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Abstract: We provide a new short proof of the following fact, first proved by one of
us in 1998: If two Weyl-Titchmarsh-functions,m ; (z), of two Schrddinger operators

Hj= _j_; +qj,j=1,2inL?((0, R)), 0 < R < oo, are exponentially close, that is,
lm1(z) —ma(2)| W 0(e2m%ay 0 < ¢ < R, thengy = ¢ a.e. on0, a]. The
Z|—> 00

result applies to any boundary conditionsat 0 andx = R and should be considered

a local version of the celebrated Borg—Marchenko uniqueness result (which is quickly
recovered as a corollary to our proof). Moreover, we extend the local uniqueness result
to matrix-valued Schrodinger operators.

1. Introduction

LetH; = —% +4gj.q9; € L1([0, R)) for all R > 0, g; real-valued,; = 1, 2, be two
self-adjoint operators if?([0, co)) with a Dirichlet boundary condition at= 0. Let
m;(z), z € C\R be the Weyl-Titchmarsh-functions associated with;, j = 1, 2.

The principal purpose of this note is to provide a short proof of the following uniqueness
theorem in the spectral theory of one-dimensional Schrédinger operators, originally
obtained by Simon [33] in 1998. (Actually, Simon’s result [33] was weaker; the result
as stated is from [11].)

Theorem 1.1.Leta > 0,0 < ¢ < 7 /2 and suppose that

[m1(z) — m2(2)| mioo O(e—ZIm(zl/z)a) (1.1)
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along the rayarg(z) = & — ¢. Then
q1(x) = g2(x) for a.e.x € [0, a]. 1.2)

For reasons of brevity we stated Theorem 1.1 only in the simplest possible case. Ex-
tensions to finite interval®, R] instead of the half-lin€0, co), a discussion of boundary
conditions other than Dirichlet at = 0,., and the case of matrix-valued Schrédinger
operatos — a newresult — will be provided in the main body of this paper.

Theorem 1.1 should be viewed as a local (and hence stronger) version of the follow-
ing celebrated Borg—Marchenko uniqueness theorem, published by Marchenko [25] in
1950. Marchenko’s extensive treatise on spectral theory of one-dimensional Schrédinger
operators [26], repeating the proof of his uniqueness theorem, then appeared in 1952,
which also marked the appearance of Borg’s proof of the uniqueness theorem [5] (ap-
parently, based on his lecture at the 11th Scandinavian Congress of Mathematicians held
at Trondheim, Norway in 1949).

Theorem 1.2.([5,25,26])Suppose
mi(z) = m2(z), z € C\R, (1.3)
then
q1(x) = g2(x) for a.e.x € [0, co). (1.4)

Again, we emphasize that Borg and Marchenko also treat the general case of non-
Dirichlet boundary conditions at = 0., whose discussion we defer to Sect. 2. More-
over, Marchenko simultaneously discussed the half-line and finite interval case, also to
be deferred to Sect. 2.

As pointed out by Levitan [23] in the Notes to Chapter 2, Borg and Marchenko were
actually preceded by Tikhonov [34] in 1949, who proved a special case of Theorem 1.2
in connection with the string equation (and hence under certain additional hypotheses on
q,;). Since Weyl-Titchmarsh functioms(z) are uniquely related to the spectral measure

dp of a self-adjoint (Dirichlet) Schrodinger operathir= _szz + ¢ in L%([0, o0)) by
the standard Herglotz representation

m(z) = Re(m(i)) + fde(x)[(,\ —2 a1+ 2H7Y, zeC\R, (1.5)

Theorem 1.2 is equivalent to the following statement: Denotédjythe spectral mea-
sures ofH;, j =1, 2. Then

dp1 = dpz impliesg1 = g2 a.e. on0, co). (1.6)

In fact, Marchenko’s proof takes the spectral measudggsas the point of departure
while Borg focuses on the Weyl-Titchmarsh functiens

To the best of our knowledge, the only alternative approaches to Theorem 1.2 are
based on the Gelfand-Levitan solution of the inverse spectral problem published in 1951
(see also Levitan and Gasymov [24]) and alternative variants due to M. Krein [20,21].
In particular, it took over 45 years to improve on Theorem 1.2 and derive its local
counterpart, Theorem 1.1. While the original proof of Theorem 1.1 in [33] relied on the
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full power of a new formalism in inverse spectral theory, relating) to finite Laplace
transforms of the type

a
m@pﬂéﬂ_/<MAmnbﬁﬂ+0@m¢% (1.7)
0

as|z| — oo with arg(z) € (e, —¢) for some O< ¢ < 7 (with f = O(g) if g — O
and for alls > 0, ('{s )lg|® — 0), we will present a short and fairly elementary argument
in Sect. 2. In fact, as a corollary to our new proof of Theorem 1.1, we also obtain an
elementary proof of a strengthened version of Theorem 1.2.

We should also mention some work of Ramm [30], [31], who provided a proof of
Theorem 1.2 under a very strong additional assumption, namelyitlaaidg, are both
of short range. While his result is necessarily weaker than the original Borg—Marchenko
result, Theorem 1.2, his method of proof has elements in common with parts of our proof
(namely, he uses (2.28) below with= co and obtains a \olterra integral equation close
to our (2.34)).

Finally, we have in preparation [12] still another alternate proof of the local Borg—
Marchenko theorem.

Extensions to finite intervals and general (i.e., non-Dirichlet) boundary conditions
complete Sect. 2. Matrix-valued extensions of Theorem 1.1 are presented in Sect. 3.

2. A New Proof of Theorem 1.1

Throughout this section, unless explicitly stated otherwise, potegtiale supposed to
satisfy

g € LY([0, R)) forall R > 0, g real-valued (2.1)

Given ¢, we introduce the corresponding self-adjoint Schrédinger operdtan
L?([0, 00)) with a Dirichlet boundary condition at = 0., by

d2
H=-"5+a
dom(H) = {g € L%([0, c0)) | g, g’ € AC([0, R]) forall R > 0; (2.2)

¢(0;) =0, s.-a.b.c.ato; (—g" + qg) € L2([0, o0))}.

Here “s.-a. b.c." denotes a self-adjoint boundary conditieo &vhich becomes relevant

only if ¢ isin the limit circle case ato, but should be discarded otherwise, i.e., in the limit
point case, where such a boundary condition is automatically satisfied). For example, an
explicit form of such a boundary condition is

HgWU&@&Xﬂ=O, (2.3)

where f (zg, x) for some fixedtg € C\R, satisfies

f(zo. +) € L%(1000)), —f"(z0. %) + [q(x) — 20l f (z0.x) = 0 (2.4)

andW(f, g)(x) = f(x)g'(x) — f'(x)g(x) denotes the Wronskian gf andg. Since
these possible boundary conditions hardly play a role in the analysis to follow, we will
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not dwell on them any further. (Pertinent details can be found in [10] and the references
therein.)

Next, letyr(z, x) be the unique (up to constant multiples) Weyl solution associated
with H, that is,

V(2 ) € L3([0,00)), z€C\R,
¥ (z, x) satisfies the s.-a.b.c. éf atoo (if any), (2.5)

—¥"(z,x) + [q(x) — z]¥(z, x) = 0.
Then the Weyl-Titchmarsh function(z) associated wittH is defined by
m(z) = ¥'(z,01)/¥(z,04), ze€C\R (2.6)

and for later purposes we also introduce the corresponddgpendent versiom (z, x),
by

m(z,x) =¥ (z,x)/¥(z,x), z€C\R, x>0. (2.7)

After these preliminaries we are now ready to state the main ingredients used in our
new proof of Theorem 1.1.

Theorem 2.1 (2,8]). Letarg(z) € (e, 7 — ¢) for some0 < ¢ < z. Then for any fixed
x € [0, 00),

mzx) = iz%% 4+ 0(). (2.8)

The following result shows that one can also get an estimate unifosmnagnlong as
x varies in compact intervals.

Theorem 2.2 (11]). Letarg(z) € (e, m — ¢) for some0 < ¢ < 7, and supposé > 0,
a > 0. Then there exists @(s, 8, a) > 0 such that for allx € [0, a],

Im(z, x) —izY?| < C(s, 8, a), (2.9)

whereC (¢, 8, a) depends om, §, andsupbfxfa(f;‘” dy lgy)l)-

Theorems 2.1 and 2.2 can be proved following arguments of Atkinson [2], who studied
the Riccati-type equation satisfied bz, x),

m'(z, x) + m(z, x)> = q(x) — z fora.e.x > 0 and allz € C\R. (2.10)
Next, letg;(x), j = 1, 2 be two potentials satisfying (2.1), with;(z) the associated

(Dirichlet) m-functions. Combining the priori bound (2.9) with the differential equation
resulting from (2.10),

[m(z, x) — ma(z, x)] (2.11)
= q1(x) — g2(x) — [m1(z, x) + ma(z, x)][m1(z, x) — ma(z, x)],

permits one to prove the following converse of Theorem 1.1.
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Theorem 2.3 (11]). Letarg(z) € (&, m — &) for somed < ¢ < & and suppose > 0. If
q1(x) = q2(x) fora.e.x € [0, a], (2.12)
then
m@ = m@] = 0@ 2, (2.13)
Lemma 2.4.In addition to the hypotheses of Theorem 2&sp., Theorem 2)3suppose

that H (resp.,H;, j = 1, 2) is bounded from below. Thé@.9) (esp.,(2.13))extends
to all argz) € (e, 7].

Proof. Since inf(specH,)) > inf(spe¢H)), whereH, denotes the Schrédinger oper-
ator—% + g in L%([x, 00)) with a Dirichlet boundary condition at, (and the same
s.-a.b.c. abo asH, if any), there is arEy € R such that for alk € [0, a], m(z, x) is
analyticinC\[Eg, oo). Usingm(z, x) = m(z, x), the estimate (2.9) holds on the bound-
ary of a sector with vertex @y — 1, symmetry axi§—oo, Eg — 1], and some opening
angle O< ¢ < /2. An application of the Phragmén-Lindelof principle (cf. [29, Part 11,
Sect. 6.5]) then extends (2.9) to all of the interior of that sector and hence in particular
along the ray | —oo. Since (2.13) results from (2.9) upon integrating (cf. (2.11)),

mi(z, x) —ma(z, x)I'
= —[m1(z, x) + ma(z, x)|[m1(z, x), —m2(z, x)], x € [0, a] (2.14)

fromx = Otox = a, the extension of (2.9) towith arg(z) € (¢, 7] just proven, allows
one to estimate

1z ) +ma(z, 0| = 2izY2 4 0(1), aryz) € (e, 7], (2.15)

uniformly with respect toc € [0, a], and hence to extend (2.13) to &rge (¢, x]. O

Next, we briefly recall a few well-known facts on compactly suppotedence we
suppose temporarily that

SURSUPHG)) = & < o0. (2.16)

In this case, the Jost solutigf(z, x) associated witly (x) satisfies

172 @ sinzY2(x — y))
fl@,x)=¢€*"" — / dy Ty qy) f(z.y) (2.17)
X
. o .
= i +/ dyK (x,y) e ImY?) =0, x > 0, (2.18)
X

whereK (x, y) denotes the transformation kernel satisfying (cf. [27, Sect. 3.1])

1 1« a (y—x)/2
K(x,y) = _/ dx’q(x’) _ / / dx”q(x’ _ x//) >
2 Jaty) 2 (+y)/2J0

x K(x'=x",x"+x7), x<y, (2.19)
Kx,y)=0, x>y, (2.20)
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l o o
IK(x, y)| < —/ dx"|q(x")| eXIO(/ dx/’X”Iq(x”)|>. (2.21)
2 Jietyy2 x

Moreover, f (z, x) is a multiple of the Weyl solution, implying
m(z,x) = f'(z,x)/f(z,x), z€C\R, x>0, (2.22)

and the Volterra integral equation (2.17) immediately yields

1f (2, %) < Ce™ME%  1m;Y2) > 0, x > 0, (2.23)
fen = 14+ 0327V, x>0, (2.24)
Z|— 00
ImzY2)>0

Our final ingredient concerns the following result on finite Laplace transforms.
Lemma 2.5 & LemmaA.2.1in [33). Letg € L1([0, a]) and assume that
Jo dy g(y)e™™ = O(e™*4). Theng(y) = Ofora.e.y € [0, a].
XToo

Given these facts, the proof of Theorem 1.1 now becomes quite simple.

Proof of Theorem 1.1By Theorem 2.3 we may assume, without loss of generality, that
g1 andg» are compactly supported such that

supg;) € [0,al, j=1,2, (2.25)

and by Lemma 2.4 we masuppose that (1.1) holds along the fay oo, that is,

m1@) = mo@|_ = 0(e=21" %), (2.26)

Denoting bym ;(z, x) and f;(z, x) them-functions and Jost solutions associated with
qj, j = 1,2, integrating the elementary identity

d
I W(f1(z, %), f2(z, X)) = —[g1(x) — g2(x)] f1(z, ¥) f2(z, x) (2.27)

from x = 0 tox = 4, taking into account (2.22), yields

/O dx [q1(x) — g2()1 f1(z, x) f2(z, x)

= f1(z, x) fa(z, x)[m1(z, x) —m2(z, x)]| . (2.28)

x=0

By (2.8), (2.23), and (2.26), the right-hand side of (2.28pig~21"*4) asz | —oo (in
fact, the right-hand side of (2.28) is zerovat: a due to the compact support assumption
(2.25)), that is,

1/2

[ dxtar - A 0G0 = 0@ (229
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Denoting byK ; (x, y) the transformation kernels associated with j = 1,2, (2.18)
implies

a
f1(z %) falz x) = 2475 4 / dy L(x, y) %", (2.30)

X

where
L(x,y) =2[Ki(x,2y —x) + Ka(x, 2y — x)]
2y—x
+ 2/ dx' K1(x, xYKo(x,2y —x'), x <y, (2.31)

Lx,y)=0, x>y or y>a. (2.32)

Insertion of (2.30) into (2.29), interchanging the order of integration in the double inte-
gral, then yields

/o dx[q1(x) — q2(x)] f1(z, x) f2(z, x)

¢ y —2|7|1%2y
= /0 dy {[q1(y) —q2(y)] +/0 dx L(x, y)lg1(x) — qz(X)]} e ’

— O(e2"ay, (2.33)

z{—00

An application of Lemma 2.5 then yields

y
[q1(y) — q2(»)] +/0 dx L(x,y)[g1(x) — g2(x)] =0 fora.e.y € [0.a]. (2.34)

Since (2.34) is a homogeneous Volterra integral equation with a continuous integral
kernelL(x, y), one concludeg; = g2 a.e. on0,a]. O

In particular, one obtains the following strengthened version of the original Borg—
Marchenko uniqueness result, Theorem 1.2.

Corollary 2.6. Let0 < ¢ < 7/2 and suppose that for adl > 0,

[m1(z) — ma(2)| Iz\joo O(e—ZIm(zl/z)a) (2.35)

along the rayarg(z) = = — ¢. Then
q1(x) = q2(x) for a.e.x € [0, 00). (2.36)

Remark 2.7The Borg—Marchenko uniqueness result, Theorem 1.2 (but not our strength-
ened version, Corollary 2.6), under the additional condition of short-range poteptials
satisfyingg; L([0, 00); (14 x) dx), j = 1, 2, can also be proved using Property C,

a device recently used by Ramm [30,31] in a variety of uniqueness results. In this case,
(2.28) forz = » > 0 becomes

/0 dx [g1(x) — g2()1f1(X, x) f2(%, 2)
= —f1(%, 0) fo(x, O)[m1 (A +i0) —ma(A +i0)] =0, A >0 (2.37)
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sincem1(z) = ma(z),z € Co extendstany (A +i0) = mo(A+i0), A > 0 by continuity

in the present short-range case. By definition, Property C stands for completeness of the
set{ fi(x, x) fo(x, x) =0 in L1([0, 00); (1 + x) dx) (this extends td.1([0, o0))) and

hence (2.37) yieldg; = g2 a.e. on[0, co).

In the remainder of this section, we consider a variety of generalizations of the result
obtained.

Remark 2.8The ray argz) = 7 — ¢, 0 < ¢ < 7/2 chosen in Theorem 1.1 and
Corollary 2.6 is of no particularimportance. A limit taken along any non-self-intersecting
curveC going to infinity in the sector alg) € (7/2+ ¢, m — ¢) will do as we can apply

the Phragmén-Lindeldf principle ([29, Part Ill, Sect. 6.5]) to the region encloselt by
and its complex conjugaté (needed in connection with Lemma 2.4 in order to reduce
the general case to the case of spectra bounded from below).

Remark 2.9For simplicity of exposition, we only discussed the Dirichlet boundary
condition

g0,)=0 (2.38)
in the definition ofH in (2.2). Next we replace (2.38) by the general boundary condition
sin(e)g’(04) + cog)g(04) =0, « € [0, 7) (2.39)
in (2.2), denoting the resulting Schrédinger operatofywhile keeping the boundary
condition at infinity (if any) identical for allx € [0, 7). Denoting bym,(z) the Weyl—
Titchmarsh function associated wifiy,, the well-known relation (cf. e.g., Appendix A

of [10] for precise details o, andm (z))

_ —sin(a) + cosa)m(z)
ma(2) = coSw) + sin(a)m(z)

, ael0,7), zeC\R (2.40)

reduces the case € (0, 7) to the Dirichlet casex = 0. In particular, Theorem 1.1
and Corollary 2.6 remain valid with: ; (z) replaced bym; 4 (z), @ € [0, 7). Indeed,

[m1.6(2) — m2.4(2)] e 0(e2'MY%)a) glong the ray ang) = = — ¢ is easily seen
Z|—> 00
to imply, for all sufficiently smalls > 0,

_ 1/2
Im1.0(z) —m20(z)] = O(|z]e ?'ME"a)
|z|—00

2.41
= O(e2'MEAa-0)y (2.41)

|z]—00

along theray arg¢) = m —¢. Hence one infers from Theorem 1.1 that for akk® < a,

g1 = g2 a.e. on[0, a — §&]. Sinced > 0 can be chosen arbitrarily small, one concludes

g1 = g2 a.e.on0, a]. In fact, more is true. Since, (z) | ‘—> cot(a) along the ray, one
rEdesl

concludes thalmn g, — m2.4,(2)| s 0(e2'M%)a) along a ray impliesy = a2
Z|— o0
andgi = g2 a.e. on0, a].
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Remark 2.10If one is interested in a finite interved, b] instead of the half-lin¢0, co)
in Theorem 1.1, with O< a < b, one introduces a self-adjoint boundary condition at
x = b_ of the type

sin(B)g'(b-) + cogB)g(b-) =0, B €l0,n). (2.42)
The analog of the Weyl solutiofn(z, x; b, 8) for the corresponding Schréodinger operator
H (b, B) in L2([0, b)) defined by
d2
H®,pB) = ~i2 +q, Bel0,m), (2.43)
dom(H (b, B)) = {g € L%([0.b]) | g, g’ € AC([0, b]); g(04) =0,
sin(B)g'(b-) + codB)g(b-) = 0; (—g" + qg) € L*([0, b))}

is then defined by

Sin(B)Y'(z,b—; b, B) + cosP)Yr(z,b—; b, f) =0, z e C\R,
— "z, x;b, B) +[q(x) — 2l¥(z, x;b, p) = 0. (2.44)

Moreover, the analog of (2.18) is then of the type

b

Vo xibB) = p O x: b, /3)+/ dy K (x, v: b, Oz, x: b, ).

X

ze€ C\R, x €[0,b], (2.45)
where

VO, b, p) = ey g(B,7) @)
s Ny U 1+§(ﬂ,Z) eZiZl/Zb

—iz'/2 — cot(B)
—izl/2 + cot(B)’

is the corresponding Weyl solutioninthe case) = 0,x € [0, b],andK (x, y; b, B)isa
transformation kernel analogouskdx, t; k) discussed in Sect. 1.3 of [27]. Theorem 1.1
then extends to triple&;;, b;, B;), j = 1, 2 witha < min(by, b2), replacingf;(z, x)

in (2.29) by (z, x; b;, B;), j = 1,2. More precisely, ifn(z; b;, ;) denote then-
functions forH (b}, B;), j = 1, 2 witha < min(by, b2) and

: (2.46)

Im(z¥2) > 0

¢(B,2) =

m(z: by, fr) — m(z: bo, f)| = 0(e 200 (2.47)
|z]—00
along the ray arg) = = — ¢, theng1 = g2 a.e. on[0, a]. In fact, it was precisely this
version of Theorem 1.1 which was originally proven by one of us [33] in 1998.

One can also derive additional results in the case b1 = b» (cf. Theorem 1.3 in
[33]). Indeedz (B, z) o 1+ 0(|z|~Y?), so by (2.45) and (2.46),
Z|—> 00

V@ Gap) = 1+ o(lzI7Y/?), (2.48)

V@ aap) = 277741 4 0(|217V/?)), (2.49)
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which are analogous to (2.24). Thusgif = g2 on[0, a] but 81 # B2, we have that

[m1(z; a, B1) —m2(z; a, B2)] (2.50)
= ¥1(z, 0 a, B1) " W2(z, 0; @, B2) W (Ya(z, 0; a, B2), ¥1(z, 0; @, B1))
= 1(z; 0, a, B1) " 2(z, 0; a, B2) W (Y2(z, as a, B2), V1(z, a; a, B2)),

by the constancy of the Wronskian when = ¢2. But v/'(a)/vy (a) equals cat8) by
(2.44) and hence

mi(z; a, B1) — ma(z; a, B2) = ¥1(z, 0; a, B1) " 12(z, 0; a, 2) 71 x
X ¥1(z, a; a, B1)¥2(z, a; a, B2)[cOt(B1) — COt(B2)]. (2.51)

Using (2.48), (2.49), this implies that

mi(z; a, B1) —ma(z; a, B2)
= 4624 [cot(By) — cot(B)][1+ O (2], (2.52)

which is Theorem 1.3 in [33].

While we have separately described a few extensions in Remarks 2.8-2.10, it is clear
that they can all be combined at once.

We also mention the analog of Theorem 1.1 for Schrddinger operators on the real
line. Assuming

g € LE(R), g real-valued, (2.53)

one introduces the corresponding self-adjoint Schrédinger opdiaior.2(R) by

2

d
H=—— +q, 2.54
2 ta (2.54)

dom(H) = {g € L’(R) | g, g’ € ACioc(R); S.Ss.-a.b.c. atk co;
(—¢" +qg) € L*(R)}.

Here “s.s.-a. b.c.” denotes separated self-adjoint boundary conditiéne and/or—oco
(if any).

The 2x 2 matrix-valuedn-functionM (z) associated witt7 in L2(R) is then defined
by

M) = (m_(z) —m4(2) "t x (2.55)
1 (m—(2) +m 4 (2))/2
X ((m_<z) +tme@)/2 mo@my () ) » 2ECR,

wherem 1 (z) denote the half-lin@:-functions associated witH restricted tg0, £o0)
and a Dirichlet boundary condition at= 0.

Next, letg; (x), j = 1, 2 be two potentials satisfying (2.53) affj the corresponding
Schrédinger operators (2.54) iP(R), with M;(z), j = 1,2 the associated 2 2
matrix-valuedn-functions. Then the analog of Theorem 1.1 reads as follows.
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Theorem 2.11.Leta > 0,0 < ¢ < /2 and suppose that
_ 1/2
IM1(2) = Ma@llczz | = O(e™*IME (2.56)
along the rayarg(z) = 7 — ¢. Then

q1(x) = g2(x) for a.e.x € [—a, a]. (2.57)

Proof. We denote byn ; 1 (z) the half-line (Dirichletyn-functions associated witH;
on [0, £00), j = 1, 2. Then a straightforward combination of (2.8) and (2.56) yields

m1a(@) = ma@] = O(lzle M0 (258)

and hence (2.57), applying Theorem 1.1 separately to the two half{lines) and
(—o0, 0] (and using the argument following (2.41)a

Finally, the reader might be interested in the analog of Theorem 1.1 in the case of
second-order difference operators, that is, Jacobi operatorst beta bounded self-
adjoint Jacobi operator it?(Np) (No = N U {0}) of the type

A=100ay " . , ax >0, by e R, k € Np. (2.59)

The corresponding:-function of A is then defined by
m(z) = (8o, (A —2)180) = / doM (A —2)7Y, zeC\R, (2.60)
R

wheredg = (1,0,0,...). The analog of Theorem 1.1 in the discrete case then reads
as follows. Denote by ; (z) them-functions for two self-adjoint Jacobi operatots,
Jj =1, 2, denoting the matrix elements &f by a; s, b;, j = 1,2,k € Ng. Then

m1(z) —ma2(2)| = 0(zI™"), (2.61)
|z|—>00
forsomeN € N, N > 3, if and only if

if Niseven (N > 4) (2.62)

arr =azk, bix=brr, 0<k<

and

N -5
aip =azg, 0<k< 5

(2.63)
if Nis odd

bix =bzk, 0<k=
The proof is clear from (2.60) and the well-known formulas (cf. [4, Sect. VII.1]).
ax = /R dp(A) kPc (W) Pera1(M), by = [R dp() APc(0)? keNo,  (2.64)

where{ P, (1) }keN, is an orthonormal system of polynomials with respect to the spectral
measurelp, with Py (z) of degreek in z, Po(z) = 1.
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3. Matrix-Valued Schrédinger Operators

In our final section we extend Theorem 1.1 to matrix-valued potentials (cf., [6, Ch. IlI],
[17,22] and the references therein).
Letm € N and denote by, the identity matrix inC”. Assuming

0 = 0* € LY(0, R])"™ ™ forall R > 0, (3.1)
we introduce the corresponding matrix-valued self-adjoint Schrodinger opéfaitor
L2([0, 00))™ with a Dirichlet boundary condition at = 0., by

d2
H=—-——1I, , 3.2
de + Q ( )
dom(H) = {g € L?([0, 00))" | g, g’ € AC([0, R])" forall R > O;
¢(04) =0, s.-a.b.c. abo; (—g” + Qg) € L2([0, 00))™}.
Here “s.-a.b.c. ato" again denotes a self-adjoint boundary conditiona(if Q is not
in the limit point case ato). For more details about the limit point/limit circle and all
the intermediate cases, see [7,13-16,18,19,28,32] and the references therein.

Next, letW(z, x) be the unique (up to right multiplication of non-singular constant
m x m matricesyn x m matrix-valued Weyl solution associated with satisfying

V(z, ) € L¥([0,00)"", zeC\R, (3.3)
Y (z, x) satisfies the s.-a. b.c. éf atoo (if any), (3.4)
— ¥z, x) + [Q(x) — 21, ]¥ (z, x) = 0. (3.5)

Them x m matrix-valued Weyl-Titchmarsh functia¥ (z) associated witt# is then
defined by

M(z) = ¥'(z,0,)¥(z,0,)7L, zeC\R (3.6)
and similarly, we introduce its-dependent versior (z, x), by
M(z,x) =V (2, x)¥(z,x)"L, ze€C\R, x >0. (3.7)
The matrix Riccati equation satisfied b¥(z, x), the analog of (2.10), then reads
M'(z, x) + M(z, x)?> = Q(x) — zI,, for a.e.x > 0 and allz € C\R. (3.8)

Next, letQ;(x), j = 1, 2 be two self-adjoint matrix-valued potentials satisfying (3.1),
andM;(z), M;(z, x) the Weyl-Titchmarsh matrices associated with the corresponding
(Dirichlet) Schrddinger operators. Then the analog of (2.11) is of the form

[M1(z, x) — Ma(z, x)] (3.9)
= Q1(x) — Q2(x) — 3[Ma(z. x) + M2(z, )I[M1(z. x) — Ma(z, x)]
— 3[M1(z, x) — Ma(z, )][M1(z, x) + Ma(z, x)].

Combining (3.9) with the elementary fact that anyx m matrix-valued solutior/ (x)
of

U'(x) = B(x)U(x) + U(x)B(x) (3.10)
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is of the form
Ux)=V&x)CW(Xx), (3.11)

whereC is a constaniz x m matrix andV (x), respectivelyW (x), is a fundamental
system of solutions oR’(x) = B(x)R(x), respectively,S’(x) = S(x)B(x), one can

prove the analogs of Theorems 2.1-2.3 in the present matrix context. More precisely, the
matrix analogs of Theorems 2.1 and 2.2 follow from Theorem 4.8 in [7]. The correspond-
ing analog of Theorem 2.3 follows from Theorem 4.5 and Remark 4.7 in [7]. Moreover,
in the case tha#/ is bounded from below, Lemma 2.4 generalizes to the matrix-valued
context and hence permits one to take the limjt —oo in the matrix analog of (2.13).
While the scalar case treated in detail in [11] is based on Riccati-type identities such as
(2.11) and ara priori bound of the type (2.9) inspired by Atkinson’s 1981 paper [2],
the matrix-valued case discussed in depth in [7] is based on corresponding Riccati-type
identities such as (3.9) and arpriori bound of the type

M(z, x) = iz"21,, + o(|z|Y?) (3.12)

first obtained by Atkinson in an unpublished manuscript [3].

Inthe special case of short-range matrix-valued potenflély, m x m matrix analogs
of the Jost solutiorF (z, x) as well as the transformation kerré(x, y) associated with
H asin (2.17)—(2.21) (replacirig | by an appropriate matrix norfn- ||cmxn), have been
discussed in great detail in the classical 1963 monograph by Agranovich and Marchenko
[1, Ch. I]. Moreover, (2.22)—(2.24) trivially extend to the matrix case.

Given these preliminaries, the analog of Theorem 1.1 and Corollary 2.6 reads as
follows in the matrix-valued context.

Theorem 3.1.Leta > 0,0 < ¢ < /2 and suppose

_ 12y,
1M1 = Mo@)llcmen | = 020 (3.13)

along the rayarg(z) = = — ¢. Then
01(x) = Q2(x) for a.e.x € [0, al. (3.14)
In particular, if (3.13)holds for alla > 0, thenQ1 = Q7 a.e. on[0, c©).
Sketch of ProofAs in the scalar case, we may assume without loss of generality that
suppQ;) € [0,a], j=12 (3.15)
The fundamental identity (2.27), in the present non-commutative case, needs to be re-

placed by

d
I W(F1(Z, x)*, Fa(z, x)) = —F1(Z, x)*[Q1(x) — Q2(x)]F2(z, x), (3.16)

where F;(z, x) denote then x m matrix-valued Jost solutions associated wih,
j =212, andW(F, G)(x) = F(x)G'(x) — F'(x)G(x) the matrix-valued Wronskian
of m x m matricesF andG. ldentity (2.28) then becomes

/0 dx F1(Z, x)"[Q1(x) — Q2(x)]F2(z, x)
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a

= F1(Z, x)*[M1(z, x) — M2(z, x)1F2(z, x)| (3.17)
x=0

utilizing the fact
M1(z, x)* = Ma(z, x). (3.18)
F; obeys a transformation kernel representation
a
Fi(z,x) = e’zl/lem ~|—/ dy K;(x,y) e’zl/zylm , (3.19)
X
M%) =0, x>0, j=12

From this, (3.12), and the hypothesis of (3.13), one concludes by (3.17) that
f dx FiZ 010100 — QoFa(z, 1) = 0?00, (3.20)
0 zy—o00

Now letR 4 be right multiplication by onn xn matrices and. g be left multiplication
by B. Then

LHS of (3.20) (3.21)

¢ y
:/o dx {Ql(y)_Q2()’) +/0 dx L(x, y)[Ql(X)—Qz(x)]} o2y

whereL is an operator om x n matrices which is a sum of a left multiplication (by
2K j(x, 2y — x)), aright multiplication (by X>(x, 2y — x)), and a convolution of a left
and right multiplication.

It follows by Lemma 2.5, (3.20), an@®?9) that

y
Q1(y) — Q2(y) +./O dx L(x, y)[Q1(x) — Q2(x)] = 0. (3.22)

This is a Volterra equation and the same argument based on

y X1 Xn—1 yn
/dxl/ dx2-~--/ dx, = —
0 0 0 n!

that a \olterra operator has zero spectral radius applies to operator-valued Volterra equa-
tions. Thus, (3.22) implie®1(y) — Q2(y) = 0fora.e.y € [0,a]. O

Extensions of Theorem 3.1 in the spirit of Remarks 2.8-2.10 and Theorem 2.11 can
be made, but we omit the corresponding details at this point.

Acknowledgementsk. G. thanks T. Tombrello for the hospitality of Caltech where this work was done.
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