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Abstract

We look at invariance of a.e. boundary condition spectral behavior under perturbations, W ;
of half-line, continuum or discrete Schrödinger operators. We extend the results of del Rio,

Simon, Stolz from compactly supported W ’s to suitable short-range W : We also discuss

invariance of the local Hausdorff dimension of spectral measures under such perturbations.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

We want to discuss aspects of the spectral theory of Schrödinger operators on a
half-line, both continuous

ðHcÞðxÞ ¼ �c00ðxÞ þ VðxÞcðxÞ ð1:1Þ

on L2ð0;N; dxÞ and discrete

ðhcÞðnÞ ¼ cðn þ 1Þ þ cðn � 1Þ þ VðnÞcðnÞ ð1:2Þ
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on c2ðf1; 2;ygÞ with cð0Þ determined by the boundary condition. These operators
have a boundary condition determined by a parameter y in ½0; pÞ:

cð0Þ cosðyÞ þ c0ð0Þ sinðyÞ ¼ 0 ð1:3Þ

in the continuum case and

cð0Þ cos yþ cð1Þ sinðyÞ ¼ 0 ð1:4Þ

in the discrete case. Thus (1.4) is equivalent to defining

ðhycÞð1Þ ¼ cð2Þ þ ½Vð1Þ � tanðyÞ
cð1Þ:

In the continuum case, we will suppose that VðxÞ is locally integrable and
sometimes that it is bounded from below for reasons that will become clear. We will
need to impose a mild restriction on the growth of the potential in Theorem 1.9 on
Lyapunov behavior (both in the continuum and discrete cases).

We will use Hy and hy to indicate the operators with boundary condition. It is well
known (see, e.g., [20]) that there are spectral measures dryðlÞ for Hy and hy (so that

Hy or hy is unitarily equivalent to multiplication by l on L2ðR; dryðlÞÞ) normalized
so that

Z p

y¼0

dryðlÞ
dy
p

¼ dl: ð1:5Þ

A major theme in this paper (as in many recent papers) is the relation of spectral
properties with solutions of the differential/difference equation. Given V and y; for
each lAC; we will define j1;yðl; xÞ (or j1;yðl; nÞ) to be the solution of

Hj ¼ lj ðor hj ¼ ljÞ ð1:6Þ

(intended as a differential/difference equation with no L2 condition at N) obeying
the boundary condition (1.3)/(1.4) and normalized by

j1;yðl; 0Þ ¼ sinðyÞ j0
1;yðl; 0Þ ¼ cosðyÞ ð1:7Þ

(or j1;yðl; 1Þ ¼ cosðyÞ in the discrete case). We will also define

j2;y � j1;ðy�p=2Þ:

While we consider yA½0; pÞ in the basic definition of j1;y; it makes sense for all y
with j1;yþnp ¼ ð�1Þnj1;y: In particular, in the last equation y� p=2 lies in

½�p=2; p=2Þ: With this definition, the Wronskian obeys

Wðj1;y;j2;yÞ ¼ 1 ð1:8Þ

A. Kiselev et al. / Journal of Functional Analysis 198 (2003) 1–272



with Wð f ; gÞ ¼ fg0 � f 0g in the continuum case and Wð f ; gÞðnÞ ¼ f ðnÞgðn þ 1Þ �
f ðn þ 1ÞgðnÞ in the discrete case.

Following Jitomirskaya–Last [9], for L40; we define

jj f jj2L ¼
Z L

0

jf ðxÞj2 dx

in the continuum case and

jj f jj2L ¼
X½L

n¼1

jf ðnÞj2 þ ðL � ½L
Þjf ð½L
 þ 1Þj2

in the discrete case (so jj f jj2L is the obvious analog at integer L; with linear

interpolation in between).
When one looks at the decomposition of dry into spectral types, for example,

into a.c., s.c., and pure point pieces (see [14]), a basic pair of facts says that
the a.c. spectrum is stable and the singular spectrum is unstable—explicitly (see [20]
for references), the essential support of dra:c:y is y independent, while for any pair

yay0; drsingy and drsingy0 are mutually singular. These facts seem to be at variance with

the notion that spectral properties should depend on the behavior of V at infinity

since they suggest that drsing will be unstable under perturbations of compact
support. The resolution of this conundrum is the idea of del Rio et al. [5] that one
should look at the union over y of spectral supports. Explicitly, we proceed as
follows:

Definition (Gilbert–Pearson [7]). We say there is a subordinate solution at energy
lAR if and only if there is some yA½0; pÞ so limL-N jjj1;yjjL=jjj2;yjjL ¼ 0: y is

necessarily unique and we call it yðlÞ:

Definition.

P ¼ fl j j1;yðlÞAL2g;

S ¼ fl j there is a subordinate solution but j1;yðlÞeL2g;

L ¼ fl j there is no subordinate solutiong:

When we need to discuss the V -dependence of these sets, we will write PðVÞ; etc.

Then:

Theorem 1.1.

(i) P ¼
S

y sppðHyÞ:
(ii) L ¼ essential support of sacðHyÞ for all y:
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(iii) For any y; drscy ¼ dryðS-
Þ and if S̃ is any other set with that property, then

jSWS̃j ¼ 0 where j 
 j is Lebesgue measure.

Remark. (1) This is close to a theorem in [5], although S and L are defined
differently there.

(2) spp in (i) means the set of eigenvalues, not their closure.

(3) (i) is obvious since lAsppðHyðlÞÞ if and only if j1;yðlÞðl; 
ÞAL2:

(4) (ii) is the main result of Gilbert–Pearson [7].

(5) That drscy ðPÞ ¼ 0 is obvious since drsingy is mutually singular to each drppy0 for

y0ay and drscy is obviously mutually singular to drppy :

(6) That drscy ðLÞ ¼ 0 is a result of Gilbert–Pearson showing that drscy ¼ dryðS-
Þ:
(7) The jSWS̃j ¼ 0 result follows from (1.5).

Since P; L; S are defined purely in terms of the behavior of solutions at infinity,
the following result of del Rio et al. [5] is immediate:

Theorem 1.2. Let V ¼ V0 þ W where W has compact support. Then PðVÞ ¼ PðV0Þ;
LðVÞ ¼ LðV0Þ; SðVÞ ¼ SðV0Þ:

A major theme of this paper will be to examine when this result still holds for W ’s
not of compact support. Before discussing our theorems, we will further refine the set
S in connection with the breakdown of singular spectrum according to Hausdorff
measures and dimensions.

As usual for aAð0; 1Þ; a-dimensional Hausdorff measure is defined on Borel sets,
T ; by

haðTÞ � lim
d-0

inf
d-covers

XN
n¼1

jbnja;

where a d-cover is a countable collection of intervals each of length at most d so

TC
S

N

n¼1 bn: h1 is Lebesgue measure and h0 is counting measure.

Given aA½0; 1
 (following [16,17]; see also [12]), we define a measure m to be a-
continuous ðacÞ if mðSÞ ¼ 0 for any set S with haðSÞ ¼ 0 and a-singular ðasÞ if it is
supported on a set of S with haðSÞ ¼ 0: For every such a and any measure m; one can
uniquely decompose m ¼ mac þ mas with mac a-continuous and mas; a-singular.

We call a measure zero dimensional if it is supported on a set S with haðSÞ ¼ 0 for
all a40: We call it one dimensional if it is a-continuous for all ao1:

It will be useful, following Jitomirskaya–Last, to have a pair of inverse functions
A;B : ½0; 1
 to ½0; 1
 by

BðaÞ ¼ a=ð2� aÞ;

AðbÞ ¼ 2b=ð1þ bÞ:
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Definition. Let lAS; the set of energies for which there is a non-L2 subordinate
solution. Define

bðlÞ ¼ lim inf
L-N

½lnjjj1;yðlÞjjL=lnjjj2;yðlÞjjL
:

Notice that since j1;yeL2; jjj1;yðlÞjjL-N as L-N and since j1;y is subordinate,

eventually jjj2;yjjLXjjj1;yjjL; and thus

lim
L-N

jjj2;yjjL ¼ N ð1:9Þ

and

0pbðlÞp1:

When we want to indicate the V -dependence of b; we will write bðl;VÞ: We note
the following elementary:

Proposition 1.3. If b4bðlÞ; then

lim jjj1jjL=jjj2jj
b
L ¼ 0 ð1:10Þ

and if bobðlÞ;

lim jjj1jjL=jjj2jj
b
L ¼ N: ð1:11Þ

Proof. Write

jjj1jjL=jjj2jj
b
L ¼ exp ln jjj2jjL

ln jjj1jjL
ln jjj2jjL

� b
� �� �

:

By (1.9), ln jjj2jjL-N: If b4bðlÞ; then there is a subsequence where the expression

in f g goes to bðlÞ � bo0; so a subsequence where the expression in ½ 
 goes to �N

and (1.10) holds. If bobðlÞ; then eventually the expression in f g is larger than
1
2
ðbðlÞ � bÞ; and so (1.11) holds. &

For each b0; decompose S into four sets:

Sþþ
b0

¼ fl j b04bðlÞg;

S��
b0

¼ fl j b0obðlÞg;

Sþ
b0

¼ fl j b0 ¼ bðlÞ and ð1:10Þ holds for b0 ¼ bðlÞg;

S�
b0

¼ fl j b0 ¼ bðlÞ and lim jjj1jjL=jjj2jj
b040g:

Thus (1.10) holds for b ¼ b0 if and only if lASþþ
b0

,Sþ
b0
:
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It follows from Theorem 1.1 and the discussion following Eq. (2.2) of
Jitomirskaya–Last [9] that

Theorem 1.4. Let b0 ¼ Bða0Þ:

(i) dra0cy ¼ dryððS�
b0
,S��

b0
,LÞ-
Þ:

(ii) dra0sy ¼ dryððSþ
b0
,Sþþ

b0
,PÞ-
Þ:

(iii) drscy is one dimensional for a.e. y if and only if b ¼ 1 a.e. on S:

(iv) drscy is zero dimensional for a.e. y if and only if b ¼ 0 a.e. on S:

Remark. More generally, drscy has exact dimension a0 for a.e. y if b ¼ Bða0Þ for a.e.
lAS:

Clearly, b only depends on V near infinity, so we extend the result of del Rio et al.
[5] to handle dimensional decomposition of dr via

Theorem 1.5. Let V ¼ V0 þ W where W has compact support. Then bðl;VÞ ¼
bðl;V0Þ:

The purpose of this paper is to study when invariance results of the genre of
Theorems 1.2 and 1.5 extend to cases where W does not have compact support but
has ‘‘suitable’’ decay; that is, we want to determine what suitable decay is. For the

a.c. spectrum, the standard rate of decay is WAL1:

Theorem 1.6. In the continuum case, suppose V0 and V � V0 þ W are such that

H0 þ V0 and H0 þ V are bounded below by eH0 � c: In the discrete case, no hypothesis

is needed on V0: Suppose that WAL1 (or c1Þ: Then

jLðVÞWLðV0Þj ¼ 0: ð1:12Þ

Proof. In the discrete case, W is trace class, and in the continuum case, ðH0 þ
1Þ�1=2

WðH0 þ 1Þ�1=2 is trace class. So ðH0 þ V þ c þ 1Þ�1 � ðH0 þ V0 þ c þ 1Þ�1 is
trace class. The trace class theory of scattering [15] implies that H0 on HacðH0Þ is
unitarily equivalent to H0 þ V0 on HacðH0 þ V0Þ from which (1.12) follows by
Theorem 1.1. &

Remark. We conjecture that (1.12) holds if W is merely assumed in L2: In [11], we
made this conjecture when V0 ¼ 0 and it was proven by Deift-Killip [4]. Killip [10]
proved the result when V0 is periodic. We conjecture the result for all V0:

We now turn to the substantially new results in this paper. As spectrum moves
from the most smooth (a.c.) to the least smooth (point), we need to successively
strengthen the conditions on the perturbation W :
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We begin with several results we prove in Section 3 concerning point spectrum that
all hold in the discrete and continuum case.

Theorem 1.7. For each lAPðV0Þ; define

fþðl; xÞ ¼ ð1þ jxjÞ sup
jyjpx

jj2;yðlÞð yÞj: ð1:13Þ

Suppose that for all lAQDPðV0Þ; we have thatZ
jWðxÞj fþðl; xÞ dxoN

and that the L2 solution is bounded. Then QDPðV0 þ WÞ:

Remarks. (1) In (1.13), one can replace ð1þ jxjÞ by ð1þ jxjÞg for any g41
2
:

(2) By a Sobolev estimate if j;j0AL2; then jALN; so, for example, if V0 is

bounded from below, L2 solutions will be bounded.

When V0 is bounded, fþ does not grow faster than exponentially for any l:

Corollary 1.8. Let V0 be bounded from below and suppose thatZ
jWðxÞj eAjxj dxoN

for all A40: Then

PðV0Þ ¼ PðV0 þ WÞ:

Finally, we have a result on preservation of Lyapunov behavior. Recall that we
say there is Lyapunov behavior at energy l if the transfer matrix

Tlð0; xÞ ¼
j0
1;yðxÞ j0

2;yðxÞ
j1;yðxÞ j2;yðxÞ

 !

obeys

lim
x-N

1

jxj ln jjTlð0; xÞjj � gðlÞ: ð1:14Þ

Assume in addition that

lim
x-N

1

jxj lnð1þ jVðxÞjÞ ¼ 0: ð1:15Þ
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Theorem 1.9. Suppose V0 satisfies (1.15), has Lyapunov behavior at energy l and that

for some e40;

Z
jWðxÞj eejxj dxoN:

Then V0 þ W has Lyapunov behavior at l with the same value of g:

Remark. (1) If g40; we have much more than merely the same Lyapunov behavior.
(2) Theorem 1.9 is not new. It is essentially a special case of Theorem 4.I of [18].
(3) There is an obvious discrete analog of this theorem.

In Section 4, we will discuss stability of singular spectrum and its components. Our
results will hold only for energies with an extra condition.

Definition. An energy l is called regular if and only if for some y ð¼ yðlÞ if there is a
subordinate solution) we have for all e40;

jjj1;yjjLpCeL
1=2þe: ð1:16Þ

By the general theory of eigenfunction expansions [1,19], a.e. l is regular both with
respect to each dry; and so by (1.5) for a.e. l with respect to Lebesgue measure dl:
Indeed, we could replace L1=2þe by L1=2ðln LÞk for any k41

2
:

Remark. If VðxÞ ¼ � 3
16

x�2 for large x; then the subordinate solution at l ¼ 0 is

Bx1=4 at infinity. So jjj1jjLBL3=4 and l ¼ 0 is not a regular energy, so not all

energies need to be regular.
In the discrete case, constancy of the Wronskian implies

jjj1;yjjL jjj2;yjjLX1
2
ðL � 1Þ; ð1:17Þ

but in the continuum case, this is not automatic since the Wronskian involves j0:

But, by a Sobolev estimate, if V is bounded from below (uniform locally L1 will do!),
then

jjj1;yjjL jjj2;yjjLXcðL � 1Þ ð1:18Þ

for some c; dependent on V and l (see, e.g., [19]), and so we will need to suppose that
V is bounded from below in the continuum case.

Remark. The case VðxÞ ¼ �x where jjj1;yjjLBjjj2;yjjLBL1=4 shows (1.18) really can

fail if V is unbounded from below.
Here are the theorems we will prove in Section 4.
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Theorem 1.10. In the continuum case, suppose V0 is bounded from below. Let lASðV0Þ
be a regular energy with bðl;V0Þ ¼ 1: Suppose that

jWðxÞjpCð1þ jxjÞ�1�e ð1:19Þ

for some e40: Then lASðV0 þ WÞ with bðl;V0 þ WÞ ¼ 1: In particular, if, for V0;
Hy has one-dimensional spectrum for a.e. y; the same is true for V0 þ W :

Theorem 1.11. In the continuum case, suppose V0 is bounded from below. Let lASðV0Þ
be a regular energy. Suppose that for all Z40;

jWðxÞjpCZð1þ jxjÞ�Z: ð1:20Þ

Suppose that bðl;V0Þa0: Then lASðV0 þ WÞ and bðl;V0 þ WÞ ¼ bðl;V0Þ: Suppose

bðl;V0Þ ¼ 0: Then either lASðV0 þ WÞ with bðl;V0 þ WÞ ¼ 0 or lAPðV0 þ WÞ:

Remark. (1) The latter shows that having zero-dimensional spectrum is preserved
under perturbations obeying (1.20), although to preserve point spectrum, we need a
stronger exponential bound.

(2) In fact, our proof shows that for a given bðl;V0Þ ¼ b0; we only need (1.20) for
some

Z4
1

b0
:

In terms of the case of Hausdorff dimension a; one needs

Z4
2

a
� 1: ð1:21Þ

We will prove our new results, Theorem 1.7, Corollary 1.8, and Theorems 1.9–1.11,
by proving stability of the asymptotics of solutions of the Schrödinger differential/
difference equation. We use j� for j1;yðlÞ; the subordinate solution with potential

V0; and jþ for j2;yðlÞ: The basic construction we will use is variation of parameters.

That is, we will write (in the continuum case):

cðxÞ ¼ u1ðxÞj�ðxÞ þ u2ðxÞjþðxÞ; ð1:22Þ

c0ðxÞ ¼ u1ðxÞj0
�ðxÞ þ u2ðxÞj0

þðxÞ: ð1:23Þ

With uðxÞ ¼ u1ðxÞ
u2ðxÞ


 �
; the differential equation for c is equivalent, given normal-

ization (1.7), to

u0ðxÞ ¼ AðxÞuðxÞ ð1:24Þ
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with

AðxÞ ¼ �WðxÞ
jþðxÞj�ðxÞ jþðxÞ

2

�j�ðxÞ
2 �jþðxÞj�ðxÞ

 !
: ð1:25Þ

Eq. (1.25) is sometimes written (e.g., in [9]) in the integral form:

cðxÞ ¼ u1ðx0Þj�ðxÞ þ u2ðx0ÞjþðxÞ

þ
Z x

x0

Wð yÞ½jþðxÞj�ð yÞ � j�ðxÞjþð yÞ
cð yÞ dy: ð1:26Þ

In the discrete case, the result is similar. One writes

cðnÞ ¼ u1ðnÞj�ðnÞ þ u2ðnÞjþðnÞ; ð1:27Þ

cðn � 1Þ ¼ u1ðnÞj�ðn � 1Þ þ u2ðnÞjþðn � 1Þ: ð1:28Þ

Eq. (1.24) becomes

uðn þ 1Þ � uðnÞ ¼ AðnÞuðnÞ; ð1:29Þ

where

AðnÞ ¼ �WðnÞ
jþðnÞj�ðnÞ jþðnÞ

2

�j�ðnÞ
2 �jþðnÞj�ðnÞ

 !
ð1:30Þ

or its integral form

cðnÞ ¼ u1ðn0Þj�ðnÞ þ u2ðn0ÞjþðnÞ

þ
Xn

j¼n0

Wð jÞ½jþðnÞj�ð jÞ � j�ðnÞjþð jÞ
cð jÞ: ð1:31Þ

The standard control for perturbing solutions at infinity is to requireR
N

x0
jjAðxÞjj dxoN: For the diagonal matrix elements of A; that cannot be

improved without detailed oscillation estimates, but it is well known that one can
try to trade off the growth of one off-diagonal matrix element by the decay of the
other. In Section 2, we present a version of this fact made for our applications. These
ideas are not new; for example, our method of proof is patterned after problem
XI.97 of Reed-Simon [15]. In Section 3, we present the results of stability of a

solution L2 at N and in Section 4, the results on stability of polynomially bounded
solutions. The appendix discusses some results concerning the preservation of WKB
asymptotic behavior of solutions.
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2. A perturbation lemma

In this preliminary section, we will be interested in solutions of

u0ðxÞ ¼ AðxÞuðxÞ; ð2:1Þ

where

AðxÞ ¼
a11ðxÞ a12ðxÞ
a21ðxÞ a22ðxÞ

 !
ð2:2Þ

is in L1
loc½0;NÞ and

uðxÞ ¼
u1ðxÞ
u2ðxÞ

 !
ð2:3Þ

is a two-component vector. By a solution of (2.1), we mean an absolutely continuous

function so that (2.1) holds for a.e. x: As usual, given any x0 and oAC2; there is a
unique solution of (2.1) with uðx0Þ ¼ o:

We will use a pair of non-negative functions f7ðxÞ with

fþðxÞf�ðxÞX1 ð2:4Þ

and fþ monotone increasing and f� monotone decreasing (in some applications, we

will take f7 ¼ e2ð7gþeÞjxj so you can have this example in mind). Define

GðxÞ ¼ maxðja11ðxÞj þ ja12ðxÞj f�ðxÞ; ja21ðxÞj fþðxÞ þ ja22ðxÞjÞ: ð2:5Þ

Lemma 2.1. Define jj 
 jj7x as norms on C2 by

jjojjþx ¼ maxðjo1j; jo2j fþðxÞÞ;

jjojj�x ¼ maxð f�ðxÞjo1j; jo2jÞ:

Then

jjAðxÞojj7x pGðxÞjjojj7x : ð2:6Þ

Proof. We will prove the jj 
 jjþ result. The jj 
 jj� is similar. Note that

jðAðxÞoÞ1jp ja11ðxÞj jo1j þ ja12j fþðxÞ�1
fþðxÞjo2j

p ½ja11ðxÞj þ ja12j f �1
þ ðxÞ
 jjojjþx pGðxÞjjojjþx
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since f �1
þ pf� by (2.4) and

fþðxÞjðAðxÞoÞ2jp ½ja21ðxÞfþðxÞjo1j þ ja22ðxÞj fþðxÞjo2j


p ðja21ðxÞj fþðxÞ þ ja22ðxÞjÞjjojjþx

pGðxÞjjojjþx : &

Theorem 2.2. Suppose fþ is monotone increasing, f� is monotone decreasing, (2.4)
holds, and

Z
N

x

Gð yÞ dyoN:

Then there exist solutions u7 of (2.1) so that as x-N

(i) u�
1 ðxÞ-1; fþðxÞu�

2 ðxÞ-0;
(ii) uþ

1 ðxÞf�ðxÞ-0; uþ
2 ðxÞ-1:

Proof. Define u�ðnÞ by

u�ð0Þ ¼
1

0

 !
;

u�ðnþ1ÞðxÞ ¼ �
Z

N

x

Að yÞu�ðnÞð yÞ dy;

where we will deal with the convergence of the integral below. Since fþ is increasing,

if y4x; then jjojjþx pjjojjþy : Thus

jju�ðnþ1ÞðxÞjjþx p
Z

N

x

jjAð yÞu�ðnÞð yÞjjþx dy

p
Z

N

x

jjAð yÞu�ðnÞð yÞjjþy dy

p
Z

N

x

Gð yÞjju�ðnÞð yÞjjþy dy

by (2.6). Thus

sup
yXx

jju�ðnþ1Þð yÞjjþy p sup
yXx

jju�ðnÞð yÞjjþy
Z

N

x

Gð yÞ dy
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proving convergence of the integral and

sup
yXx

jju�ðnÞð yÞjjþy p
Z

N

x

Gð yÞ dy

� �n

inductively.
It follows that

u�ð yÞ �
XN
n¼0

u�ðnÞð yÞ

converges for yXx0 where
R
N

x0
Gð yÞ dyo1 and that for such y;

R
N

y
AðwÞu�ðwÞ dw

converges and

u�ð yÞ ¼
1

0

 !
þ
Z

N

y

AðwÞu�ðwÞ dw

so u� solves (2.1). Since jju�ð yÞ � 1
0


 �
jjþy -0 as y-N; we obtain (i).

Define ũþðnÞ by

ũþð0Þ ¼
0

1

 !
;

ũþðnþ1ÞðxÞ ¼
Z x

x0

Að yÞũþðnÞð yÞ dy

for x0 chosen so that

Z
N

x0

Gð yÞ dyp
1

3
: ð2:7Þ

As above, using the fact that if yox; then jjojj�x pjjojj�y since f� is decreasing, we

have

sup
xXx0

jjũþðnÞðxÞjj�x p
Z

N

x

Gð yÞ dy

� �n

p
1

3

� �n

:

As in the jj 
 jjþ case, we see that
P

N

n¼0 ũþðnÞ ¼ ũþ converges for y4x0 and ũþ

solves (2.1) and obeys

ũþðxÞ ¼
0

1

 !
þ
Z x

x0

Að yÞũþð yÞ dy:
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In particular,

ũþ
2 ðNÞ ¼ 1þ

Z
N

x0

Að yÞũþð yÞ dy

exists and jũþ
2 ðNÞ � 1jp1

2
so ũþ

2 ðNÞ � a40: Define

uþ ¼ a�1ũþ

and so obtain a vector-valued function uþ with uþ
2 -1 and juþ

1 f�j bounded. We will

show that if f�-0; then uþ
1 f�-0: When f� does not go to zero, we will provide an

alternative construction of uþ:

To prove that uþ
1 f�-0 if f�-0; write for x0oyox:

uþ
1 ðxÞf�ðxÞ ¼ f�ðxÞ

Z y

x0

ðAðwÞuþðwÞÞ1 dw

þ
Z x

y

f�ðxÞf�ðwÞ�1
f�ðwÞðAðwÞuþðwÞÞ1 dw

so, since f� is monotone decreasing,

juþ
1 ðxÞf�ðxÞjp f�ðxÞ

Z y

x0

jðAðwÞuþðwÞÞ1j dw

þ
Z

N

y

GðwÞjjuþðwÞjj�w dw: ð2:8Þ

Given e; pick y so the second integral in (2.8) is less than e=2 and then, since f�-0; x

so that the first term is less than e=2: Thus uþ
1 f�-0:

If f�ðxÞ has a non-zero limit as x-N; then since f� is monotone, f�ðxÞXc: Thus,

AðxÞAL1; and by the same construction as used for u� (i.e., integrating from

infinity), one can construct uþðxÞ- 1
0


 �
as x-N: &

The situation in the discrete case is similar. Eq. (2.1) becomes

uðn þ 1Þ � uðnÞ ¼ AðnÞuðnÞ: ð2:9Þ

f7 obey (2.4), although they are only defined (and monotone) on n ¼ 1; 2;y: GðnÞ
is defined as in (2.5). The analog of Theorem 2.2 holds with

R
N

x
Gð yÞ dyoN

replaced by

XN
n0

GðnÞoN
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and x going through discrete values. The proof is identical with obvious changes—

for example, the formula for u�ðnþ1Þ becomes

u�ðnþ1Þð jÞ ¼ �
XN
k¼j

AðkÞu�ðnÞðkÞ:

We owe to F. Gesztesy an illuminating remark about our result, Theorem 2.2,
namely the special case fþf� ¼ 1 (which is true in some of the applications we will
make) follows quickly from Levinson’s theorem [6,13]. One variant of Levinson’s
theorem says:

Proposition 2.3. Let A be a 2� 2 matrix of the form A1 þ A2 whereR
N

t0
jjA1ðsÞjj dsoN; A2 is diagonal with

A2ðsÞ ¼
a1ðsÞ 0

0 a2ðsÞ

 !

so that Z t

t0

Re½a1ðsÞ � a2ðsÞ
 ð2:10Þ

is either bounded below or bounded above. Then, there exist solutions j1;2 of

’j ¼ Aj

so that

j1ðtÞ e
�
R t

t0
a1ðsÞ ds

-
1

0

 !

and

j2 e
�
R t

t0
a2ðsÞ ds

-
0

1

 !

as t-N:

Remark. This is essentially equivalent to the general 2� 2 case.

To apply this to the situation of Theorem 2.2, given a solution, u; of (2.2), let j be
defined by j1 ¼ u1; j2 ¼ u2fþ: Then

j0 ¼ ðA1 þ A2Þj;
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where

A1 ¼
a11ðxÞ a12ðxÞf �1

þ ðxÞ
a21ðxÞfþðxÞ a22ðxÞ

 !

and

A2 ¼
0 0

0 f 0
þ=fþðxÞ

 !
:

By hypothesis ð
R
N

x0
GðxÞoNÞ; A1AL1 and function (2.10) is logð fþðt0Þ=fþðtÞÞ which

is bounded by 0 (since fþ is monotone). The two Levinson’s theorem solutions obey
(i) and (ii) of Theorem 2.2.

3. Stability of point spectra

In this section, we will prove Theorems 1.7 and 1.9. We will only consider the
continuum case; the discrete case is similar.

Proof of Theorem 1.7. Since lAPðV0Þ; j� � j1;yðlÞ is in L2 and so by hypothesis,

also in LN [19]. Pick jþ � j2;yðlÞ and use variation of parameters (1.22)/(1.23). A has

the form (1.25). Let fþ be given by (1.13). Since j� is bounded,

jWðxÞjþðxÞj�ðxÞjpCfþðxÞjWðxÞj;

jWðxÞj jjþðxÞj
2
fþðxÞ�1pfþðxÞjWðxÞj;

jWðxÞj jj�ðxÞj
2
fþðxÞpCfþðxÞjWðxÞj:

So if f�ðxÞ � fþðxÞ�1; we have that G given by (2.5) obeys

jGðxÞjpCfþðxÞWðxÞ:

Thus, Theorem 2.2 is applicable, so there is a solution, c; of the perturbed
Schrödinger equation of the form

cðxÞ ¼ u�
1 ðxÞj�ðxÞ þ u�

2 ðxÞjþðxÞ ð3:1Þ

with u�
1 bounded and with u�

2 ðxÞfþðxÞ bounded. Since j�AL2; u�
1 j�AL2:Moreover,

since u�
2 fþ is bounded, (1.13) says that

ju�
2 ðxÞjþðxÞjpCð1þ jxjÞ�1

which is also in L2: Thus cAL2: &
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Corollary 1.8 follows immediately since fþ is exponentially bounded. Results of
this genre are well known; see, for example, [8]. We proceed to prove Theorem 1.9:

Proof of Theorem 1.9. If g ¼ 0; any solution, j; of the unperturbed equation has

jjðxÞj þ jj0ðxÞjpCe eejxj ð3:2Þ

so, by hypothesis, the A of (1.25) is in L1 for any choice of j7: Thus, by standard

theory (or Theorem 2.2 with fþ ¼ f� ¼ 1Þ; any solution c also obeys (3.2) which
implies that g ¼ 0:

Now suppose that g40: By the Ruelle–Osceledec Theorem [18], if V satisfies
(1.15), there is a solution j�ðxÞ ð� j1;yðlÞ) for the V0 equation with

lim
x-N

1

2jxj ln½jj�ðxÞj
2 þ jj0

�ðxÞj
2


� �
¼ �g:

Any linearly independent solution and, in particular, jþ ¼ j2;yðlÞ obeys

lim
x-N

1

2jxj ln½jjþðxÞj
2 þ jj0

þðxÞj
2


� �
¼ g:

In particular, for any e140;

jjþðxÞjpCe1e
ðgþe1Þjxj; jj�ðxÞjpCe1 e�ðg�e1Þjxj: ð3:3Þ

Pick f7ðxÞ ¼ eð72gþ2e1Þjxj where e1 is chosen so that e1og (so f� is decreasing) and

e1o1
4
e where e is given in the hypothesis of the theorem. By the estimates of (3.3),

jGðxÞjpe4e1jxjjWðxÞj

so GAL1 since 4e1oe: Theorem 2.2 applies and we get solutions c7 of the perturbed

equation with

jcþ � uþ
2 jþjpjuþ

1 jjj�jpCe1 juþ
1 j f� eðg�e1Þjxj

and a similar estimate for c0
þ: It follows that

jjcþjjx
jjjþjjx

� 1-0

as x-N where jjgjjx ¼ ðjgðxÞj2 þ jg0ðxÞj2Þ1=2: Similarly jjc�jjx=jjj�jjx-1: Thus not
only is the Lyapunov exponent the same, but even the subexponential corrections are
unchanged. &
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4. Power law theorems

In this section we will prove the following result that essentially includes Theorems
1.10 and 1.11 as corollaries. (We will need to make an additional argument for
b ¼ 0:)

Theorem 4.1. In the continuum case, suppose V0 is bounded from below. Let lAS0ðV0Þ
be a regular energy with bðl;V0Þ40: Suppose that

jWðxÞjpCð1þ jxjÞ�Z

for some Z4bðl;V0Þ�1: Then lASðV0 þ WÞ and

bðl;V0 þ WÞ ¼ bðl;V0Þ:

Interestingly enough, we will apply Theorem 2.2 in a situation where fþf�a1 but

is strictly bigger. Essentially, we will not want to take f� as small as f �1
þ because we

will need the error estimate uþ
1 f�-0 to be stronger than uþ

1 f �1
þ -0:

To employ the ideas of Jitomirskaya–Last, we need to relate estimates involving
an integral of a product of jþ;j�;W and 1; fþ or f� to jj 
 jjL: The following is

useful:

Lemma 4.2. If

jQðxÞjpC1ð1þ jxjÞ�a ð4:1Þ

and

jjjþjjLjjj�jjLpC2ð1þ LÞb ð4:2Þ

and a4b; then

Z
N

0

jQðxÞjþðxÞj�ðxÞj dxoN:

Proof. Let gðxÞ ¼
R x

0 jjþð yÞj�ð yÞj dy: By the Schwarz inequality and (4.2),

jgðxÞjpC2ð1þ jxjÞb ð4:3Þ

and, of course,

gð0Þ ¼ 0: ð4:4Þ
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Use (4.1) to write

Z L

0

jQðxÞjþðxÞj�ðxÞj dx

pC1

Z L

0

ð1þ jxjÞ�a dg

dx
dx

¼ C1a

Z L

0

ð1þ jxjÞ�a�1
gðxÞ dx þ C1ð1þ jLjÞ�a

gðLÞ:

There is no boundary term at x ¼ 0 by (4.4).
Now use (4.3) and boa to see

lim
L-N

Z L

0

jQðxÞjþðxÞj�ðxÞj dxpC1C2 a

Z
N

0

ð1þ jxjÞb�a�1
dx

oN: &

The next step is obtaining power-law upper and lower bounds on jjj7jjL: In
principle, the upper and lower powers could be different with oscillation between the
two powers of growth.

Lemma 4.3. Let l be a regular energy with lAS and bðlÞ40: Let j� ¼ j1;yðlÞ and

jþ ¼ j2;yðlÞ: Then for any e40; there are constants C1;C2;C3;C4 ðe-dependent) so

that for L large,

C2L1�1=2b�epjjj�jjLpC1L
1=2þe; ð4:5Þ

C4L1=2�epjjjþjjLpC3L
1=2bþe: ð4:6Þ

Proof. The definition of regularity says (1.16) which is the C1 estimate in (4.5).
Eq. (1.17) then implies the C4 estimate in (4.6).

By (1.11), if *bob; then jjj�jjLXjjjþjj
*b
L for L large which, given the C1 estimate,

implies the C3 estimate in (4.6). Using (1.17) again, we get the C2 estimate in
(4.5). &

At first sight, it might appear that all one needs on jjj7jjL are upper bounds

because they are all that enter in proving the applicability of Theorem 2.2. But one
wants to apply Theorem 2.2 to show that

jjcþjjL
jjjþjjL

-1;
jjc�jjL
jjj�jjL

-1 ð4:7Þ
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as L-N: Consider the second part of (4.7). We have

c� ¼ u�
1 j� þ u�

2 jþ:

Since u�
1 -1; we have that

jjjc�jjL � jjj�jjLj
jjj�jjL

p
jjc� � j�jjL

jjj�jjL
p
jjc� � u�

1 j�jjL
jjj�jjL

þ oð1Þ

and so it is natural to prove the desired relation by showing

jju�
2 jþjjL
jjj�jjL

-0:

All we basically know about u�
2 is fþu�

2 -0: Thus

Lemma 4.4. Suppose GðxÞAL1: In order for (4.7) to hold, it suffices that for large L;

jjjþjjL
jjj�jjL

pCfþðLÞ ð4:8Þ

and

jjj�jjL
jjjþjjL

pCf�ðLÞ: ð4:9Þ

By (4.5)/(4.6), we have (4.8) if fþðLÞ ¼ Lmþ with

1

2b
� 1� 1

2b

� �
omþ:

If we only apply the similar bound for (4.9), we see that we need f�ðLÞXL2e which
is incompatible with f� decreasing. We therefore do not gain from (4.5)/(4.6) and
instead define f�ðxÞ � 1 so that (4.9) holds since jjj�jjL is subordinate. Thus we will

take

fþðxÞ ¼ xmþ ; f�ðxÞ ¼ 1 ð4:10Þ

with

mþ4
1

b
� 1: ð4:11Þ

Proof of Theorem 4.1. By the above analysis, if we take fþ; f� to obey (4.10)/(4.11),
we have (4.7) so long as Theorem 2.2 is applicable. But (4.7) implies that
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½jjc�jjL=jjcþjj
*b
L
=½jjj�jjL=jjjþjj

*b
L
-1 and thus by Proposition 1.3, bðl;V0 þ WÞ ¼

bðl;V0Þ:
To apply Theorem 2.2, we need G to be in L1: By Lemma 4.2 and the upper

bounds in (4.5)/(4.6), this is true if the following three inequalities hold:

1

2
þ 1

2b
oZ’ða11; a22 termsÞ; ð4:12Þ

1þ mþoZ’ða21 termsÞ; ð4:13Þ

1

b
oZ’ða12 termsÞ: ð4:14Þ

By the basic hypothesis of the theorem, Z4b�1 and, of course, b�1
X1: Thus (4.12)

and (4.14) hold, and to get (4.13) and (4.11), we need only choose mþ40 so that

1

b
o1þ mþoZ:

This can be done since b�1
X1: &

Theorem 1.10 is an immediate corollary of Theorem 4.1 as is Theorem 1.11 if
bðl;V0Þa0: In case bðl;V0Þ ¼ 0; then we claim bðl;V0 þ WÞ ¼ 0 for if not, we can
turn this argument around (think of V0 ¼ ðV0 þ WÞ � W ) and find that bðl;V0Þ ¼
bðl;V0 þ WÞa0: That means bðl;V0 þ WÞ ¼ 0 which implies lAPðV0 þ WÞ or
lASðV0 þ WÞ with b ¼ 0:

The condition Z4b�1 of Theorem 4.1 is needed because we assume no extra
information about the behavior of jju1jjL and jju2jjL other than the value of b: If one
has additional information, one can often do better. Here is an extreme example, but
one that holds in some explicit examples.

Definition. We say there is power Lyapunov–Osceledec behavior with exponent g40
at energy l if and only if there exist solutions j1;yðlÞ and j2;yðlÞ with

lim
x-N

ln½jj1;yðlÞðxÞj
2 þ jj0

1;yðlÞðxÞj
2


lnjxj ¼ �g;

lim
x-N

ln½jj2;yðlÞðxÞj
2 þ jj0

2;yðlÞðxÞj
2


lnjxj ¼ g:

Note. (1) In the discrete case, replace j0ðxÞ by jðn þ 1Þ:
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(2) Under these circumstances, if go1=2 and V is bounded, we have

jjj1jjLBL�gþ1=2; jjj2jjLBLgþ1=2 (where B means up to factors of Le) so lASðV0Þ
and bðlÞ ¼ ð1=2� gÞ=ð1=2þ gÞ and aðlÞ ¼ 1� 2g:

(3) One example where it is known [11] there is power Lyapunov–Osceledec

behavior is the discrete n�1=2 decaying Anderson model where VoðnÞ ¼ ln�1=2XoðnÞ
where the Xo are bounded i.i.d.’s with EðXoÞ ¼ 0; EðX 2

oÞ ¼ 1: Then there is power

Lyapunov–Osceledec behavior with g ¼ l2=ð8� 2E2Þ in the region jEjo2:

Theorem 4.5. Suppose V0 has power Lyapunov–Osceledec behavior with g40 at

energy l and that Z
ð1þ jxjÞejWðxÞj dxoN

for some e40: Then V0 þ W has power Lyapunov–Osceledec behavior at energy l with

the same value of g:

The proof is essentially identical to the proof of Theorem 1.9 (in Section 3) with

f7ðxÞ ¼ ð1þ jxjÞ2ð7gþeÞ:

This shows the improvement over the power in Theorem 4.1. Instead of Z4b�1;
we only need Z41:

5. Appendix: WKB asymptotic behavior

In this appendix, we illustrate with an example how Theorem 2.2 can be used to
obtain precise asymptotic behavior of solutions in some concrete situations (where
the perturbation does not even have to be decaying). Namely, we show how to use
Theorem 2.2 to prove the existence of WKB solutions at þN for

�c00 þ Vc ¼ lc; ð5:1Þ

when V ¼ V1 þ V2 with

V1AL1; V 0
2AL1; V2ðxÞ-0 as x-N; ð5:2Þ

when la0: For l40; it is well known that such solutions exist (see, e.g., [21]). For
lo0; one can also apply Levinson’s theorem (see [13] or [3, Theorem 8.1]) to prove
this result, but it is nice to get it from Theorem 2.2. As a preliminary, we note one
can try an Ansatz, (1.22)/(1.21) for solving (5.1) even if j7 do not solve a related

Schrödinger equation. The result is that u still obeys (1.24) but A is now given by

AðxÞ ¼ wðxÞ�1 �jþðxÞðHlj�ÞðxÞ �jþðxÞðHljþÞðxÞ
j�ðxÞðHlj�ÞðxÞ j�ðxÞðHljþÞðxÞ

 !
; ð5:3Þ
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where

wðxÞ ¼ j�ðxÞj0
þðxÞ � jþðxÞj0

�ðxÞ ð5:4Þ

and Hl is the differential expression

Hl ¼ � d2

dx2
þ V � l: ð5:5Þ

We can now prove

Theorem 5.1. Let V obey (5.2) and la0: If lo0; let

j7ðxÞ ¼ expð7ZðxÞÞ;

where

ZðxÞ ¼
Z x

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lþ V2ðsÞ

p
ds;

and s0 is chosen so that jV2ðsÞjpjlj for s4s0: If l40; let

j7 ¼ expð7ZðxÞÞ;

where

Z ¼ i

Z x

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� V2ðsÞ

p
ds:

Then there exist solutions c7 of (5.1) so

c7ðxÞ ¼ j7ðxÞ ð1þ oð1ÞÞ;

c0
7ðxÞ ¼ j0

7ðxÞ ð1þ oð1ÞÞ

as x-N:

Proof. Consider first the case lo0: Then j0
7 ¼ 7Z0e7Z and j00

7 ¼ ð7Z00 þ ðZ0Þ2Þj7

and thus, since ðZ0Þ2 ¼ �lþ V2;

Hlj7 ¼ ½7Z00 þ V1
j7

¼ 7V 0
2

2Z0
þ V1

� �
j7;
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so we define

Q7 ¼ 7V 0
2

2Z0
þ V1:

Since Z0-
ffiffiffiffiffiffiffi
�l

p
as x-N; we see that Q7AL1: Moreover,

wðxÞ ¼ 2Z0-2
ffiffiffiffiffiffiffi
�l

p
as x-N: ð5:6Þ

It follows with f7 ¼ j2
7 (so fþ ¼ f �1

� Þ and A given by (5.3) that GðxÞAL1 since

Q7ðxÞAL1:
Applying Theorem 2.2, there are solutions c7 with

c7 ¼j7ð1þ oð1ÞÞ þ j8ð f �1
8 Þoð1Þ

¼j7ð1þ oð1ÞÞ

and similarly for c0
7:

The calculation for l40 is similar, except we use jjþj ¼ jj�j ¼ 1 in that case to

pick fþ ¼ f� ¼ 1: &

In this paper, we considered only perturbations which are absolutely integrable. It
is reasonable to ask what one can expect for stronger perturbations, for example, in
situations where there is Lyapunov behavior. While in general the picture is not

complete, we provide a sample result which gives L2 stability under additional
assumptions on the behavior of solutions of the unperturbed equation. As a bonus,
we also obtain a stronger version of Theorem 5.1 in the case lo0:

Proposition 5.2. Assume that there exist functions j7ðl; xÞ such that ð� d2

dx2 þ V �
lÞj7 ¼ U7j7; with U7AL2; and that the inverse of the Wronskian W ½j�;jþ


�1
is

bounded. Define functions

Z7ðl; xÞ ¼ j7e
7
R x

0

U7jþj�
W ½j�;jþ


dt ð5:7Þ

and the kernel

Kðx; yÞ ¼ j2
þðxÞj2

�ð yÞe�
R y

x

ðU�þUþÞj�jþ
W ½j�;jþ


dt
: ð5:8Þ

Assume in addition that

inf
x

jjþðxÞj�ðxÞjXc40 ð5:9Þ

A. Kiselev et al. / Journal of Functional Analysis 198 (2003) 1–2724



and

Z
N

0

sup
x

jKðx; x þ yÞj dyoN; sup
yXx

jKðx; yÞjpC: ð5:10Þ

Then there exist solutions c7 of the equation ðH þ V � lÞc7 ¼ 0 with the asymptotic

behavior

c7ðl;xÞ ¼ Z7ðl; xÞð1þ oð1ÞÞ: ð5:11Þ

Remark. (1) In order for (5.10) to hold, one needs, roughly speaking, Lyapunov
behavior at l and moreover fþðx; lÞf�ðx; lÞBconst (or grows very slowly) for

large x:
(2) In the case where V2 ¼ 0; the result follows from the Hartman–Wintner

theorem (see, e.g., [6]).
(3) Notice that the asymptotic behavior of solutions of the perturbed equation

differs from j7 by an additional factor.

Before sketching the proof, let us illustrate the result with the following
generalization of Theorem 5.1 for lo0:

Corollary 5.3. Assume that V ¼ V1 þ V2; V1AL2; V 0
2AL2; V2ðxÞ-0 as x-N: Then

for lo0 there exist solutions c7 of the equation �c00 þ Vc ¼ lc such that

c7ðx; lÞ ¼ Z7ðx; lÞð1þ oð1ÞÞ:

Here Zðx; lÞ is given by (5.7) with

j7ðx; lÞ ¼ exp

Z x

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lþ V2ðsÞ

p
ds

� �
;

and s0 is such that jV2ðsÞjojlj for s4s0:

Remark. For l40; the result is generally not true. It holds for a.e. l40 for
V1ALp; V 0

2ALp with po2 [2]. It is not known if the result remains true for p ¼ 2 and

a.e. l40:

Proof. Choosing j7 as in the statement of the corollary, one directly verifies

that all conditions of Proposition 5.2 hold. Notice that the Lyapunov behavior is
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preserved, since

W ½f�;fþ
 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lþ V2

p
;

U7 ¼ V18
V 0

2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lþ V2

p

and therefore the additional factor in (5.7) is bounded by eCx1=2
: &

We now sketch the proof of Proposition 5.2. Seeking solution cðxÞ of the equation
�c00 þ Vc ¼ lc; apply variation of parameters-type transformation

c

c0

 !
¼

j� jþ

j0
� j0

þ

 !
uðxÞ;

obtaining a system

u0ðxÞ ¼ 1

W ½j�;jþ

�U�j�jþ �Uþj2

þ
U�j2

� Uþj�jþ

 !
uðxÞ:

Do one more transformation to bring this system to a simpler form:

uðxÞ ¼
e
�
R x

0

U�j�jþ
W ½j�;jþ


dt
0

0 e

R x

0

Uþj�jþ
W ½j�;jþ


dt

0
B@

1
CAzðxÞ;

then

z0ðxÞ ¼
0 � Uþj2

þ
W ½j�;jþ


e

R x

0

ðU�þUþÞj�jþ
W ½j�;jþ


dt

� U�j2
�

W ½j�;jþ

e
�
R x

0

ðU�þUþÞj�jþ
W ½j�;jþ


dt
0

0
BB@

1
CCAzðxÞ: ð5:12Þ

One can obtain the formal series for solutions of (5.12) by iteration; starting with the

vector ð1; 0ÞT will lead to the solution c�ðxÞ: Properties (5.9) and (5.10) allow one to
prove the convergence of this series and (5.11) using elementary estimates. We leave
the details to the interested reader.
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