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1 I n t r o d u c t i o n  

In this paper we discuss aspects o f  the spectral theory of  half-line Schr6dinger 

operators 

0.1) H u  -~- --U II ~ qu~ 

Indeed, all the q's considered in this paper will lie in where q E L~or oo)). 

LI([0, oo), dx).  The,Weyl m-function re(z)  is defined for Ira z > 0 by looking at 

the solution u(x; z) o f - u "  + qu = zu  which is L 2 at infinity (unique up to constants 

i f  q is limit point and unique once a boundary condition at infinity is chosen i f  q is 

limit circle) and setting 

u'(0; z) 
(1.2) m ( z )  -- u(0; z) " 

In [10], we considered the fundamental object A(a) associated to q by the 

relation 

(1.3) m ( - ~  2) = - ~  - A(o~) e - 2 ~  dc~, 

where A(a) E LI(0, a) for all a. Formula (1.3) holds in the sense o f  an absolutely 

convergent integral i f  Re ~ is sufficiently large in case q E L 1 ([10]) or i f  q E L ~ 

([2]). For general q, it holds in the same sense that a series is asymptotic m a 

function ([2], [10]). 

In [10], it is proven that i f q  E LI(0, oo), then 

IA(c~) - q(a)l <- IIqll~ exp(aliqlll). 

*This material is based upon work supported by the National Science Foundation under Grant No. 
DMS-9707661. The Government has ceaain rights in this material. 
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320 A. RAMM AND B. SIMON 

As explained in [10], A is fundamental to an approach to inverse spectral theory. 

Our goal in this paper is to study A as an interesting object  in its own right and, 

in particular, using ideas implicit in Ramm [6] to obtain detailed information on 

the behavior o f  A as a --+ ~ when q decays sufficiently fast as x --+ c~. Indeed, 

for potentials decaying rapidly enough, Ramm [6] stated the representation (1.3), 

but no p roof  was given (nor was there any connection o f  the function A to the 

inverse problem for q. In [6] the inverse problem of  finding the potential from 

the knowledge o f  the m-function was solved for short-range potentials. A more 

detailed discussion of  the result in [6] can be found in [8]). 

Throughout this paper, we  suppose that 

/7 (1.4) (1 + Izl)lq(z)l d z  < oo. 

More generally, we consider for n = 0, 1, 2, . . . .  B < 0 and g __>_ 0, the space C~ ,e o f  

all functions f with n - I classical derivatives and f('~) E L 1 (0, oo), so that 

/7 0 .5 )  (1 + Ixl) ~ e-B~[q(J)(x)l dx < oo 

f o r j  --- 0, 1 , . . .  ,n. Thus (1.4) says q e C~--~ '*=a. 
Under  condition (1.4), general principles (see, e.g., [5]) imply that for all n 

with R e n  >_ 0, there is a unique solution f (x ,a)  o f - f "  + qf = -n=f  such that 
f (x ,  n) = e-~: (1  + o(1)) as x --+ oo. We set f (n )  _= f ( x  = O, n). Except  for the 

change o f  variables n = - i k ,  f (x ,  n) and f(n) are the standard Jost solution and 

Jost function. Both f (x ,  n) and f (n )  are analytic in n in {n [ R e n  > 0}. I f q  E C~  'e 
for any n, g and B < 0, then f (x ,  n) and f (n)  have analytic continuations into the 

region Re n > B/2 (see Section 2 below). 

It is easy to see and well known that [5] 

2 
(1) The zeros o f f  in {~ I R e n  > 0} occur precisely at those points ny with - n j  

a bound state o f  the operator H with u(0) = 0 boundary  condition, and each 

zero is simple. 

(2) f has no zeros on {n [ Re ~ = 0, n r 0}. 

(3) I f  f (0)  = 0 and q ~ Uff_~ 'e=2, then f is C 1 and if(0) r 0. I f  f (0)  = 0, we  say 

that q has a zero energy resonance. 

I f  f can be analytically continued to {n ] Re n > B/2} for B < 0, the zeros o f  

f in {n I Re n < 0} are called resonances. They occur  in complex conjugate pairs 

(since f is real on the real axis). I f  if(n0) r 0 at a zero n0, we  say that no is a 
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simple resonance. Resonances need not be simple if  Re no < 0, although they are 

generically. 

The result stated in [6] can be phrased: 

T h e o r e m  1.1. Suppose that q obeys (1.4) (lies in Cff -~ and does not have 

a zero energy resonance. Let  2 J {-~;j}j--1 be the negative eigenvalues o f  H (with 
u(O) = 0 boundary condition) with nj > O. Then 

J 

(1.6) A(a) = ~ Bj e 2~ j  + g(a), 
j = l  

where g e LI(O, oo). In particular, i f  H has no bound states or zero energy 

resonance (e.g., i f  q > 0), then A 6 L 1. 

R e m a r k s .  1. The result stated in [6] assumes implicitly that there is no zero 

energy resonance. Details can be found in [8]. 

2. I f  A E L 1, then (1.3) can be analytically continued to the entire region 

Re~_> 0. 

3. I f  u~(x) is the eigenfunction for H,  at energy -~ff, normalized so that 

fo ~ ]uj(x)] 2 dx = 1, then 

(1.7) B j - ] u ~ ( 0 ) ] 2  

This follows from the relation between A and the spectral measure [2] 

/? A(c ) -- - 2  ap( ) 

and the fact that dp( )~) [ (-oo,  O) J = E j = I  lu (0)12 ( + 

To handle zero energy resonances, one needs an extra two powers o f  decay (just 

as (1.4) says more or less that [q(x)[ is bounded by  O(x-2-~) ;  the condition in the 

next theorem says that ]q(x)l is more or less O(x-4-~)) :  

T h e o r e m  1.2. Let q e Cff--o ~ Suppose that H (with u(O) = 0 boundary 
2 J condition) has a zero energy resonance and negative eigenvalues at {-t~j }j=l with 

~j > O. Then 

J 

(1.8) A(a)  = Bo + ~ B j  e 2~'~ + 9(a),  
j-----1 

where 9 6 L 1 (0, oo ). 



322 A. RAMM AND B. SIMON 

These results are special cases o f  

T h e o r e m  1.3. Let q E (7, B=~ where g > 1 and, i f  q has a zero energy 

resonance, then g > 3. Then (1.6) (resp. (1.8) i f  there is a zero energy resonance) 

holds with g E C~ =~ (resp. C~=~ 

R e m a r k .  t f  n _> 1, then g' E L 1, so g --+ 0 pointwise. In general, i f  q is not 
oo continuous, then 9 may  not go to zero. For example, let q(x) = Y]j=0 X[n,n+a,] (x), 

where an = e -~2 and X[a,b] is the characteristic function of  [a, b]. Since A(a)  - q(a) 

is continuous, we are guaranteed that A(a) has jump discontinuities at a = n, and 

so lira A(a) - l imA(a)  >_ 1; thus, l imA(a)  cannot be zero (since it does not exist). 

In this case, A = g since there are no bound states or zero energy resonance. 

For B < 0, we prove 

T h e o r e m  1.4o Let q E C B'e=~ with B < O. Let B 6 (B, O) and let {_~2}]=~ 

with ~i > 0 be the negative eigenvalues, {AS})~ 1 with A 5 <_ 0 the real resonances 

(a.kao anti-bound states), and {#i 4- ivs}~= 1 the complex resonances with f3 < 

#5 < 0 with v 5 > O. Suppose each resonance is simple. Then for  suitable {Bs}]_ 1, 
C v { i}5=1, {D5}~-1, {05}~'--1, we have that 

J M N 

v "  B + c5 + D; + 05) + A ( a )  = Z.., 

j = l  j = l  j = l  

where 9(a) E C~ 'e=e. In particular, i f  H has no negative eigenvalue& the rate 

o f  decay o f  A(a) is determined by the resonance with the least negative value o f  A 

or #. 

In Section 4, we discuss what happens when there are non-simple resonances~ 

In the Appendix, we present a result on principal ideals in the space o f  Laplace 

transforms (Corollary A.5) which may  be o f  interest in its own right. 

We thank F. Gesztesy for useful comments. 

2 The Levin--Nlarchenko representation 

The key to the proof  o f  Theorems 1.1-1.4 is the formula 

Of(z,~)O:g gg=O 

- f ( x  = o ,  
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for the solution f of  

(2.2) f "  + " - q.r  = _ n 2 f  

with 

(2.3) = e - " ( 1  + o(1)) 

(2.4) 

Define 

(2.5) 

f (x ,  ~) = e - ~  + K(x, y) e -~y dy. 

o(x)  = Jq(u)r dy, 

so f ~  xlq(x)] dx < c~ is equivalent to o- E L I. Then one has ([5], Lemma 3.1.1) 

(2.6) [K(x,y), <_ Ccr ( ~ - ~ - )  

1 cx~ for some constant C. Indeed, one can take C -- ~ exp(fg a(y)dy). Moreover, 

K is absolutely continuous in each variable. Indeed, if  H(u, v) is defined in 

{(u,v):  0 < v < u} by 

(2.7a) H(u, v) = K(u - v, u + v), 

(2.75) K(x,y)  H(�89 1 = - x ) ) ,  

then H obeys (see [5], proof of  Lemma 3.1.2) 

s OH (u,v) = -�89 - q(u - f l )H(u,  fl)d/~ 
au (2.8) 

and 

(2.9) OH ~oo 
0-"~ (u, v) = q(a - v)H(a, v) da. 

From these bounds and equations, we have by a straightforward estimate 

asx  --4 +oo. 

We use a basic Laplace transform representation for f(x,  ~) found by Levin 

~3] and developed especially by Marchenko [4j, [5] and the theory of Laplace 

transforms discussed in the Appendix. 
(?B=0,l----1 The Levin--Marchenko representation says that given any q E "~=o 

= {q I fox[q(x) l  dx < oo}, there is a continuous function K(x,y)  defined on 

{(x, y) : 0 < x < y < oo} with f oo iK(x ' Y)I dy < oo for each x such that 
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Theorem 2.1.  I f  q E C~  '~ with g > 1 and B < O, then 
(TB,t-1 (i) K ( ~  = o, .) e ~ + 1  , 

(ii) oK (x = 0, �9 ) e ~ B , ~ - I  

R e m a r k .  In fact, i f  B < 0, we can replace g - 1 by  g. 

3 P r o o f  o f  t h e  m a i n  t h e o r e m s  

Theorems 1.3 and 1.4 will follow from Theorem 2.1, formulas (2.1), (2.4), and 

the resuks in the Appendix. Let  

/5 (3.1) F(~)  -- f ( x  = O, ~) = 1 + K ( x  = O, y) e - ' v  dy. 

~fB,e-1 with F(oo)  = 1. The Banach algebra P.l B,* is discussed B y  Theorem 2.1, F C ~ + 1  

in the Appendix.  Thus, by  Theorem A.8, 

Y 
at  + a ( ~ ) ,  

g = l  

where: 

of~,e-1 for any (i) I f B  < 0, {~l}]=1 are the zeros o f F  on Re~; > B and G E ~n+l  

~ ) > B .  

DIB=0,g--1 (ii) I f B  = 0 and F(0)  # 0, then G E ~.+1 �9 

_ Of B = 9 ' ~ - 3  (iii) I f  B = 0 and F(0)  = 0, we need g > 3 and then G E *-n+l �9 

R e m a r k s .  1. For  (i), we suppose all resonances are simple. 

2~ For (ii), (iii), by  general principles, the zeros in Re ~ > 0 occur  only  for 

im ~r = 0. Moreover,  each such zero is simple (see Lem m a  3. 1.6 o f  [5]). 

Moreover,  since K is C 1 in y, by  an integration by  parts, 

F(~)  = 1 + K(O, 0)1~ + 0(11~2); 

and thus 

(3.2) F(~)  -1 = 1 

Indeed, by  Theorem A.7, 

(3 3)  
Y 

~F(~) -1 = ~ -  K(0,0) + ~ a , . ,  
l = 1  

+ 0 ( ~ ) ,  
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where G is the same 92 space as G, except that the number of  derivatives is n, not 

n + 1. Moreover, G(c~) = 0. 

Let  

H(t~) -- ff---~ f(x't~)l = - t ~ -  K(O'O) - fo ~ OK ~=o ~ x  (0, y) e -~y dy 

_ _ ,~  + ~ ( ~ ) ,  

w h e r e / t  lies in 92~,e-1 and B(c~) = - K ( 0 ,  0). 

Then by (3.2), 

m(-,~ ~) = -~F(~ )  -~ + H(,~)F(~)-' 
Y 

(3.4) = - ~  + ~ be(n - a , ) - i  + )Q(n), 
g=0 

where/Q(oe) = O (since the K(0, 0) terms cancel) and 2fir E N~,eo with go = g -  3 ( if  

B = 0 and F(0) = 0), and otherwise go = g - 1 and / )  = 0 ( i fB  = 0), and otherwise 

/) e (B,0). Since (n - he)-1 = 2fo~ e2,~te-2,~tdt i fRe~;  > Rene, Theorems 1.3 

and 1.4 are proven. 

4 E x t e n s i o n s  a n d  r e m a r k s  

It is only for simplicity that we have supposed the resonances were simple. By  

iterating Theorem A.4 i f  f E 92~,e and Re z0 > B and z0 is a zero o f  F o f  order j ,  

one sees that g(z) = F( z ) / ( z  - zo) j is in 92~fr" Thus, i f  some zeros o f  f (n)  are of  

order j ,  (3.4) need only be modified so that there are terms 

Y 
- r  , 

g=O j = l  

where ~ = max(order o f  zeros in the strip). Since 

/5 (~_~,)r (j 1)! 

we obtain an explicit formula for A like that in Theorem 1.4, but with Cj e 2~:~ 

replaced by a polynomial in a times e 2 ~  and D r e 2m= cos(2v~a + 0r) replaced by 

ELo dr,~ ~ ~'~ ~o~(2.r~ + 0~)). 
B I f  q E 92~=0 for all B (for example, i f  q is compactly supported), it is known 

that there are always infinitely many resonances (see [7], pp. 280-282, [9], [1 1]). 

Thus A(a) does not decay faster than exponentially in these cases. It is natural to 

conjecture that A(a) never decays faster than exponentially as a -+ ~ for q ~ 0. 
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Appendix  A~ On the theory of Laplace transforms 

In this Appendix, we present some basic facts about  Laplace transforms o f  

functions that we need in the paper itself. Given the vast literature on Banach 

algebras, it may  be that these results are presented elsewhere; but, since we  know 

o f  no precise reference, we  present what is needed here. 

De f in i t i o n .  A weight is a strictly positive function w (a) on [0, ~ )  that satisfies: 

(a) w(O) = 1, 

(b) logw(a)  is concave, and 

(c) for some a0 and real Ao, w(a) >_ e -A~ for a _> ao. 

L e m m a  A.1 .  Let w be a weight. Then 

(i) 

(A.1) w(~ + fl) < w(~)w(/3); 

(ii) 1/a log w(a) is monotone decreasing; 

(iv) w(a)e A(~)a is monotone increasing, so, in particular~ 

(A.2) w(a) > e -A(w)a 

for all a. 

Proof .  (i) B y  (a) and (b), w(a) >_ w(a + fl)~/a+~ and w(fl) _> w(a +/3) ~/~+~. 
(A. 1) results by  taking the product o f  these relations. 

(/i) I f  a </3,  then by  (a) and (b), 

w(a) _> w(/3) ~/~ 

(iii) is a consequence o f  (c). 

(iv) Given a </3 < % we have by  (b) that 

w(fl) > w(a)(~-n)lC~-~)w('r)(~-~)l(~-a). 

B y  (iii), lim.r_~o~ w('y) 1/'r = e-A(~); SO as -y --+ oo, we  have that 

(A.3) w(fi) >_ w(a)e -A(B-~), 



A N E W  A P P R O A C H  TO I N V E R S E  S P E C T R A L  T H E O R Y  327 

which is the required monotonicity. The final statement is just 

w(~) ~A(~)~ _> ~(0) ~A(~)o. 
[] 

R e m a r k s .  1. For many facts below, only (A.1) is critical, but we need (A.3) 

in one place, so requiring log concavity seems reasonable. 

2. The prime example of  weights is 

(A.4) ~,.,~(~) = (1 + ~ ) ~ - ' "  

for any B ~ R and g _> 0. Notice that A(WA,~)  = B.  

Defin i t ion .  Let n be a non-negative integer and w a weight. We define 

C,~,~, to be those complex valued functions f E LI([0, co),w(a)dc~) with n dis- 

tributional derivatives (viewed as distributions on C~(0,  co)) fP , . . . ,  f(~) all in 

Ll([O, c o ) , w ( a ) d a )  (so C,~=0,~ is L~(wda) ) .  I f f  E C,~,~0 with n _> 1, then f is 

C "-1 in the classical sense; and lim~,o f (e)(a) ,  which we denote by f(e)(0), exists 

for g = 0, 1, . . .  ,n - 1. We norm C~,,o with 

(A.5) 
n--1  oo n 

nlsl,o,o: fo 
s  e=o  

Denote C,  ~,B ~ by ~B,t where wB,~ is given by (A.4). As usual, the convolution 

of  two L~o c functions on [0, co) is given by 

/; ( f  �9 g)(a)  = f ( f l )g (a  - j3) dfl. 

By induction, it is easy to see that if  f, 9 E C~,~, then for i < g < n, 

l - -1  

(y �9 g)(~)(~) = ~ Y(J)(o)r + (y(~), g)(~). 
j = 0  

This formula and (A.1) imply that C,~,~, * C,~,~o c Cn,,,,; by (A.5), 

(A.6) ]if * gll.,~ <-- II]ll~,~llolJ~,~, 

so that Cn,~ is a Banach algebra (without unit) under convolution. 

Given g ~ C and f E C,~,,., we define the Laplace transform L(#,  f ) ( z )  for 

z e D ( A ( w ) )  - co U {z  : R e z  > A(w)} by 
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fo ~176 (A.7) L(#, f)(z) = # + f (a)  e -~= da (z =fl oo), 

= u ( z  = o~). 

B y  (A.2), the integral in (A.7) converges absolutely and defines a function analytic 

in D(A(w)) i~t and continuous on D(A(w)). We denote the set o f  functions F(z) = 

L(# , f ) (z ) forsomefEC, , ,obyf21~w. ,  , F o r w  = wB,l, we denote P-In ~, b y ,  9.1,,B,e. We 

norm 9.1,,~o via IIIL(#,f)[[[,,~ = ]#l + Hflln,~. Since 

L(u, f )L(a ,  g) = L(~a, m + a f  + f �9 g), 

(A.6) shows that Pl,~,~o is a Banach algebra with unit. 

We require the following result o f  Wiener type. 

T h e e r e m  A.2.  Suppose F E ~,~o obeys F(z) r O for  all z in D(A(w)). Then 

C(z) -- 1/F(~) is atso in ~a,,,o. 

Resutts o f  Wiener type are usually proven via the Gelfand theory o f  commutat ive 

Banach algebras (see [1], Ch. III for a good exposition). Using those ideas, 

Theorem A.2 is a direct consequence o f  

P r o p o s i t i o n  A.3 .  Every multiplicative linear functional on ~1~,~ is o f  the form 

F ~ F(z ) for  z in D(A(w)). 

P r o o f .  Let ~o : ~,~,~ ~ C be a multiplicative linear functional. Since L(1, O) 

is the identity, one has ~o(L(1, 0)) = 1, so ~o is determined by  the functional 

T( f )  = ~o(L(O, f ) )  on the space C,~,~,. We claim that T is determined by  its values 

on C~(O, oo) c Gn,~. I f n  = O, this is obvious since C~(O, cc) is then dense in 

Cn,~,. But  i f n  > O, C~(O, ~ )  is not all o f  C,~,~,, so the argument is more  subtle. 

~ d e e d ,  i f n  > 1, any f in C,,,~, is C '*-1 in the classical sense and f E C~(O, c~) 

has f(O) = f'(O) . . . . .  f('~-l)(O) = O. In fact, it is not hard to see that Cg~ oo) 

has codimension n - 1 in C~,~. 
N o w  for any g E Cn,~, g "+1 (n + 1-fold convolution) vanishes at 0 with its first 

n - 1 derivative zero, and so it lies in C~(0 ,  oe). I f T ( g  "+1) = 0, then T(9) = O, 

and i f T ( 9  ~+1) r 0, then T(g) = T(g~+2)/T(g'~+a). Either way, T(g) is determined 

by  T on C~(0 ,  oo). 

The map 9 ~ T(g) for 9 6 C~(O, c~) defines a distribution which we denote by  

T(c~). Formally, T( f )  = f ~  T(a) f (a)  da and 

fTf7 T ( a  +/3) ( f  (o09(/3)) -= da dt3 T(a +/3)f(a)g(13). 
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The idea o f  the p roo f  is to derive the functional equation (A.8) for T(a) and to show 

that the distribution T(a) is in fact a regular distribution corresponding to a smooth 

function. Once this is done, one derives from (A.8) that T(a) is an exponential.  

The p r oo f  is then easy to complete.  

The convolution formula for the Laplace transform implies T ( f , g )  = T(f)T(g) .  

Since T(a  + fl)(f(a)g(fl)) = T( f )T(g  ) and the linear span o f  the set o f  products o f  

functions f(a)g(fl) is dense in the set o f  functions C~(R+ x R+),  where R+ := 

(0, co), one concludes that 

(A.8) T(a + fl) : T(a)T(fl) 

in the distributional sense. I f T  ~ 0, then T( f )  # 0 for some f E C ~ .  Thus, 

/ /  / (A.9) T(fl) : T(a  + fl) f (a)  da T( f ) ,  

so T is a C ~ function. Thus, (A.8) implies that T'(a) /T(a)  is constant and then 

that T(a) = e -z'~ for some z E C (or else T - 0). 

Suppose that Rez  < A(w). Then w(a) <_ Clexp(- �89 + Rez )a ) ;  thus 

f (a)  =- a~e z'~ lies in C,~,~. But  ifrj  E O~(0 ,  oo), then 

/ /  /0 TO?f) = T(a)~l(a)eZ'~a" da : an~(a) da. 

Taking ~ to be a smoothed out characteristic function o f  (6, 6-1),  and letting 6 -+ O, 

has w f  -+ f in C,~,~, but T(~,~f) --+ oo. Thus, Rez  _> A(w), that is, z E D(A(w)). 
Thus every ~ is an evaluation at some z E D(A(w)). Every  such evaluation clearly 

defines a multiplicative linear functional. [] 

We also need to know about factoring out zeros. 

T h e o r e m  A.4 .  Let zo E D(A(w) ) int and let F E f~,.~ satisfy F(zo) = O. Then 

G(z) = F(z) / ( z  - zo) lies in 9A~+1,~. 

P r o o f .  Suppose first that F(cc)  = 0, so that F = L(0, f )  for  some f in C,,,~. 

Let  .4 = Rez0 + 1 > A(w), so f E C~. Let  H(z) = (z - zo) -1 = L(0, h), where 

h(a) = e '~z~ 

so h E ~.<~=0 Thus in D(A),  G(z) = L(0,g) with g = h �9 f ,  that is, 
v n �9 

I ~ = - 

// (A.IO) = e(~-fl)z~ f(fl) dp 
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f on = - e('~-~)z~ d~ 

since F(zo) = 0 means f o  e-'~z~ f(f l)  dfl = O. 
T h u s ,  

fa ~ 'g(oOIw(a) dol <_ fo a ( f a ~  e(a-~) Re z~ ' f  (fl)' dfl) w(oO doz 

By Lemma A, 1(iv) for a <_/3, 

e(~-t~) Re ZOw(oz ) <_ e(~-/~) Re zo e-A(,~)(~-~)W(fl) 

= e-(a-~)(A(w)-Rezo)w(fl). 

Since A(w) Re zo < 0, 

/o J0' (A.12) e -(~-~)(A-Re~~ de = e (A-Rez~ d7 

is bounded by - ( A  - Re zo) -1 independent of/3; so (A.11) shows that 

/ /  /0 ~ ( A . I 3 )  Ig(c~)]w(a) dc~ _< (Re z0 - A) -~ rf(/~)]w(/~) dr 

and thus 9 e Ll(w(a) da). 

By  (A.6) for I < e < n + 1, 

g--1 

(A. i4) g(l) (a) = E zJofg- l - j ) (a)  + z~o g(a). 
j = 0  

(A. 13) and (A. 14) therefore show that 9 E C~+1,~,, as required. 

For general F with F(c~) = #, pick zl with Re zl < A(w) and define Fo by 

P ( z )  z - ~o = u - -  + F d ~ ) .  
Z -- Z 1 

(A. 15) 

Since 

,f; z - zo l + (zo z eaZ~e -az da 
Z - -  Z 1 

ande "zl E C,~,,~ foral ln ,  we see that Fo(z) E 9&~,~, with Fo(~)  = Fo(Zo) = 0~ Thus 

G(z) = #(z - zl ) -1 + Go(z) lies in 9./n,~. [] 

This theorem has an interesting corollary (which follows immediately from 

Theorem A.2). 
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C o r o l l a r y  A.5 .  Let F E 9.1~,w be non-vanishing on D(A(w))  except fo r  zeros 

at zl , .  .. , zm ~ D(A(w))  int o f  order g l , . . . ,  gin. Then for  any zo ~ D(A(w)),  

j=l \ z - zo / 

where G is non-vanishing on all o f  D(A(w))  and lies in f~k,~. In particular, G is 

invertible; and any two such F 's  generate the same principal ideal. 

We need to know what happens where zo e OD(A(w)). First, we consider the 

case z0 r c~, in which we lose some decay o f  the inverse Laplace transform. 

T h e o r e m  A.6 .  Let w be a weight and define the weight 

(A.16) ~ ( a )  = (1 + N ) w ( a ) .  

Let Rezo = A(w) and let F E 9A~,~ obey F(zo) = O. Then G(z) = F ( z ) / ( z  - z o )  

lies in 9.1,~+1,~. 

R e m a r k .  Notice that F E 9A,~,,~ but G E 9~,~_1,~ with w, not z~; so we lose one 

degree o f  decay for L- I (F) .  For ws,l,  this is not surprising. Since F is analytic 

in D(A(w))  int, dividing by  (z - z0) does not lose smoothness o f F ;  but since F is 

only  C l on OD(A(w)), we expect  the division to lose one order o f  smoothness. 

P r o o f .  As in the p roof  o f  Theorem A.4, (A. 15) allows us to consider the case 

F(c~) = 0; and (A.14) lets us reduce to the case n = 0. In that case, one follows 

the p roo f  o f  Theorem A.4. However,  since - A ( w )  = Re Zo, (A. 12) becomes 

so (A. 13) becomes  

f0 ~ da =/3; 

rg(a)lw( ) < 

_< If( )r [] 

Finally, we require the case Zo = c~, where we need to trade o f f  some 

smoothness o f  L -1 (F) to "divide out" a single zero o f  F at infinity. 

T h e o r e m  A,7 .  Let F E 9~,~ with n >_ 1, and suppose that F(co) = 0. Then 

G(z) = zF(z)  lies in fg~-x,~. 
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Proof .  By an integration by parts, i f a  e D(A(w)) and f E C~,~, then 

/o /0 z e~"f (a)  da = f(O) - eaZff(a) da. [] 

The final result we need is a simple consequence o f  the earlier theorems. Note  

that i f w  is a weight, z~ is given by  (A. 16), and F e 9a~,~, then F is C 1 on the finite 

part o f  OD(A(w)).  So it makes sense to talk about a simple zero (i.e., F(zo) = O, 

F'(zo) # 0) for Zo E OD(A(w)).  

T h e o r e m  A.8 .  Let  F E 9~,~o with n > 1. Suppose that the only zeros o f f  on 

D( A(  w ) ) are at zL , . . . , zk all in D( A(  w ) ) int and are simple. Then there is G E ~ , ~  

and al , . . . , ak E C so that 

k 

(A.17) F ( z ) _  1 = ~ ,  ae 
/ = l  Z - -  Z l 

Equivalently, f o r  z > max(Re(z,)),  

(A.18) 

where 

(A.19) 

and 9 E C,~,w. 

F E P2,~,4 , with w given by 

We require 

F(z)  -1 = F(cx3) -1 + e-"Zh(a)  da, 

k 

~=1 

The result remains true i f  a single ze has Re zl = A(w),  so long as 

~(o~) = ( I  + laD2w(a). 

L e m m a  A.9 .  Let  F E P.l,~,w and zo E D(A(w))  int with F(zo) # O. Then 

with G E 9A,~+1,~,. 

G E 9An+l,~,. 

F(z)  F(zo) 

Z - -  Z o  Z - -  ZO 

- -  + a ( z )  

l f R e z o  = A(w) and F E fa~,~, with ~ given by (A.16), then 

P r o o f  o f  L e m m a  A.9 .  Write F(z)  = H(z)  + F(zo),  where H(zo) = 0 and use 

Theorems A.4 and A.6. [] 
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P r o o f  o f  T h e o r e m  A . 8 .  B y  repeated  use o f  T h e o r e m  A.4  and Coro l l a ry  A.5,  

we  can wrffe 

5=1 \ z  - Zo] 

where  H is eve rywhe re  non-vanish ing  (it is because  o f  the z - zo factors  that  

G(oe)  # 0). I f  all zj lie in D(A(w) )  int, then H E ~21~+1,~o. I f  one  zj is in D ( A ( w ) )  

and F ~ 9.1,~,~, then  H E ~n,~" 

As  a result ,  

F ( z )  -1 = H ( z )  -1 1 + , 
j = l .  z -  zJ J 

where  H ( z ) - I  is in 9A~,~o (resp. by  ~1~,,~) b y  T h e o r e m  A.2. 

B y  L e m m a  A.9,  

( z _ _ o Z ~ H ( z ) =  cl + H i ( z ) ,  
1 +  z - z 1 /  z - z 1  

w h e r e / / 1  E 9A,~,~ (resp. 9,In,~). Since 

( 1 +  dz---~z2) ( cz---~zl ) - cz -t- d2 
z - z 1 z - z2 

for  sui table c2, d2, we  obta in  the result  inductively.  [] 
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