorem thus implies that (10.10) holds for q E 

LW((0,00)). 

Remarks. 1. If inf supp(dp) = -Eo with Eo > 0, then m(z) has a singu-
larity at z = -Eo so we cannot expect that IA(a) 5 c ~ ~ ( ~ o - & ) "for any E > 0. 
Thus, A must grow exponentially as a m .  One might naively guess that 
if inf supp(dp) = Eo with Eo > 0, then A(a)  decays exponentially, but this 
is false in general. For example, if q(x) = qo > 0, then by (10.1) for a large, 

l 1  3
A(a)  N -T--2 a-i cos(lq; a + :).+ 0 ( a P 2 )by the known asymptotics of J1 
( [ I ,P. 3641). 

2. For q(x) = qo > 0, A(a) 4 0 as a 4 m .  This leads one to ask if 
perhaps A(a)  -+ 0 for all cases where supp(p) c [0,m )  or at least if q(x) > 0. 
It would be interesting to know the answer even for the harmonic oscillator. 

3. We have proven exponential bounds on A(a)  as a 4 m for the cases 
q E ~ ' ( ( 0 ,m ) )  and q E Lm((O,m ) ) ,  but not even for ~ ' ( ( 0 ,m ) )  +LCO((O,m ) ) .  
One might guess that S U ~ , , ~ ( J ~ + '  q(y) dy) suffices for such a bound. 

11. Examples, 11: Bargmann potentials 

Our second set of examples involves Bargmann potentials (cf., e.g., [5, 
ssIV.3 and VI.l]), that is, potentials q E L1((0,m ) ;  (1 + x) dx) such that 
the associated Jost function F (k )  (cf. (8.12)) is a rational function of k. We 
explicitly discuss two simple examples and then hint at the general case. 

Case 1. F ( k )  = (k - i ~ ' ) / ( k+ ir;'). Thus, dp(X) = dp(0)(X)on [0,m )  
and there is a single eigenvalue at energy X = -K:. There is a single norming 
constant, cl ,  and it is known (cf. [5, sVI.11) that 

In (5.l),the X > 0 contribution to A(a) is the same as in the free case, and so 
it yields zero contribution to A (cf. (8.10)). Thus, 
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and hence 

2cl
(11.2) A(a)  = --- s i n h ( 2 a ~ ~ ) .  

K l  

Note that q(O+) = A(O+) = 0 (verifying q(O+) = A(()+)). 

Case 2. F(k)  = (k + iy)/(k + iP), /3 > 0, 2 0. It is known (cf. [5, 
p. 871) that 

The case y = 0 corresponds to q(x) = -2,02/cosh2(px) (the one-soliton po- 
tential on its odd subspace). 

We claim that 

for clearly, m ( - K ~ )  is analytic in C\[O, m) and satisfies m ( - ~ ~ )  - ~ + o ( ~ - l )= 

and at K = -ik (i.e., E = - K ~  = k2 + iO), 

consistent with (8.14). Thus, uniqueness of m given dp and the asymptotics 
proves (11.4). Since 

(11.4) and uniqueness of the inverse Laplace transform implies that 

(11.5) A(a) = 2(y2- p2)e-2ffy. 

Notice that q(O+) = A(O+) = 2(y2 - P2) and the odd soliton (y = 0) 
corresponds to A(a)  = -2P2, a constant. 

Remark. Thus, we see that A(a)  equal to a negative constant is a valid 
A-function. However, A(a)  a positive constant, say, A. > 0, is not since then 
Im(m(k + iO)) = k -Ao/k is negative for k > 0 small. 

In the case of a general Bargmann-type potential q(x), one considers a 
Jost function of the form 

,!?!
 # ye, for all t,t' E J,, ye # K j  for all t E J,, j E Je, 
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with J, (resp. J,) a finite (possibly empty) index set associated with the eigen- 
values X j  = -6; < 0 (resp. resonances) of q, and Po 2 0 associated with a 
possible zero-energy resonance of q. Attaching norming constants cj > 0 to 
the eigenvalues X j  = K ; ,  j E J, of q, one then obtains 

Here dp(0) denotes the spectral measure (9.12) for the free case q(o)(x) = 0, 
x 2 0, and yo = 0, 

and A. = 0 if Po = 0. 
Next, observing the spectral representation for the free Green's function 

associated with q(o)(x) = 0, x 2 0 and a Dirichlet boundary condition at 
x = 0+, one computes 

Taking into account ~ ( ' ) ( a )= 0, a > 0 according to (8.10) (hence subtracting 
dp(0) in (11.7) will have no effect on computing A(a) using (8.16)), the y-
derivative of the integral (11.8) at y = O+ combined with an Abelian limit E J, 0 
yields precisely the prototype of integral (viz.,limELo+ ePEXs i n ( 2 a 6 )( A  + 
y2)-1 dX) needed to compute A(a) upon inserting (11.7) into (8.16). The net 
result then becomes 

The corresponding potential q(x) can be computed along the lines indicated 
in [5, Ch. IV] and is known to be continuous on [O, m) .  Hence (11.9) holds 
for all a 2 0. More precisely, the condition q E ~ ~ ( ( 0 ,m ) ;  (1+ x) dx) imposes 
certain restrictions on the possible choice of Pe > 0, 9> 0 in (11.6) in order 
to avoid isolated singularities of the type 2(x - in q(x). Away from such 
isolated singularities, (11.7) inserted into the Gel'fand-Levitan equation yields 
a CCOpotential q (in fact, a rational function of certain exponential functions 
and their x-derivatives) upon solving the resulting linear algebraic system of 
equations. In particular, one obtains q(O+) = A(()+) = -2 CeEJTu{o}Ae 
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Appendix A. The Bh function 

Throughout this paper, we have discussed the principal m-function, m(z) 
given by (1.7). This is naturally associated to Dirichlet boundary conditions 
because the spectral measure dp of (1.10) is a spectral measure for an operator 
H, with u(O+) = 0 boundary conditions. For h E R, there are subsidiary 
m-functions, mh(z), associated to 

( A 4  uf(O+)+ hu(O+) = 0 

boundary conditions. Our goal in this section is to present Laplace transform 
asymptotics for mh (z) . 

One defines mh(z) by 

That this is associated to the boundary (A.l) is hinted at by the fact that 
m(z) + h = 0 if and only if uf(O+, z) + hu(O+, z) = 0. The function 

satisfies 

(i) Fh : C+ -+C+, where C+ = {z E C 1 Im((z > 01, 

(iii) F h ( 5 )  - Fh(C0)  = (( - C0)(< + h)-'([o + h)-I 

This implies 

(A.3) (if) Im(mh(z)) > o if Im(z) > 0, 

and 

(A.6) mh(-LC2 ) - mh(0) ( - L c ~ )  o(Lc-~) = 0,= if q is bounded near x 
l ~ l - ~ 

where 

(A.7) 

is the free (i.e., q(x) = 0, x 2 0) mh function (= F~(-Lc)).In (A.4)-(A.6), the 
asymptotics hold as I K ~ -+ oo with -2  + E < a r g ( ~ )< -E < 0. On account of 
(A.3) and (A.4), mh(z) satisfies a Herglotz representation, 
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where, by a Tauberian argument, 

and dph is the spectral measure for the Schrodinger operator with (A.l) bound- 
ary conditions. 

The appendix of [35] discusses the calculus for functions of the form 

with Q E L1((O, a)) .  This calculus and Theorem 1.1of this paper immediately 
imply 

THEOREM For any Schrodinger problem of types (1)-(4), we have A.1. 
a function B h ( . )  in L1((O,a)) so that for any a < b, 

(0) 2 lae - 2 " K ~ h ( a )d a  + ~ ( e - ~ ~ " )(A.10) 	 mh(-K 2 ) = m h  (-K ) - 7 j  
K 

as I K ~ -+ co with -$ + E < a r g ( ~ )< -E < 0. Moreover, Bh(a)- q(a)  is a 
continuous function which vanishes as a: J, 0. 

Remarks. 1. If m ( - ~ ~ )  has a representation of type (1.17) with no error 
term (e.g., if b = m and q E L1(IR) or q E Lm(R)),  r n h ( - ~ ~ )  has a represen- 
tation with no error term, although the new representation will converge in 
Re(K) > Kh with Kh  dependent on h. Similarly, there is a formula without 
error term if b < m with Sf and S singularities at a = nb. 

2. (A.lO) implies that if q is continuous at 0+, the following asymptotics 
hold: 

Of course, one can derive this from the definition (A.2) of mh(z) and the known 
asymptotics of m(z).  For systematic expansions of m h ( - ~ ~ )  as 1 ~ 1-+m, we 
refer, for instance, to  [7], [17] and the literature cited therein. 

3. Bh(a:) is analogous to A(a) but we are missing the local first-order, q- 
independent, differential equation that A satisfies. We have found an equation 
for Bh(a:, x) but it is higher than order one and contains q(x) and qf(x). 

By following our idea in Sections 5-8, 	 one obtains 
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where dah(A) = dph(A) -dph (0)( A ) ,  with dph (A) the spectral measure of mh (z);  (0) (0) 

explicitly, 

As in Section 5, (A.12) is interpreted in the distributional sense. 
In analogy to (9.11), one derives 

where 

C O S ( & X ) = ~ ~ ( X , ~ ) +I"Lh(x,x ' )c~h(x/ ,z)dx~,  

with ph(x, z) satisfying p{(x, z) = (q(x) - x)ph(x, z) and 

Finally, we compute Bh(a)  when q(x) = qo > 0, x 2 0 and h = 0 
(a similar result holds if qo < 0 with modified Bessel functions instead). 

A.3. 


112 1 


THEOREM If b = oo,q(x) = qo > 0, x > 0, and h = 0, then 

(A.13) Bh=o ( a )  = -
40 

J1 (2q2a)- 2qo~2 (Zq: a ) .a 

In particular ([I ,  p. 364]), 

Proof. Let us make the qo dependence explicit by writing Bh(a;qO). We 
start by noting that 

(A.14) 

I" 
on account of (A.lO) (or the version with no error term). Thus, 

e - 2 f i a  a B h = ~  1 
a40 

( a ;  qo) d a  = -
2 (K2  + qo)5 

3 '  

Now ([15, 6.62321) 
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Taking the derivative with respect of a in (A .16) ,  setting v = -1, and using 
J-l ( x )  = -J 1 ( x ) ,we obtain 

( A .17) 

On the other hand ([15,6.62311)) 

(A.15)-(A.18) show that 

a I 1 1 

(A.19)  -BhrO(a;qO)= J0(2q; a )  - 2qt  aJ l (2q t  a ) .  
aqo 

Now ( [15 ,8.47231) 
d

- x V J v ( x )  = X " J ~ - ~ ( X ) ,
d x  

so (A.19)  implies that the derivatives of the two sides of (A .13)are equal. Since 
both sides vanish at qo = 0, (A.13)  holds. 
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