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A b s t r a c t .  Let ~A,B be the Krein spectral shift function for a pair of operators 
A, B, with C = A - B trace class. We establish the bound 

f F(I~A,B()~)I ) d,~ <_ f F ( 1 5 1 c l , o ( ) , ) l ) d A  = ~ [F(j) - F ( j  - 1 ) ] # j ( C ) ,  
j= l  

where F is any non-negative convex function on [0, oo) with F(O) = 0 and #j (C) 
are the singular values of C. The choice F(t) = t p, p > 1, improves a recent 
bound of Combos, Hislop and Nakamura. 

1 In troduct ion  

Let  A, B be bounded self-adjoint operators such that their difference A - B is 

trace class. The Krein spectral shift function ~A,B for the pair A, B is determined 

by 

t r ( f (A)  - J(B)) = ] dk 

for all functions f E C~r and ~()~) = 0 if Ikl is large enough. The two bounds 

fICA,B()~)[ dA < tr(lA- BI) (1) 
J 

and 

(2) I~a,n (A)[ < n if A - B is rank n 
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are well known; see, for example, [8] or [9]. The Krein spectral shift function 

can also be defined for unbounded self-adjoint operators A, B and enjoys the same 

properties as long as their difference is trace class. The results of  this paper extend 

to general unbounded operators A and B (as long as their difference is trace class) 

but for simplicity, we suppose that A and B are bounded. For applications of  the 

spectral shift function in scattering theory, see, for example, the survey article [1]. 

The spectral shift function has also found applications in the theory of random 

SchrOdinger operators. Kostrykin and Schrader [6, 7] constructed a spectral shift 

density for random SchrSdinger operators with Anderson-type potentials. More 

recently, Combes, Hislop and Nakamura [2] realized that LP-bounds on the Krein 

spectral shift function can serve as a basic tool for a proof of  HSlder continuity of  

the integrated density of states for a large class of  continuous random Schr&linger 

operators. In terms of the singular values of the difference C = A - B, their bound 

reads 

(3) ,I,A,BIIp := ( /[~A,B(A)I" dA) 1/" r162 ~-- E ]AJ(C)I/P 
j = l  

for 1 _< p < co. Note that (3) includes the endpoint cases (1) and (2) fo rp  = 1 and 

and in the limit p ~ co, respectively. 

To see what type of  bound is the correct one for an LP-bound on the Krein 

spectral shift function, we consider a special case. Let C be a positive trace class 

operator with eigenvalues #j. Calculating 

oo t ' ~ i  

trig(C)- I(0)1-- ]0 

we see that the spectral shift function for the pair C, 0 is simply given by 

(4) (c,o(A)=nif#n+l _<A<#n and ( c , 0 ( A ) = 0 i f A < 0 o r A _ > ~ l .  

For cases like this where A and B are finite rank, it is known that the spectral shift 

function is just the difference of the dimensions of  the spectral subspaces - -  which 

leads immediately to another way of seeing why (4) is true. In particular, (c,o 
enjoys the following important properties: 

�9 (c,o takes only values in No (or Z if 6' is not non-negative). 

�9 For any non-negative function F on [0, co) with F(0) = 0, we have 

f F(I4c, o(A)I) e,~ = ~ F(j)(#j - # j + l ) .  (5) 
j----1 
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�9 In addition, if F is monotone increasing, then 
OQ 

(6) f F(I~c,0(A)I) d)~ = Z [F(j)  - F(j-1)]#j .  
j = l  

The first two claims follow immediately from (4). Formally, the last claim follows 

from the second by summation by parts. However, since 

N N 

E F(j)(Itj - #j+l) = ~_, (F(j) - F( j -1 ) )# j  - F(N)#N+I,  
j = l  j----1 

this usually poses some growth restriction on F(j) for passing to the limit N --+ oo. 

We prefer not to do this but to use positivity instead. Observe that 

oo oo j 

Z F(J)(IzJ - #i+1) = Z E ( F ( n ) -  F ( n - 1 ) )  ( # / -  #i+1) 
j = l  j-----1 n = l  

= E ( F ( n ) - F ( n - 1 ) ) ( # i - # i + l ) "  
l<n<_j 

By the assumptions on F and/~j, all terms in this double sum are non-negative. 

Hence we can use the Fubini-ToneUi theorem to interchange the summation and 

conclude 

F(j)(lzj - #i+1) = Z (F(n) - F ( n - 1 ) )  (#j - #j+l)  
j = l  n = l  j=n 

= ( F ( . )  - 

n = l  

where we have used the fact that the last sum telescopes and #n ~ 0 as n ~ c~. In 

particular, the right-hand side of  (5) and (6) is finite if and only if the other is and 

then they are equal. Below, we use this type of  argument freely to do summation 

by parts without a priori bounds on the boundary terms. Alternatively, one could 

consider the case of  finite rank operators C = A - B first and then use some 

approximation arguments. 

Our main result is that the above example (6) is an extreme case. 

T h e o r e m  1. Let F be a non-negative convex function on [0, oo) vanishing at 
zero. Given a non-negative compact operator C with singular values #j(C), we 
have 

f F(I~A'B(A)I)dA <_ f F(I~c,~ d)~ 
(7) 

---- Z [F(j)  - F(j-1)]#i(C ) 
j = l  
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for all pairs of bounded operators A, B with }"~j~ ~(IA - BI) < Ej~,.,. ~j(C)for 
all n E 1K In particular, this is the case i f  lA - B[ < C. 

R e m a r k .  Moreover, if F is strictly convex, the above inequality is strict if 

either the modulus of  (a,B takes non-integer values on a set o f  positive Lebesgue 

measure or one does not have equality in Lemma 3 below. However,  it seems to be 

difficult to find necessary and sufficient conditions on A and B alone for the case 

of  equality in (7). 

Specializing to F(t) = t p for some p > 1, we get 

Corollary 2. Let (A,n be the Krein spectral shift function for the pair A, B. 
In terms of the singular values #j of  the difference A - B, we have the Ln-bound 

oo 

(8) II'~A,BIIp < I)<~,A-BI,011p = ( Z [ n " -  (n--X)n] #.,..,)1]p. 
n----I 

R e m a r k s .  (i) There are two different ways to see that (8) is, indeed, stronger 

than the bound (3) by Combes  et al. First, the direct argument: rewrite 

[nn-(n-1)P]# n = ZnP(#n - -#n+l ) )  1/p 

and consider the right-hand side as the /)'-norm of  the function n --+ n p in the 

weighted /)'-space lP(/~) with measure #(n) := #,, -/~,,+1 for n E N. Write 

n = 1 + ( n - 1 )  and use Minkowski 's  inequality for the/P(#)-norrn to get 

_< ( Z # ( n ) ) I / P  + ( ~ ( n - 1 ) P # ( j ) )  Wp 
n = l  n = l  n = 2  

12o 

- -  . l l / P  ~- ( ~ ( n - 1 ) n # ( n ) )  1/p 
n=2 

n = l  ~ n = N  

where, for the last inequality, we have repeated the first step N times. Using 

monotone convergence for the limit N --+ oo, we conclude 

oo oo 

(9) ( Z [ n  n (n-1)P]pn) 1/" - <- Z . V ' .  
n =l  n..-~l 

For the soft argument, note that, according to (6), 

oo 

( Z [np - ( n - - 1 ) n ] # n )  1In = ]l(c,0llp, 
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where C is any non-negative compact operator with singular values #,~. The bound 

(3) for ~c,0 immediately implies the inequality (9). Of course, the direct argument 

is, in some sense, a reformulation of the inductive proof of Combes et al. 
i oo (ii) Our result shows that f ~n= l  np-l#n < c~, then ~A,B E LP(R). Note that 

this cannot be improved insofar as only conditions on #n are used. It is also strictly 

better than the result by Combes et al. For example, if #n = n -p log(n + 2)-~, then 

Combes et al. require c~ > p  to conclude ~A,B E LP(R), while our result only needs 

a > l .  

2 Two proofs 

We give two proofs of our main result, Theorem 1, both depending on different 

aspects of the problem. First, some notation, For a complex-valued function f ,  

let rn I be its distribution function, that is, mr(t )  := I{A : II(A)I > t}l, with 1.41 
the Lebesgue measure of a Borel set A C ~ We write mA,B for the distribution 

function of ~A,U. The following lemma is the core of  both proofs. 

L e m m a  3 (Basic Lemma). 

~n cr mA,B (t) < dt 

With C = A - B, we have for  all n E No 

Z #j(C) = mlCl,o(t)dt. 
j = n + l  

R e m a r k .  Setting (x - s)+ := sup{0, x -  s}, we have 

(10) ml(t)dt = (I/(A)I- s)+d,X 

for all s >_ 0. Hence Lemma 3 is equivalent to 

f(l~A,B(~)l--n)+d~ _ ~ . j ( C ) =  
j = n + l  

P r o o f  o f  L e m m a  3. By the formula (4) for ~lCh0, 

o o  

f(l~lcl,0l(~) - n)+ dA = ~ (j - - n)(#j #j+l) 
j = n + l  

o o  ~ o o  

- . , ,  

l=n§ j=l l=n§ 

proving the second part of  the assertion in the lemma. 

For the inequality, let C j, Cj be two sets of orthonormal vectors such that 

A - B  = ~ j ~ l  #J(r ")r Note that Cj = q-r since A and B are self-adjoint. 
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n Set Co := 0 and C,~ := ~ = 1  #J(r ")r for n E N. The spectral shift function is 

transitive. In particular, 

~A,B = ~A,Ah-Cn "{- ~A-I-Cn,B" 

By (2), we know I~A,A+Cn I <-- n. Thus 

(]~A,B(A)I- n)+ < I~A+C~,B(A)I 

and hence, by (10) and (1), 

mA,B(t)dt = (I~A,B('~)I-n)+d,~ < trlC -Cn l  = ~_, #j. 
j = n + l  [] 

In the following, we write m and ~ for mA,B and ~A,B, respectively. 

F i r s t  p r o o f  o f  T h e o r e m  1. For n E No, put a,, := F(n+ 1) - F(n), so that 

F(n) = )-':~0_<l<n at. The a,~ are monotone increasing by the convexity of  F,  that is, 

an - an-1 > 0 for all n E N. Furthermore, set 

and observe that, by (10), 

(11) 

fn ~176 xn := m(t) dt 

f (l~a,B(a)l - n ) =  xn - xn+l - m(n-t-1). dA 

n <  I~l_<n-I-1 

Consider 

(12) F(I~(,X)I) dA = ~ F(Is dA. 

n--0 n<l~l_<n+l 

By the convexity o f F ,  we have F(s) < F(n)+(s--n) ( F ( n + l ) - F ( n ) )  for s E [n, n+l]. 
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Plugging this into (12), we obtain 

f F(ls ) d.~ 

< ~ - ~ [ F ( n )  / d)~+an f (I,(A)l-n)dA] 
n = 0  n < l ~ l < n +  1 n < l ~ l < n + l  

oo n - 1  

= ~ [( ~ a t ) ( m ( n ) -  m(n+ 1)) + an(xn - xn+l - m(n + 1))] (by (11)) 
n = 0  /--0 

(x~ o o  o o  

(13) = ~-~a, Z ( m ( n ) - m ( n + l ) ) +  ~ -~a ,~ (xn -x , ,+ l -m(n+l ) )  
/=0  n=/-I-1 n = 0  

o o  o (  

= ~-~atra(l+l)+ ~ '~an(xn -x ,~+l -m(n+l ) )  
l=0  n = 0  

n=0  

Note that if F is strictly convex, we have equality in this inequality if and only if 
takes only integer values! Using that the terms in this sum are non-negative, we 

can again reorder the summations freely to conclude, setting a-1 := 0, 

(14) 

o o  

f F(15(~)I)dA _< ~ an(x. - x.+l) = ~ (at - al--1)(Xn - -  Xn+l) 
n = 0  0 < / < n  

o o  o o  

1=0 1=0 j = l + l  

= ~ ( F ( j ) -  F ( j -1 ) )p j ,  
j=l 

where in the last inequality we have used the positivity of the increments al - at-1 
(aka convexity of F)  and Lemma 3. This proves Theorem 1, including the case 
of equality since, if F is strictly convex and ~ takes non-integer values on a set of 
positive measure, the inequality in (13) is strict. We shall return to this question in 
our second proof. [] 

For the second proof we need some preparatory lemmas. 

L e m m a  4. For any non-negative convex function F on [0, cx~) which vanishes 
at zero, there exists a non-negative locally finite measure uF on [0, c~) such that 

F(t) = (t - u)+vF(du) for all t > O. 
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F is strictly convex if  and only if  rE is strictly positive, that is, VF([a, hi) > O for  all 

O < a < b .  

Proof.  Of  course, this result is well-known. We give a short proof for 

completeness. Define F(t) to be zero for negative t - -  it then becomes convex on 

all of  E The assumptions on F show that the left derivative F '  exists everywhere 

and is non-negative, monotone increasing, and continuous from the left. Hence 

it defines a measure ve by setting UF([a, b)) := F'(b) - F'(a). That this formula 

involves intervals which include a is a consequence of  the left continuity of  F '  as 

we have defined it. Note that in this formula, F'(O) = 0 since it is the left derivative. 

The measure UF has a point mass at 0, which is precisely the right derivative of  

F at zero. This measure is strictly positive on [0, oo) i f  and only if  F '  is strictly 

increasing on [0, oo), that is, if  and only if  F is strictly convex. Moreover, by 

construction, F'(s) = uF([0, s)) for all s > 0. Calculating 

f0 ff ' f0' (t - u)+vF(du) = dsuy(du) = vF([O,s))ds 

[o,~) 

/o' = F ' ( 8 )  a s  = F ( t )  

proves the assertion. [] 

Some more notation: recall that for a function f ,  mj( t )  := I{)~ I lY(a)l > t}l 
and define 

(15) Qf(s) :=  m r ( t )  dt = (lY()~)l - s)+ d,~. 

L e m m a  5. Let F be any non-negative, convex function F on [0, ec) which 

vanishes at zero. Given two functions f and 9, QI <- Qg implies 

f F(If(A)I)dA < f F(Ig(A)I)dA. 

Moreover, i f  F is strictly convex and QI < Qg on a set o f  positive Lebesgue 

measure, then the inequality above is strict. 

P r o o f .  From Lemma 4, we have 

F(lf(,~)l) d)~ = Ql(u) ve(du), 

which concludes the proof. [] 

R e m a r k .  Necessary and sufficient conditions for the inequality in Lemma 5 

to hold for all convex F have a long history, and Lemma 5 is implicit in the earliest 
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papers on the subject by Hardy, Littlewood, P61ya [3] and Karamata [5]; see also 
Section 3.17 of [4]. 

L e m m a  6. Suppose that g takes only values in an unbounded, discrete set 

S C [0, c~) with 0 E S. Then the inequality Qy(s) < Qg(s)for s E S implies 

Qy(t) <_ Q~(t)forall t E [0, oo). 

P roof .  Let S -- {0= so <s l  < s2 < ... }. Notice that QI is always convex and, 

furthermore, Qa is linear on [s j, sj+l]. The claim follows from convexity since, by 

assumption, Ql(s) < Qg(s) for s E S. [] 

Now we come to the 

S e c o n d  p r o o f  o f  T h e o r e m  1. Given bounded operators A and B, let 

D = [ A -  B I and C be any non-negative, compact, trace class operator with 

~%,~ #~(D) < ~j%,~ #j(C) for all n E N. The basic Lemma 3 shows 

(16) Q&o(n)  < Q~l~l.o(n) < Q~c,0(n) f o r a l l n  E No. 

Lemma 6 then implies that (16) extends from No to all positive real n. Once one 

has that, Lemma 5 proves (7). 

If I~A,BI takes non-integer values on a set of positive Lebesgue measure, then 

there exists n E No such that Q~A.~ is strictly smaller than Q~lDi.0 on the interval 

(n, n+ l ) .  This shows that if F is strictly convex, equality can hold only as long as 

I~A,BI is integer-valued. [] 
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