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Abstract: We provide a new short proof of the following fact, first proved by one of
us in 1998: If two Weyl–Titchmarshm-functions,mj(z), of two Schrödinger operators

Hj = − d2

dx2 + qj , j = 1,2 inL2((0, R)), 0< R ≤ ∞, are exponentially close, that is,

|m1(z) − m2(z)| =|z|→∞ O(e−2 Im(z1/2)a), 0 < a < R, thenq1 = q2 a.e. on[0, a]. The

result applies to any boundary conditions atx = 0 andx = R and should be considered
a local version of the celebrated Borg–Marchenko uniqueness result (which is quickly
recovered as a corollary to our proof). Moreover, we extend the local uniqueness result
to matrix-valued Schrödinger operators.

1. Introduction

LetHj = − d2

dx2 + qj , qj ∈ L1([0, R]) for all R > 0, qj real-valued,j = 1,2, be two

self-adjoint operators inL2([0,∞))with a Dirichlet boundary condition atx = 0+. Let
mj(z), z ∈ C\R be the Weyl–Titchmarshm-functions associated withHj , j = 1,2.
The principal purpose of this note is to provide a short proof of the following uniqueness
theorem in the spectral theory of one-dimensional Schrödinger operators, originally
obtained by Simon [33] in 1998. (Actually, Simon’s result [33] was weaker; the result
as stated is from [11].)

Theorem 1.1.Leta > 0, 0< ε < π/2 and suppose that

|m1(z)−m2(z)| =|z|→∞O(e
−2 Im(z1/2)a) (1.1)
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along the rayarg(z) = π − ε. Then

q1(x) = q2(x) for a.e.x ∈ [0, a]. (1.2)

For reasons of brevity we stated Theorem 1.1 only in the simplest possible case. Ex-
tensions to finite intervals[0, R] instead of the half-line[0,∞), a discussion of boundary
conditions other than Dirichlet atx = 0+, and the case of matrix-valued Schrödinger
operators — a newresult — will be provided in the main body of this paper.

Theorem 1.1 should be viewed as a local (and hence stronger) version of the follow-
ing celebrated Borg–Marchenko uniqueness theorem, published by Marchenko [25] in
1950. Marchenko’s extensive treatise on spectral theory of one-dimensional Schrödinger
operators [26], repeating the proof of his uniqueness theorem, then appeared in 1952,
which also marked the appearance of Borg’s proof of the uniqueness theorem [5] (ap-
parently, based on his lecture at the 11th Scandinavian Congress of Mathematicians held
at Trondheim, Norway in 1949).

Theorem 1.2.([5,25,26])Suppose

m1(z) = m2(z), z ∈ C\R, (1.3)

then

q1(x) = q2(x) for a.e.x ∈ [0,∞). (1.4)

Again, we emphasize that Borg and Marchenko also treat the general case of non-
Dirichlet boundary conditions atx = 0+, whose discussion we defer to Sect. 2. More-
over, Marchenko simultaneously discussed the half-line and finite interval case, also to
be deferred to Sect. 2.

As pointed out by Levitan [23] in the Notes to Chapter 2, Borg and Marchenko were
actually preceded by Tikhonov [34] in 1949, who proved a special case of Theorem 1.2
in connection with the string equation (and hence under certain additional hypotheses on
qj ). Since Weyl–Titchmarsh functionsm(z) are uniquely related to the spectral measure

dρ of a self-adjoint (Dirichlet) Schrödinger operatorH = − d2

dx2 + q in L2([0,∞)) by
the standard Herglotz representation

m(z) = Re(m(i))+
∫

R

dρ(λ)[(λ− z)−1 − λ(1 + λ2)−1], z ∈ C\R, (1.5)

Theorem 1.2 is equivalent to the following statement: Denote bydρj the spectral mea-
sures ofHj , j = 1,2. Then

dρ1 = dρ2 impliesq1 = q2 a.e. on[0,∞). (1.6)

In fact, Marchenko’s proof takes the spectral measuresdρj as the point of departure
while Borg focuses on the Weyl–Titchmarsh functionsmj .

To the best of our knowledge, the only alternative approaches to Theorem 1.2 are
based on the Gelfand-Levitan solution of the inverse spectral problem published in 1951
(see also Levitan and Gasymov [24]) and alternative variants due to M. Krein [20,21].
In particular, it took over 45 years to improve on Theorem 1.2 and derive its local
counterpart, Theorem 1.1. While the original proof of Theorem 1.1 in [33] relied on the
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full power of a new formalism in inverse spectral theory, relatingm(z) to finite Laplace
transforms of the type

m(z) = iz1/2 −
∫ a

0
dα A(α) e2αiz1/2 + Õ(e2αiz1/2

) (1.7)

as|z| → ∞ with arg(z) ∈ (ε, π − ε) for some 0< ε < π (with f = Õ(g) if g → 0
and for allδ > 0, ( f

g
)|g|δ → 0), we will present a short and fairly elementary argument

in Sect. 2. In fact, as a corollary to our new proof of Theorem 1.1, we also obtain an
elementary proof of a strengthened version of Theorem 1.2.

We should also mention some work of Ramm [30], [31], who provided a proof of
Theorem 1.2 under a very strong additional assumption, namely, thatq1 andq2 are both
of short range. While his result is necessarily weaker than the original Borg–Marchenko
result, Theorem 1.2, his method of proof has elements in common with parts of our proof
(namely, he uses (2.28) below witha = ∞ and obtains a Volterra integral equation close
to our (2.34)).

Finally, we have in preparation [12] still another alternate proof of the local Borg–
Marchenko theorem.

Extensions to finite intervals and general (i.e., non-Dirichlet) boundary conditions
complete Sect. 2. Matrix-valued extensions of Theorem 1.1 are presented in Sect. 3.

2. A New Proof of Theorem 1.1

Throughout this section, unless explicitly stated otherwise, potentialsq are supposed to
satisfy

q ∈ L1([0, R]) for all R > 0, q real-valued. (2.1)

Given q, we introduce the corresponding self-adjoint Schrödinger operatorH in
L2([0,∞)) with a Dirichlet boundary condition atx = 0+, by

H = − d2

dx2 + q,

dom(H) = {g ∈ L2([0,∞)) | g, g′ ∈ AC([0, R]) for all R > 0; (2.2)

g(0+) = 0, s.-a.b.c. at∞; (−g′′ + qg) ∈ L2([0,∞))}.
Here “s.-a.b.c." denotes a self-adjoint boundary condition at∞ (which becomes relevant
only if q is in the limit circle case at∞, but should be discarded otherwise, i.e., in the limit
point case, where such a boundary condition is automatically satisfied). For example, an
explicit form of such a boundary condition is

lim
x↑∞W(f (z0), g)(x) = 0, (2.3)

wheref (z0, x) for some fixedz0 ∈ C\R, satisfies

f (z0, · ) ∈ L2([0∞)), −f ′′(z0, x)+ [q(x)− z0]f (z0, x) = 0 (2.4)

andW(f, g)(x) = f (x)g′(x) − f ′(x)g(x) denotes the Wronskian off andg. Since
these possible boundary conditions hardly play a role in the analysis to follow, we will
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not dwell on them any further. (Pertinent details can be found in [10] and the references
therein.)

Next, letψ(z, x) be the unique (up to constant multiples) Weyl solution associated
with H , that is,

ψ(z, · ) ∈ L2([0,∞)), z ∈ C\R,

ψ(z, x) satisfies the s.-a.b.c. ofH at∞ (if any), (2.5)

− ψ ′′(z, x)+ [q(x)− z]ψ(z, x) = 0.

Then the Weyl–Titchmarsh functionm(z) associated withH is defined by

m(z) = ψ ′(z,0+)/ψ(z,0+), z ∈ C\R (2.6)

and for later purposes we also introduce the correspondingx-dependent version,m(z, x),
by

m(z, x) = ψ ′(z, x)/ψ(z, x), z ∈ C\R, x ≥ 0. (2.7)

After these preliminaries we are now ready to state the main ingredients used in our
new proof of Theorem 1.1.

Theorem 2.1 ([2,8]). Let arg(z) ∈ (ε, π − ε) for some0 < ε < π . Then for any fixed
x ∈ [0,∞),

m(z, x) =|z|→∞ iz
1/2 + o(1). (2.8)

The following result shows that one can also get an estimate uniform inx as long as
x varies in compact intervals.

Theorem 2.2 ([11]). Let arg(z) ∈ (ε, π − ε) for some0 < ε < π , and supposeδ > 0,
a > 0. Then there exists aC(ε, δ, a) > 0 such that for allx ∈ [0, a],

|m(z, x)− iz1/2| ≤ C(ε, δ, a), (2.9)

whereC(ε, δ, a) depends onε, δ, andsup0≤x≤a(
∫ x+δ
x

dy |q(y)|).
Theorems 2.1 and 2.2 can be proved following arguments ofAtkinson [2], who studied

the Riccati-type equation satisfied bym(z, x),

m′(z, x)+m(z, x)2 = q(x)− z for a.e.x ≥ 0 and allz ∈ C\R. (2.10)

Next, letqj (x), j = 1,2 be two potentials satisfying (2.1), withmj(z) the associated
(Dirichlet)m-functions. Combining thea priori bound (2.9) with the differential equation
resulting from (2.10),

[m1(z, x)−m2(z, x)]′ (2.11)

= q1(x)− q2(x)− [m1(z, x)+m2(z, x)][m1(z, x)−m2(z, x)],
permits one to prove the following converse of Theorem 1.1.
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Theorem 2.3 ([11]). Letarg(z) ∈ (ε, π − ε) for some0< ε < π and supposea > 0. If

q1(x) = q2(x) for a.e.x ∈ [0, a], (2.12)

then

|m1(z)−m2(z)| =|z|→∞O(e
−2 Im(z1/2)a). (2.13)

Lemma 2.4.In addition to the hypotheses of Theorem 2.2,(resp., Theorem 2.3), suppose
thatH (resp.,Hj , j = 1,2) is bounded from below. Then(2.9) (resp.,(2.13))extends
to all arg(z) ∈ (ε, π ].
Proof. Since inf(spec(Hx)) ≥ inf (spec(H)), whereHx denotes the Schrödinger oper-
ator− d2

dx2 + q in L2([x,∞)) with a Dirichlet boundary condition atx+ (and the same
s.-a.b.c. at∞ asH , if any), there is anE0 ∈ R such that for allx ∈ [0, a], m(z, x) is
analytic inC\[E0,∞). Usingm(z, x) = m(z̄, x), the estimate (2.9) holds on the bound-
ary of a sector with vertex atE0 − 1, symmetry axis(−∞, E0 − 1], and some opening
angle 0< ε < π/2. An application of the Phragmén-Lindelöf principle (cf. [29, Part III,
Sect. 6.5]) then extends (2.9) to all of the interior of that sector and hence in particular
along the rayz ↓ −∞. Since (2.13) results from (2.9) upon integrating (cf. (2.11)),

m1(z, x)−m2(z, x)]′
= −[m1(z, x)+m2(z, x)][m1(z, x),−m2(z, x)], x ∈ [0, a] (2.14)

from x = 0 tox = a, the extension of (2.9) toz with arg(z) ∈ (ε, π ] just proven, allows
one to estimate

|m1(z, x)+m2(z, x)| =|z|→∞ 2iz1/2 +O(1), arg(z) ∈ (ε, π ], (2.15)

uniformly with respect tox ∈ [0, a], and hence to extend (2.13) to arg(z) ∈ (ε, π ]. ut
Next, we briefly recall a few well-known facts on compactly supportedq. Hence we

suppose temporarily that

sup(supp(q)) = α < ∞. (2.16)

In this case, the Jost solutionf (z, x) associated withq(x) satisfies

f (z, x) = eiz
1/2x −

∫ α

x

dy
sin(z1/2(x − y))

z1/2 q(y) f (z, y) (2.17)

= eiz
1/2x +

∫ α

x

dyK(x, y) eiz
1/2y, Im(z1/2) ≥ 0, x ≥ 0, (2.18)

whereK(x, y) denotes the transformation kernel satisfying (cf. [27, Sect. 3.1])

K(x, y) = 1

2

∫ α

(x+y)/2
dx′ q(x′)−

∫ α

(x+y)/2

∫ (y−x)/2

0
dx′′ q(x′ − x′′)×

×K(x′ − x′′, x′ + x′′), x ≤ y, (2.19)

K(x, y) = 0, x > y, (2.20)
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|K(x, y)| ≤ 1

2

∫ α

(x+y)/2
dx′ |q(x′)| exp

(∫ α

x

dx′′ x′′|q(x′′)|
)
. (2.21)

Moreover,f (z, x) is a multiple of the Weyl solution, implying

m(z, x) = f ′(z, x)/f (z, x), z ∈ C\R, x ≥ 0, (2.22)

and the Volterra integral equation (2.17) immediately yields

|f (z, x)| ≤ Ce− Im(z1/2)x, Im(z1/2) ≥ 0, x ≥ 0, (2.23)

f (z, x) =|z|→∞
Im(z1/2)≥0

eiz
1/2x(1 +O(|z|−1/2), x ≥ 0. (2.24)

Our final ingredient concerns the following result on finite Laplace transforms.

Lemma 2.5 (= Lemma A.2.1 in [33]). Letg ∈ L1([0, a]) and assume that∫ a
0 dy g(y)e

−xy =
x↑∞ O(e−xa). Theng(y) = 0 for a.e.y ∈ [0, a].

Given these facts, the proof of Theorem 1.1 now becomes quite simple.

Proof of Theorem 1.1.By Theorem 2.3 we may assume, without loss of generality, that
q1 andq2 are compactly supported such that

supp(qj ) ⊆ [0, a], j = 1,2, (2.25)

and by Lemma 2.4 we masuppose that (1.1) holds along the rayz ↓ −∞, that is,

|m1(z)−m2(z)| =
z↓−∞O(e

−2|z|1/2a). (2.26)

Denoting bymj(z, x) andfj (z, x) them-functions and Jost solutions associated with
qj , j = 1,2, integrating the elementary identity

d

dx
W(f1(z, x), f2(z, x)) = −[q1(x)− q2(x)]f1(z, x)f2(z, x) (2.27)

from x = 0 tox = a, taking into account (2.22), yields∫ a

0
dx [q1(x)− q2(x)]f1(z, x)f2(z, x)

= f1(z, x)f2(z, x)[m1(z, x)−m2(z, x)]
∣∣∣∣a
x=0

. (2.28)

By (2.8), (2.23), and (2.26), the right-hand side of (2.28) isO(e−2|z|1/2a) asz ↓ −∞ (in
fact, the right-hand side of (2.28) is zero atx = a due to the compact support assumption
(2.25)), that is,∫ a

0
dx [q1(x)− q2(x)]f1(z, x)f2(z, x) =

z↓−∞O(e
−2|z|1/2a). (2.29)
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Denoting byKj(x, y) the transformation kernels associated withqj , j = 1,2, (2.18)
implies

f1(z, x)f2(z, x) = e2iz1/2x +
∫ a

x

dy L(x, y) e2iz1/2y, (2.30)

where

L(x, y) = 2[K1(x,2y − x)+K2(x,2y − x)]
+ 2

∫ 2y−x

x

dx′K1(x, x
′)K2(x,2y − x′), x ≤ y, (2.31)

L(x, y) = 0, x > y or y > a. (2.32)

Insertion of (2.30) into (2.29), interchanging the order of integration in the double inte-
gral, then yields∫ a

0
dx[q1(x)− q2(x)]f1(z, x)f2(z, x)

=
∫ a

0
dy

{
[q1(y)− q2(y)] +

∫ y

0
dx L(x, y)[q1(x)− q2(x)]

}
e−2|z|1/2y

=
z↓−∞O(e

−2|z|1/2a). (2.33)

An application of Lemma 2.5 then yields

[q1(y)− q2(y)] +
∫ y

0
dx L(x, y)[q1(x)− q2(x)] = 0 for a.e.y ∈ [0.a]. (2.34)

Since (2.34) is a homogeneous Volterra integral equation with a continuous integral
kernelL(x, y), one concludesq1 = q2 a.e. on[0, a]. ut

In particular, one obtains the following strengthened version of the original Borg–
Marchenko uniqueness result, Theorem 1.2.

Corollary 2.6. Let0< ε < π/2 and suppose that for alla > 0,

|m1(z)−m2(z)| =|z|→∞O(e
−2 Im(z1/2)a) (2.35)

along the rayarg(z) = π − ε. Then

q1(x) = q2(x) for a.e.x ∈ [0,∞). (2.36)

Remark 2.7.The Borg–Marchenko uniqueness result, Theorem 1.2 (but not our strength-
ened version, Corollary 2.6), under the additional condition of short-range potentialsqj

satisfyingqj ∈ L1([0,∞); (1+ x) dx), j = 1,2, can also be proved using Property C,
a device recently used by Ramm [30,31] in a variety of uniqueness results. In this case,
(2.28) forz = λ > 0 becomes∫ ∞

0
dx [q1(x)− q2(x)]f1(λ, x)f2(λ, z)

= −f1(λ,0)f2(λ,0)[m1(λ+ i0)−m2(λ+ i0)] = 0, λ > 0 (2.37)
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sincem1(z) = m2(z), z ∈ C+ extends tom1(λ+ i0) = m2(λ+ i0), λ > 0 by continuity
in the present short-range case. By definition, Property C stands for completeness of the
set{f1(λ, x)f2(λ, x)}λ>0 in L1([0,∞); (1 + x) dx) (this extends toL1([0,∞))) and
hence (2.37) yieldsq1 = q2 a.e. on[0,∞).

In the remainder of this section, we consider a variety of generalizations of the result
obtained.

Remark 2.8.The ray arg(z) = π − ε, 0 < ε < π/2 chosen in Theorem 1.1 and
Corollary 2.6 is of no particular importance.A limit taken along any non-self-intersecting
curveC going to infinity in the sector arg(z) ∈ (π/2+ ε, π − ε) will do as we can apply
the Phragmén-Lindelöf principle ([29, Part III, Sect. 6.5]) to the region enclosed byC
and its complex conjugatēC (needed in connection with Lemma 2.4 in order to reduce
the general case to the case of spectra bounded from below).

Remark 2.9.For simplicity of exposition, we only discussed the Dirichlet boundary
condition

g(0+) = 0 (2.38)

in the definition ofH in (2.2). Next we replace (2.38) by the general boundary condition

sin(α)g′(0+)+ cos(α)g(0+) = 0, α ∈ [0, π) (2.39)

in (2.2), denoting the resulting Schrödinger operator byHα, while keeping the boundary
condition at infinity (if any) identical for allα ∈ [0, π). Denoting bymα(z) the Weyl–
Titchmarsh function associated withHα, the well-known relation (cf. e.g., Appendix A
of [10] for precise details onHα andmα(z))

mα(z) = − sin(α)+ cos(α)m(z)

cos(α)+ sin(α)m(z)
, α ∈ [0, π), z ∈ C\R (2.40)

reduces the caseα ∈ (0, π) to the Dirichlet caseα = 0. In particular, Theorem 1.1
and Corollary 2.6 remain valid withmj(z) replaced bymj,α(z), α ∈ [0, π). Indeed,

|m1,α(z)−m2,α(z)| =|z|→∞ O(e−2 Im(z1/2)a) along the ray arg(z) = π − ε is easily seen

to imply, for all sufficiently smallδ > 0,

|m1,0(z)−m2,0(z)| =|z|→∞O(|z| e
−2 Im(z1/2)a)

=|z|→∞O(e
−2 Im(z1/2)(a−δ))

(2.41)

along the ray arg(z) = π−ε. Hence one infers from Theorem 1.1 that for all 0< δ < a,
q1 = q2 a.e. on[0, a − δ]. Sinceδ > 0 can be chosen arbitrarily small, one concludes
q1 = q2 a.e. on[0, a]. In fact, more is true. Sincemα(z) →|z|→∞ cot(α) along the ray, one

concludes that|m1,α1 − m2,α2(z)| =|z|→∞ O(e−2 Im(z1/2)a) along a ray impliesα1 = α2

andq1 = q2 a.e. on[0, a].
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Remark 2.10.If one is interested in a finite interval[0, b] instead of the half-line[0,∞)

in Theorem 1.1, with 0< a < b, one introduces a self-adjoint boundary condition at
x = b− of the type

sin(β)g′(b−)+ cos(β)g(b−) = 0, β ∈ [0, π). (2.42)

The analog of theWeyl solutionψ(z, x; b, β) for the corresponding Schrödinger operator
H(b, β) in L2([0, b]) defined by

H(b, β) = − d2

dx2 + q, β ∈ [0, π), (2.43)

dom(H(b, β)) = {g ∈ L2([0, b]) | g, g′ ∈ AC([0, b]); g(0+) = 0,

sin(β)g′(b−)+ cos(β)g(b−) = 0; (−g′′ + qg) ∈ L2([0, b])}
is then defined by

sin(β)ψ ′(z, b−; b, β)+ cos(β)ψ(z, b−; b, β) = 0, z ∈ C\R,

− ψ ′′(z, x; b, β)+ [q(x)− z]ψ(z, x; b, β) = 0. (2.44)

Moreover, the analog of (2.18) is then of the type

ψ(z, x; b, β) = ψ(0)(z, x; b, β)+
∫ b

x

dy K(x, y; b, β)ψ(0)(z, x; b, β),
z ∈ C\R, x ∈ [0, b], (2.45)

where

ψ(0)(z, x; b, β) = eiz
1/2x + ζ(β, z) eiz

1/2(2b−x)

1 + ζ(β, z) e2iz1/2b
, (2.46)

ζ(β, z) = −iz1/2 − cot(β)

−iz1/2 + cot(β)
, Im(z1/2) ≥ 0

is the correspondingWeyl solution in the caseq(x) = 0,x ∈ [0, b], andK(x, y; b, β) is a
transformation kernel analogous toK(x, t;h)discussed in Sect. 1.3 of [27]. Theorem 1.1
then extends to triples(qj , bj , βj ), j = 1,2 with a < min(b1, b2), replacingfj (z, x)
in (2.29) byψ(z, x; bj , βj ), j = 1,2. More precisely, ifm(z; bj , βj ) denote them-
functions forH(bj , βj ), j = 1,2 with a < min(b1, b2) and

|m(z; b1, β1)−m(z; b2, β2)| =|z|→∞O(e
−2 Im(z1/2)a) (2.47)

along the ray arg(z) = π − ε, thenq1 = q2 a.e. on[0, a]. In fact, it was precisely this
version of Theorem 1.1 which was originally proven by one of us [33] in 1998.

One can also derive additional results in the casea = b1 = b2 (cf. Theorem 1.3 in
[33]). Indeed,ζ(β, z) =|z|→∞ 1 +O(|z|−1/2), so by (2.45) and (2.46),

ψ(z,0; a, β) =|z|→∞ 1 +O(|z|−1/2), (2.48)

ψ(z, a; a, β) =|z|→∞ 2eiz
1/2a(1 +O(|z|−1/2)), (2.49)
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which are analogous to (2.24). Thus, ifq1 = q2 on [0, a] butβ1 6= β2, we have that

[m1(z; a, β1)−m2(z; a, β2)] (2.50)

= ψ1(z,0; a, β1)
−1ψ2(z,0; a, β2)

−1W(ψ2(z,0; a, β2), ψ1(z,0; a, β1))

= ψ1(z; 0, a, β1)
−1ψ2(z,0; a, β2)

−1W(ψ2(z, a; a, β2), ψ1(z, a; a, β2)),

by the constancy of the Wronskian whenq1 = q2. But ψ ′(a)/ψ(a) equals cot(β) by
(2.44) and hence

m1(z; a, β1)−m2(z; a, β2) = ψ1(z,0; a, β1)
−1ψ2(z,0; a, β2)

−1 ×
× ψ1(z, a; a, β1)ψ2(z, a; a, β2)[cot(β1)− cot(β2)]. (2.51)

Using (2.48), (2.49), this implies that

m1(z; a, β1)−m2(z; a, β2)

= 4e2iz1/2a[cot(β1)− cot(β2)][1 +O(|z|−1/2)], (2.52)

which is Theorem 1.3 in [33].

While we have separately described a few extensions in Remarks 2.8–2.10, it is clear
that they can all be combined at once.

We also mention the analog of Theorem 1.1 for Schrödinger operators on the real
line. Assuming

q ∈ L1
loc(R), q real-valued, (2.53)

one introduces the corresponding self-adjoint Schrödinger operatorH in L2(R) by

H = − d2

dx2 + q, (2.54)

dom(H) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); s. s.-a.b.c. at± ∞;
(−g′′ + qg) ∈ L2(R)}.

Here “s.s.-a.b.c.” denotes separated self-adjoint boundary conditions at+∞ and/or−∞
(if any).

The 2×2 matrix-valuedm-functionM(z) associated withH inL2(R) is then defined
by

M(z) = (m−(z)−m+(z))−1 × (2.55)

×
(

1 (m−(z)+m+(z))/2
(m−(z)+m+(z))/2 m−(z)m+(z)

)
, z ∈ C\R,

wherem±(z) denote the half-linem-functions associated withH restricted to[0,±∞)

and a Dirichlet boundary condition atx = 0.
Next, letqj (x), j = 1,2 be two potentials satisfying (2.53) andHj the corresponding

Schrödinger operators (2.54) inL2(R), with Mj (z), j = 1,2 the associated 2× 2
matrix-valuedm-functions. Then the analog of Theorem 1.1 reads as follows.
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Theorem 2.11.Leta > 0, 0< ε < π/2 and suppose that

‖M1(z)− M2(z)‖C2×2 =|z|→∞O(e
−2 Im(z1/2)a) (2.56)

along the rayarg(z) = π − ε. Then

q1(x) = q2(x) for a.e.x ∈ [−a, a]. (2.57)

Proof. We denote bymj,±(z) the half-line (Dirichlet)m-functions associated withHj
on [0,±∞), j = 1,2. Then a straightforward combination of (2.8) and (2.56) yields

|m1,±(z)−m2,±(z)| =|z|→∞ O(|z|e−2 Im(z1/2)a) (2.58)

and hence (2.57), applying Theorem 1.1 separately to the two half-lines[0,∞) and
(−∞,0] (and using the argument following (2.41).ut

Finally, the reader might be interested in the analog of Theorem 1.1 in the case of
second-order difference operators, that is, Jacobi operators. LetA be a bounded self-
adjoint Jacobi operator iǹ2(N0) (N0 = N ∪ {0}) of the type

A =




b0 a0 0 0 . . . . . .

a0 b1 a1 0 . . . . . .

0 a1 b2 a2 . . . . . .

0 0 a2
. . .

. . .

...
...
...
. . .

. . .
. . .

...
...
...

. . .
. . .



, ak > 0, bk ∈ R, k ∈ N0. (2.59)

The correspondingm-function ofA is then defined by

m(z) = (δ0, (A− z)−1δ0) =
∫

R

dρ(λ)(λ− z)−1, z ∈ C\R, (2.60)

whereδ0 = (1,0,0, . . . ). The analog of Theorem 1.1 in the discrete case then reads
as follows. Denote bymj(z) them-functions for two self-adjoint Jacobi operatorsAj ,
j = 1,2, denoting the matrix elements ofAj by aj,k, bj,k, j = 1,2, k ∈ N0. Then

|m1(z)−m2(z)| =|z|→∞O(|z|
−N), (2.61)

for someN ∈ N,N ≥ 3, if and only if

a1,k = a2,k, b1,k = b2,k, 0 ≤ k ≤ N − 4

2
if N is even (N ≥ 4) (2.62)

and

a1,k = a2,k, 0 ≤ k ≤ N − 5

2
,

b1,k = b2,k, 0 ≤ k ≤ N − 3

2
if N is odd.

(2.63)

The proof is clear from (2.60) and the well-known formulas (cf. [4, Sect. VII.1]).

ak =
∫

R

dρ(λ) λPk(λ)Pk+1(λ), bk =
∫

R

dρ(λ) λPk(λ)
2, k ∈ N0, (2.64)

where{Pk(λ)}k∈N0 is an orthonormal system of polynomials with respect to the spectral
measuredρ, with Pk(z) of degreek in z, P0(z) = 1.
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3. Matrix-Valued Schrödinger Operators

In our final section we extend Theorem 1.1 to matrix-valued potentials (cf., [6, Ch. III],
[17,22] and the references therein).

Letm ∈ N and denote byIm the identity matrix inCm. Assuming

Q = Q∗ ∈ L1([0, R])m×m for all R > 0, (3.1)

we introduce the corresponding matrix-valued self-adjoint Schrödinger operatorH in
L2([0,∞))m with a Dirichlet boundary condition atx = 0+, by

H = − d2

dx2 Im +Q, (3.2)

dom(H) = {g ∈ L2([0,∞))m | g, g′ ∈ AC([0, R])m for all R > 0;
g(0+) = 0, s.-a.b.c. at∞; (−g′′ +Qg) ∈ L2([0,∞))m}.

Here “s.-a.b.c. at∞" again denotes a self-adjoint boundary condition at∞ (if Q is not
in the limit point case at∞). For more details about the limit point/limit circle and all
the intermediate cases, see [7,13–16,18,19,28,32] and the references therein.

Next, let9(z, x) be the unique (up to right multiplication of non-singular constant
m×m matrices)m×m matrix-valued Weyl solution associated withH , satisfying

9(z, · ) ∈ L2([0,∞))m×m, z ∈ C\R, (3.3)

9(z, x) satisfies the s.-a.b.c. ofH at∞ (if any), (3.4)

−9 ′′(z, x)+ [Q(x)− zIm]9(z, x) = 0. (3.5)

Them×mmatrix-valued Weyl–Titchmarsh functionM(z) associated withH is then
defined by

M(z) = 9 ′(z,0+)9(z,0+)−1, z ∈ C\R (3.6)

and similarly, we introduce itsx-dependent version,M(z, x), by

M(z, x) = 9 ′(z, x)9(z, x)−1, z ∈ C\R, x ≥ 0. (3.7)

The matrix Riccati equation satisfied byM(z, x), the analog of (2.10), then reads

M ′(z, x)+M(z, x)2 = Q(x)− zIm for a.e.x ≥ 0 and allz ∈ C\R. (3.8)

Next, letQj(x), j = 1,2 be two self-adjoint matrix-valued potentials satisfying (3.1),
andMj(z),Mj(z, x) the Weyl–Titchmarsh matrices associated with the corresponding
(Dirichlet) Schrödinger operators. Then the analog of (2.11) is of the form

[M1(z, x)−M2(z, x)]′ (3.9)

= Q1(x)−Q2(x)− 1
2[M1(z, x)+M2(z, x)][M1(z, x)−M2(z, x)]

− 1
2[M1(z, x)−M2(z, x)][M1(z, x)+M2(z, x)].

Combining (3.9) with the elementary fact that anym×m matrix-valued solutionU(x)
of

U ′(x) = B(x)U(x)+ U(x)B(x) (3.10)
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is of the form

U(x) = V (x)CW(x), (3.11)

whereC is a constantm × m matrix andV (x), respectively,W(x), is a fundamental
system of solutions ofR′(x) = B(x)R(x), respectively,S′(x) = S(x)B(x), one can
prove the analogs of Theorems 2.1–2.3 in the present matrix context. More precisely, the
matrix analogs of Theorems 2.1 and 2.2 follow from Theorem 4.8 in [7]. The correspond-
ing analog of Theorem 2.3 follows from Theorem 4.5 and Remark 4.7 in [7]. Moreover,
in the case thatH is bounded from below, Lemma 2.4 generalizes to the matrix-valued
context and hence permits one to take the limitz ↓ −∞ in the matrix analog of (2.13).
While the scalar case treated in detail in [11] is based on Riccati-type identities such as
(2.11) and ana priori bound of the type (2.9) inspired by Atkinson’s 1981 paper [2],
the matrix-valued case discussed in depth in [7] is based on corresponding Riccati-type
identities such as (3.9) and ana priori bound of the type

M(z, x) = iz1/2Im + o(|z|1/2) (3.12)

first obtained by Atkinson in an unpublished manuscript [3].
In the special case of short-range matrix-valued potentialsQ(x),m×mmatrix analogs

of the Jost solutionF(z, x) as well as the transformation kernelK(x, y) associated with
H as in (2.17)–(2.21) (replacing| · | by an appropriate matrix norm‖ · ‖Cm×m), have been
discussed in great detail in the classical 1963 monograph byAgranovich and Marchenko
[1, Ch. I]. Moreover, (2.22)–(2.24) trivially extend to the matrix case.

Given these preliminaries, the analog of Theorem 1.1 and Corollary 2.6 reads as
follows in the matrix-valued context.

Theorem 3.1.Leta > 0, 0< ε < π/2 and suppose

‖M1(z)−M2(z)‖Cm×m =|z|→∞O(e
−2 Im(z1/2)a) (3.13)

along the rayarg(z) = π − ε. Then

Q1(x) = Q2(x) for a.e.x ∈ [0, a]. (3.14)

In particular, if (3.13)holds for alla > 0, thenQ1 = Q2 a.e. on[0,∞).

Sketch of Proof.As in the scalar case, we may assume without loss of generality that

supp(Qj ) ⊆ [0, a], j = 1,2. (3.15)

The fundamental identity (2.27), in the present non-commutative case, needs to be re-
placed by

d

dx
W(F1(z̄, x)

∗, F2(z, x)) = −F1(z̄, x)
∗[Q1(x)−Q2(x)]F2(z, x), (3.16)

whereFj (z, x) denote them × m matrix-valued Jost solutions associated withQj ,
j = 1,2, andW(F,G)(x) = F(x)G′(x) − F ′(x)G(x) the matrix-valued Wronskian
of m×m matricesF andG. Identity (2.28) then becomes∫ a

0
dx F1(z̄, x)

∗[Q1(x)−Q2(x)]F2(z, x)
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= F1(z̄, x)
∗[M1(z, x)−M2(z, x)]F2(z, x)

∣∣∣∣a
x=0

, (3.17)

utilizing the fact

M1(z̄, x)
∗ = M1(z, x). (3.18)

Fj obeys a transformation kernel representation

Fj (z, x) = eiz
1/2xIm +

∫ a

x

dy Kj (x, y) e
iz1/2yIm , (3.19)

Im(z1/2) ≥ 0, x ≥ 0, j = 1,2.

From this, (3.12), and the hypothesis of (3.13), one concludes by (3.17) that

∫ a

0
dx F1(z̄, x)[Q1(x)−Q2(x)]F2(z, x) =

z↓−∞ O(e−2 Im(z1/2)a). (3.20)

Now letRA be right multiplication byAonn×nmatrices andLB be left multiplication
byB. Then

LHS of (3.20) (3.21)

=
∫ a

0
dx

{
Q1(y)−Q2(y)+

∫ y

0
dx L(x, y)[Q1(x)−Q2(x)]

}
e−2z1/2y,

whereL is an operator onn × n matrices which is a sum of a left multiplication (by
2Kj(x,2y− x)), a right multiplication (by 2K2(x,2y− x)), and a convolution of a left
and right multiplication.

It follows by Lemma 2.5, (3.20), and (??) that

Q1(y)−Q2(y)+
∫ y

0
dx L(x, y)[Q1(x)−Q2(x)] = 0. (3.22)

This is a Volterra equation and the same argument based on

∫ y

0
dx1

∫ x1

0
dx2 · · · ·

∫ xn−1

0
dxn = yn

n!

that a Volterra operator has zero spectral radius applies to operator-valued Volterra equa-
tions. Thus, (3.22) impliesQ1(y)−Q2(y) = 0 for a.e.y ∈ [0, a]. ut

Extensions of Theorem 3.1 in the spirit of Remarks 2.8–2.10 and Theorem 2.11 can
be made, but we omit the corresponding details at this point.

Acknowledgements.F. G. thanks T. Tombrello for the hospitality of Caltech where this work was done.
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