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A Feynman-Kac Formula for Unbounded Semigroups
Barry Simon

ABSTRACT. We prove a Feynman-Kac formula for Schrodinger operators with
potentials V(z) that obey (for all € > 0)
V(z) > —¢l|z|? - Ce.

Even though e~*¥ is an unbounded operator, any ,% € L? with compact
support lie in D(e~*#) and (p, e~tH ) is given by a Feynman-Kac formula.

1. Introduction

One of the most useful tools in the study of Schrédinger operators, both concep-
tually and analytically, is the Feynman-Kac formula. All the standard proofs, (see,
e.g., [7]) assume the Schrodinger operator H is bounded below, so the Schrédinger
semigroup e~*H is bounded. This means, for example, that Stark Hamiltonians are
not included.

But the restriction to semibounded H is psychological, not real. We deal with -
unbounded H’s all the time, so why not unbounded e~*#? Once one considers the
possibility, the technical problems are mild, and it is the purpose of this note to
show that.

The form of the Feynman-Kac formula we will discuss is in terms of the Brow-
nian bridge (Theorem 6.6 of [7]). Once one has this, it is easy to extend to the
various alternate forms of the Feynman-Kac formula.

The v-dimensional Brownian bridge consists of v jointly Gaussian processes,
{@i(t)}i_1.0<t<1 With covariance

E(ai(t)a;(s)) = 6;; min(t, s)[1 — max(2, s)]
E(ai(t)) =0.

If b is Brownian motion, then a(s) = b(s) — sb(1) is an explicit realization of the
Brownian bridge.
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For any real function V on R” and t > 0, define (the expectation may be
infinite):

11 Qz,y;V,t)=E (exp (— /OtV ((1 - ::-) z+ %y+ Via (;)) ds)) .

Throughout this paper, let

on L?(RY), so

(1.2) e~tHo (g, y) = (2nt) /% exp (_____la: ;ty|2) .

The Feynman-Kac formula I'll start with — one of many in (7] — is

THEOREM 1.1. Suppose V is a continuous function on RY which is bounded
from below. Let H = Ho+ V. Then for any t > 0 and ¢, € L*(R¥):

(1.3) (o, e~tHy) = / 7@ v() e (2, 1)@, 1; Vo).

In this paper, we will consider potentials V(x) for which for any £ > 0, there
is C¢ so that

(1.4) V(z) > —¢lz|® - C..

It is known (see [3], Theorem X.38) that for such V', H = Ho + V is essentially
self-adjoint on C§°(RY), so we can use the functional calculus to define e~ which
might be unbounded. Our main goal here is to prove:

THEOREM 1.2. Suppose V is a continuous function which obeys (1.4). Then
for all z,y € RY, t > 0, (1.1) is finite. Let @,9 € L?(R¥) have compact support.
Then for all t > 0, p,v € D(e~*) and (1.3) holds.

REMARKS. 1. It isn’t necessary to suppose that ¢, have compact support.
2
Our proof shows that it suffices that e** 9, e** ¢ € L? for some & > 0. In particular,
®,% can be Gaussian.

2. Using standard techniques [1)],[3],[7], one can extend the proof to handle
V = Vi + Vo where V; obeys (1.4) but is otherwise in L} and V; is in the Kato
class, K, .

3. If one only has V(x) > —C; — C2x? for a fixed Ca, our proof shows that the
Feynman-Kac formula holds for ¢ sufficiently small. It may not hold if ¢ is large
since it will happen if V(z) = —z? that E(exp(— f(: V(a(s)) ds)) will diverge if ¢ is
large.

As for applications of Theorem 1.2, one should be able to obtain various regu-
larity theorems as in [6]. Moreover, for H = —A+ F-x, one can compute e tH(z,y)
explicitly and so obtain another proof of the explicit formula of Avron and Herbst
[2].

Dedication. Sergio Albeverio has been a master of using and extending the notion
of path integrals. It is a pleasure to dedicate this to him on the occasion of his 60th
birthday.



A FEYNMAN-KAC FORMULA FOR UNBOUNDED SEMIGROUPS 319

2. A Priori Bounds on Path Integrals
Our goal in this section is to prove

THEOREM 2.1. Let V obey (1.4) and let Q be given by (1.1). Then, for each
t>0andé >0, we have that

Qz,y;V,t) < Dexp(8z? + dy?),
where D depends only on t,0 and the constants {C.}.

LEMMA 2.2. Let X be q Gaussian random variable, Suppose £ Exp(X?) < %
Then E(exp(eX?)) < 0o (and is bounded by a function of ¢ Exp(X %) alone).

PROOF. A direct calculation, Alternately, we can normalize X so Exp(X?) =
1. Then E(exp(eX?)) = (2m)=1/2 [ exp((e - 3)z?) dz < oo. O
PROOF OF THEOREM 2.1. Note that if 0 < § < 1, and z,y,a € R, then
0z +(1-0)y+af? < 20z + (1 - 0)y)?2 + 2|al?
<22 + 4% + |af?).
Thus, by (1.4),

1
(2.1) Qlz,y;V,t) < E (exp (Cet + 2et(z® + %) + 25/ t2a(s)? ds)) .
0

By Jensen'’s inequality,
1 1
(2.2) E(exp (2 / et2a(s)2ds)) < / E(exp(2ct2a(s)?) ds).
(1] 0

Since E(a(s)?) is maximized at s = % when it is 1, we see that
RHS of (2.2) < E(exp(2et?a(1)?))
is finite if 2 < 1, so we can pick ¢ = do/t? with do < 1 and find (using the explicit
value of E(exp(X?)) in that case
Q4 V) < VZ(1 - 60) 2 exp(Cyt + 260 (2 + v)/t),
which proves Theorem 2.1. O

3. A Convergence Lemma
In this section, we will prove:

THEOREM 3.1. Let A, A be self-adjoint operators on q Hilbert space H so that
An — A in strong resolvent sense. Let f be a continuous Junction on R and YyeH
with € D(f(A,)) for all n. Then

() If sup,, ||f(An)]| < oo, then y € D(f(4)).
(i) If sup,, || f(An)24|| < oo, then f (An)¥ — f(A)y.

REMARK. Let H = L*(0,1), y(z) = 1, A, = multiplication by n'/2 times
the characteristic function [0,1/n], and A = 0. Then An — A in strong resolvent
sense and sup,, || A,%|| < oo, but An% does not converge to At 50 one needs more
than sup, [|f(A.)¥]| < o to conclude that f(A4,)y — f(A)Y. The square is
overkill. We need only sup, || F(f(A,))¥| < oo for some function F : R — R with
Iim,,;'_,oo IF(:c)l/:c = 00.
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PROOF. Suppose that sup,, [|f(A.)¥| < co. Let

m  if f(z)2m
fm(@) =4 f(z) if|f(z)| <m

-m if f(z) < -m.

Then ([4], Theorem VIII.20) for each fixed m, f,.(An) — fm(A) strongly. It follows
that

< sup | fm (An)¥ll < sup £ (An)¥]l.

Thus, sup,, || fm(A)¥|| < oo, which implies that ¢ € D(f(A)).
Now suppose sup,, || f(A.)?¥|| < co. Then

1/ (An) = Fmn(An)I < = (AR}

Thus fmm(An)¥ — f(An)Y¥ uniformly in n which, given that f,(A,)¢Y — fm(A)Y,
implies that f(A,)Y — f(A). a

4. Putting It Together

We are now ready to prove Theorem 1.2. Let V' be continuous and obey (1.4).
Let V,(z) = max(V(z),—n). Then V,, is bounded from below, so Theorem 1.1
applies, and so (1.3) holds. Let ¢ € L? with compact support. By Theorem 2.1,
we have

sup [| exp(—tHn)yp|| < 00
n

for each ¢ positive.

By the essential self-adjointness of H on C§°(R") and (V, — V)n — 0 for
any n € C§°, we see that H, converges to H in strong resolvent sense. Hence
setting A, = H,, A = H, f(z) = e™**, and 9 = ¢, we can use Theorem 3.1
to see that ¢ € D(exp(—tH)) and |/[exp(—tH,) — exp(—tH)]¢|| — 0. Thus as
n — 00, the left-hand side of the Feynman-Kac formula converges. By the a priori
bound in Theorem 2.1 and the dominated convergence theorem, the right-hand side
converges. So Theorem 1.2 is proven.
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