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For a Jacobi matrix J on ‘2ðZþÞ with JuðnÞ ¼ an�1uðn� 1Þ þ bnuðnÞ þ anuðnþ 1Þ;
we prove that

X
jEj>2

ðE2 � 4Þ1=24
X
n

jbnj þ 4
X
n

jan � 1j:

We also prove bounds on higher moments and some related results in higher

dimension. # 2002 Elsevier Science (USA)
1. INTRODUCTION

Let J be a Jacobi matrix, that is, a tridiagonal matrix

J ¼

b1 a1 0 0 . . .

a1 b2 a2 0 . . .

0 a2 b3 a3 . . .

0 0 a3 b4 . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBBBB@

1
CCCCCCCA

viewed as an operator on ‘2ðZþÞ via

ðJuÞðnÞ ¼ an�1uðn� 1Þ þ bnuðnÞ þ anuðnþ 1Þ: ð1:1Þ

Here an > 0 and bn 2 R: We will sometimes denote the variables in J
explicitly by writing J ðfangn51; fbngn51Þ: We are interested in perturbations
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of the special case an 
 1; bn ¼ 0; called J0; the free Jacobi matrix and, in
particular, the case where J � J0 is compact, viz., an ! 1; bn ! 0 as n ! 1:
Then sessðJ Þ ¼ sessðJ0Þ ¼ ½�2; 2� and J has simple eigenvalues fE�

n gN�
n¼1 with

(Nþ or N� or both may be infinite)

Eþ
1 > Eþ

2 > � � � > 2 > �2 > � � � > E�
2 > E�

1 : ð1:2Þ

One of our main goals in this paper is to prove the following bound

Theorem 1.

XNþ

n¼1

½ðEþ
n Þ

2 � 4�1=2 þ
XN�

n¼1

½ðE�
n Þ

2 � 4�1=24
X
n

jbnj þ 4
X
n

jan � 1j: ð1:3Þ

As we will see, the constants 1 in front of the b sum and 4 in the an � 1
sum are both optimal. Equation (1.3) is optimal in another regime, namely,
large coupling for b: Specifically, let Jl be defined with an ¼ að0Þn and bn ¼
lbð0Þn : Let *bb

�
n be a reordering of the bn’s with � *bb

�
n > 0 so *bb

þ
1 5 *bb

þ
2 5 � � �50

and *bb
�
1 4 *bb

�
2 4 � � �40: Then it is not hard to see that

lim
l!1

l�1E�
n ðJlÞ ¼ *bb

�
n ; ð1:4Þ

which shows that the ratio of the two sides of (1.3) goes to 1 as l ! 1 for
any bn with

P
jbnj51:

Since

ðE�
n Þ2 � 4 ¼ jE�

n � 2j jE�
n � 2j

5 4jE�
n � 2j;

(1.3) implies that

X
n

ðjEþ
n � 2j1=2 þ jE�

n þ 2j1=2Þ4
1

2

X
n

jbnj þ 4
X
n

jan � 1j

 !
: ð1:5Þ

More generally, we will prove

Theorem 2.

X
n

ðjEþ
n � 2jp þ jE�

n þ 2jpÞ4cp
X
n

jbnjpþ1=2 þ 4
X
n

jan � 1jpþ1=2

" #
ð1:6Þ
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for any p51
2

where

cp ¼
1

2
3p�1=2 Gðp þ 1Þ

Gðp þ 3
2
Þ
Gð2Þ
Gð3

2
Þ
:

As for sums of moments for p51
2
; we will prove

Theorem 3. Let 04p51
2
: Let jj � jj be any translation invariant norm on

pairs of sequences fang
1
n¼0; fbng

1
n¼0: For any e > 0; there exists a Jacobi matrix

with an ¼ 1; bn ¼ 0 for n large so that jjða; bÞjj4e but
P

n jE
þ
n � 2jp þ jE�

n �
2jp5e�1:

As (1.4) shows, (1.5) and (1.6) are poor as l ! 1; since the left side grows
like lp and the right side as lpþ1=2: It is better to use

ðE�
n Þ2 � 4 ¼ jE�

n � 2j jE�
n � 2j

5 jE�
n � 2j2

and (1.3) to obtainX
n

ðjEþ
n � 2j þ jE�

n þ 2jÞ4
X
n

jbnj þ 4
X
n

jan � 1j ð1:7Þ

and the related.

Theorem 4.X
n

ðjEþ
n � 2jp þ jE�

n þ 2jpÞ4
X
n

ððbþn þ 2jan � 1jÞp þ ðb�n þ 2jan � 1jÞpÞ

ð1:8Þ

for any p51
2
:

As (1.4) shows, the ratio of the two sides of (1.8) is 1 as l ! 1:
We got interested in this problem because Killip–Simon [14] needed a

bound like Theorem 1 to prove a conjecture of Nevai [20, 21] that if the
right-hand side of (1.3) is finite, then a condition of Szeg .oo holds. They and
we expected bounds like (1.3) to hold because of the analogous results for
Schr .oodinger operators.

Nevai’s conjecture says that if
P

n jbnj þ
P

n jan � 1j51; then, with m; the
m-function defined by

mðEÞ ¼ ðJ � EÞ�1
11 ;
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we have Z 2

�2

log Im mðE þ i0Þ
dEffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � E2
p > �1: ð1:9Þ

Killip–Simon [14] use a sum rule of Case [4, 5] that

ZðmÞ ¼
X
n

logjanj þ
X

logjbjj; ð1:10Þ

where bj is defined by jbjj > 1 and bj þ b�1
j are the listing of the eigenvalues

of J outside ½�2; 2�: In (1.10), ZðmÞ is defined by

ZðmÞ ¼
1

2p

Z 2

�2

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � E2

p
Im mðE þ i0Þ

 !
dEffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � E2
p : ð1:11Þ

Equation (1.10) is only proven initially for J with J � J0 finite rank. (Or, in
any event, not initially for all J ’s with J � J0 trace class. Eventually, using
our bounds here and the theory of Nevanlinna functions, Killip–Simon [14]
do prove (1.10) for trace class J � J0:) Killip–Simon show ZðmÞ is lower
semicontinuous as a trace class J is approximated by cutoff J ’s with J � J0

finite rank. Thus to prove ZðmÞ51 (i.e., that (1.9) holds), they need to
control the right-hand side of (1.10). Since

P
jan � 1j51; the

P
n logjanj is

absolutely convergent. Since jbjj � 1 þ ðjEjj � 2Þ1=2 for Ej close to 2; (1.5)
implies that

P
logjbjj is uniformly bounded.

Theorem 1 should also be interesting in connection with some recent
results of Peherstorfer–Yuditskii [22], who focus on the finiteness of the left-
hand side of (1.3).

Bounds for Schr .oodinger operator eigenvalues of the form

X1
n¼1

jEnjp4Lp;n

Z
Rn
jV ðxÞjpþn=2 dnx; ð1:12Þ

where En are the negative eigenvalues of �Dþ V on L2ðRnÞ; go back 25 years
to the work of Lieb and Thirring [18, 19], who used the case p ¼ 1; n ¼ 3 in
their celebrated proof of the stability of matter. They proved (1.12) for
p > 0; n52; and p > 1

2
; n ¼ 1; and shortly thereafter, Cwikel [7], Lieb [17],

and Rozenblum [24] proved (1.12) in case p ¼ 0; n53: It is easy to see (e.g.,
[15, pp. 156–157; 26]) that it is false in case p ¼ 0; n ¼ 2:

For many years, the case p ¼ 1
2
; n ¼ 1 was open. Only in 1996 did Weidl

[27] establish this result for p ¼ 1
2
; n ¼ 1: For n ¼ 1; Lieb–Thirring [19]

conjectured the optimal value of Lp;n for all p51
2
: They proved their

conjecture when n ¼ 1 for p ¼ 3
2
; 5

2
; 7

2
; . . . ; and subsequently, Aizenman–Lieb

[1] for all p53
2
: Shortly after Weidl’s work, Hundertmark et al. [12] found a
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new proof which yielded the optimal constant L1=2;1: A partially alternate
proof of a part of the argument in [12] can be found in Hundertmark et al.

[11].
Unlike the discrete case, the continuum theory has a scaling symmetry:

taking V ðxÞ ! l2V ðlxÞ yields En ! l2En since there is a unitary operator
that implements x ! lx: This forces the power jEjp on the right-hand side of
(1.12) given the scaling behavior of dnx: Thus, the same power properly
captures large and small E’s. In the discrete case, this is not so, which is why
we have two bounds (1.5) and (1.8). As noted, (1.8) is good for large
coupling, but (1.5) is better for small E’s. In particular, if bn � n�a (with
a > 1) for n large, (1.8) only implies

P
jEþ

n � 2jp51 for p > a�1 which (1.5)
implies is true for p > a�1 � 1

2
:

Of course, the best extended estimate would involve powers of ðE2 � 4Þ1=2

but both the Aizenman–Lieb [1] method to increase powers and the Laptev–
Weidl [16] method to increase dimension seem to require powers of
distðE;sessðJ ÞÞ: However, one can save a little bit of the structure; see the
remark at the end of Section 5.

We note one interesting feature of (1.3) vis-"aa-vis the continuum
bound. The continuum p ¼ 1

2 bound has an optimal constant, but is
off by a factor of 2 in the large coupling limit. For (1.3), as we noted above,
the optimal bound for small coupling is also exact in the large coupling
limit.

In Section 2, we will prove Theorem 1 when an 
 1 by closely following
[12] and then obtain Theorems 2 and 4 when an 
 1 by the now standard
argument of Aizenman and Lieb [1]. In Section 3, we make a simple but
useful observation that allows one to obtain estimates for eigenvalues for
arbitrary Jacobi matrices from the estimates for the special case. Section 4
contains some examples and some counterexamples, and proves Theorem 3.
Section 5 uses ideas of Laptev–Weidl [16] to prove bounds for the higher-
dimensional case. In Appendix A, we show how the ideas in this paper
provide a simple proof of a strengthening of the Bargmann-type bound of
Geronimo [8, 9].

This paper is aimed towards two rather different audiences: the
Schr .oodinger operator community and the orthogonal polynomial commu-
nity, who have rather different toolkits. For that reason, we include some
material (such as that at the start of Section 2) that one group or the other
may regard as elementary.

2. BOUNDS FOR DISCRETE SCHR .OODINGER OPERATORS

In this section, we prove Theorems 1, 2, and 4 when all an ¼ 1: We begin
with some general preliminaries. Given any self-adjoint operator A; bounded
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from above, we define

Eþ
j ¼ inf

j1...jj�1

sup
c : c?jj

c2D;jjcjj¼1

hc;Aci: ð2:1Þ

Similarly, if A is bounded below,

E�
j ¼ sup

ji...jj

inf
c : c?jj

c2DðAÞ;jjcjj¼1

hc;Aci: ð2:2Þ

We will use E�
j ðAÞ if the dependence on A is important. From the definitions,

A4B ) E�
j ðAÞ4E�

j ðBÞ ð2:3Þ

and

E�
1 4E�

2 4 � � �4Eþ
2 4Eþ

1 : ð2:4Þ

The min–max principle [23, Theorem XIII.1] asserts that

(i) E�
1 ¼ lim E�

j has Eþ
1ðAÞ ¼ sup sessðAÞ; E�

1ðAÞ ¼ inf sessðAÞ:
(ii) If A has Nþ (resp. N�) eigenvalues counting multiplicity in the

interval ðEþ
1;1Þ (resp. ð�1;E�

1Þ), these eigenvalues are precisely E�
1 ;E�

2 ;
. . . ;E�

N�
and E�

j ¼ E�
1 if j > N�:

Next, note from the definition that if Am ! A in norm, then we have
convergence of the corresponding eigenvalues since jE�

j ðAÞ � E�
j ðBÞj4jjA�

Bjj: It follows if f is an arbitrary continuous nonnegative function, then

Xk
j¼1

f ðE�
j ðAÞÞ ¼ lim

m!1

Xk
j¼1

f ðE�
j ðAmÞÞ

4 lim inf
m!1

X1
j¼1

f ðE�
j ðAmÞÞ;

so taking k ! 1;

X1
j¼1

ðf ðEþ
j ðAÞÞ þ f ðE�

j ðAÞÞÞ4 lim inf
m!1

X1
j¼1

ðf ðEþ
j ðAmÞÞ þ f ðE�

j ðAmÞÞÞ: ð2:5Þ

Equation (2.5) and the min–max principle imply

Proposition 2.1. To prove (1.3)–(1.6), it suffices to prove the special case

where only finitely many an’s differ from 1 and finitely many bn’s differ from 0:
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Next, we want to note the impact of restriction. Let A be a bounded self-
adjoint operator on H: Let P be an orthogonal projection. By AP ; we mean
PAP restricted as an operator on PH ¼ Ran P : In (2.1)/(2.2), changing from
A to AP adds the condition c 2 Ran P and it decreases sups and increases
infs. Thus,

Proposition 2.2.

Eþ
j ðAP Þ4Eþ

j ðAÞ; E�
j ðAP Þ5E�

j ðAÞ: ð2:6Þ

We have two applications of (2.6) in mind. First, given two two-
sided sequences fang

1
n¼�1; fbng

1
n¼�1; define the whole-line operator W on

‘2ðRÞ by

ðWuÞðnÞ ¼ an�1uðn� 1Þ þ bnuðnÞ þ anuðnþ 1Þ: ð2:7Þ

Thus, if P is the projection of ‘2ðZÞ to ‘2ðZþÞ � ‘2ðZÞ; WP ¼ J where J is
built from the projected sequences fang

1
n¼1 and fbng

1
n¼1: As a result, (2.6)

implies

Proposition 2.3. To prove (1.3)–(1.6), it suffices to prove the analogous

result for the whole-line operators.

One might think that the results are much harder for whole-line
operators. After all, it can be shown that if *bb has compact support, then
J ðan 
 1; bn ¼ l *bbnÞ has no spectrum outside ½�2; 2� if l is small, but W ðan 

1; bn ¼ l *bbnÞ always has eigenvalues outside ½�2; 2� if l=0; *bbc0: That is why
there is a Bargmann bound for J but not for W : However, it is not harder
because (1.3)–(1.6) have translation invariant quantities for their right side.
Let Pn be the projection onto ‘2 (m 2 Z; m5n). One can see that as n ! �1;
E�
j ðWPnÞ ! E�

j ðW Þ so (1.3)–(1.6) for the Jacobi case actually implies it for
the whole-line case.

The second application of (2.6) is to the study of the following objects that
will play a role below:

S�n ðAÞ ¼
Xn
j¼1

E�
j ðAÞ: ð2:8Þ

Proposition 2.4. Let A be a self-adjoint operator.

(i) Sþn ðAÞ ¼ supfTrðAP Þ j P n ¼ P ; P 2 ¼ P ; TrðP Þ ¼ ng:
(ii) S�n ðAÞ ¼ inffTrðAP Þ j P n ¼ P ; P 2 ¼ P ; TrðP Þ ¼ ng:
(iii) A/Sþn ðAÞ is convex; A/S�n ðAÞ is concave.
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Remark. One can see that if Eþ
150; then in (i) P 2 ¼ P can be replaced by

04P41 which is how it is often written.

Proof.

(i) By (2.6), Sþn ðAP Þ4Sþn ðAÞ: But since Ran P has dimension n; Sþn ðAP Þ
¼ TrðAP Þ ¼ TrðAP Þ: Thus,

Sþn ðAÞ5supfTrðAP ÞjP n ¼ P ; P 2 ¼ P ; TrðP Þ ¼ ng:

Next, pick j1; . . . ;jn as follows. If n4NþðAÞ; take j1; . . . ;jn to be the
eigenfunctions of A with eigenvalues Eþ

1 ; . . . ;E
þ
n : If n > Nþ; pick j1; . . . ;jNþ

to be the eigenfunctions for A with eigenvalues Eþ
1 ; . . . ;E

þ
Nþ and

jNþþ1; . . . ;jn to be arbitrary orthonormal vectors in RanðP½Eþ
1�e;Eþ

1�ðAÞÞ;
the range of the spectral projection which is infinite-dimensional when
Nþ51 since Eþ

1 ¼ sup sessðAÞ:Let P be the projection onto the span of
j1; . . . ;jn: Then,

TrðAP Þ ¼
Xn
j¼1

ðjj;AjjÞ

5 Sþn ðAÞ � e½n� minðn;NþÞ�:

Since e is arbitrary,

Sþn ðAÞ4supfTrðAP Þ j P n ¼ P ; P 2 ¼ P ; TrðP Þ ¼ ng:

(ii) The same proof as (i).
(iii) S�n are the sup and inf of linear functions, so convex and concave,

respectively. ]

As a final general preliminary, we note the Birman–Schwinger principle:
Let A be a self-adjoint operator which is bounded above with a ¼ sup sðAÞ:
Let B be a positive relatively form compact, that is,

Kb 
 B1=2ðb� AÞ�1B1=2 ð2:9Þ

is compact for one and hence for all b > a: Kb is called the Birman–
Schwinger operator.

Proposition 2.5 (The Birman–Schwinger Principle, Birman [3] and
Schwinger [25]). Let l > 0: b > a is an eigenvalue of Aþ lB if and only if
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Kb has eigenvalue l�1: We have for j4NþðAþ lBÞ;

Eþ
j ðKEþ

j ðAþlBÞÞ ¼ l�1: ð2:10Þ

Remark. The point of (2.10) is that the index j is the same in both Eþ
j ’s.

Proof. For simplicity, we suppose A and B are bounded operators,
which is true in the applications we will make. If ðAþ lBÞj ¼ bj; then
B1=2ðb� AÞ�1B1=2ðB1=2jÞ ¼ l�1B1=2j and B1=2j=0 since if not, we must
have Aj ¼ bj; which is impossible since b > sup sðAÞ: Conversely, if Kbc ¼
l�1c and j ¼ ðb� AÞ�1B1=2c (=0 since l�1

=0), we have ðAþ lBÞj ¼ bj:
Thus the first expression is true.

Next, note that jjKbjj ! 0 as b ! 1 by compactness. Its eigenvalues are
continuous, and so by eigenvalue perturbation theory [13, 23], real analytic.
If eðbÞ is a positive eigenvalue of Kb with Kbj ¼ ej and jjjjj ¼ 1; then by
eigenvalue perturbation theory (the Feynman–Hellmann theorem),

de
db

¼ j;
@Kb

@b
j

� �
¼ �jjðb� AÞ�1B1=2jjj250;

so e is strictly monotone. Thus, if eðbÞ is the jth eigenvalue of Kb and
eðb0Þ > l�1; there is exactly one b > b0 with eðbÞ ¼ l�1; so

#fj j Eþ
j ðKb0

Þ5l�1g ¼ #fb > b0 j E
þ
j ðKbÞ ¼ l�1g

(counting multiplicity) from which (2.10) follows. ]

With the general preliminaries out of the way, we compute the Birman–
Schwinger operator for A ¼ W0 and a diagonal (i.e., an 
 1) perturbation.

Proposition 2.6. Let W0 be the whole-line matrix with an 
 1; bn 
 0:
Let b > 2 ¼ sup sðW0Þ: Then ðb� W0Þ

�1 has matrix elements

½ðb� W0Þ
�1�nm ¼ ðm�1 � mÞ�1mjn�mj; ð2:11Þ

where m is related to b by

b ¼ mþ m�1; m51: ð2:12Þ

Remark. Of course, m ¼ 1
2

�
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4

q �
and m�1 ¼ 1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4

q �
so m�1 � m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4

q
: This is why

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4

p
enters in Theorem 1.

Proof. This is a standard calculation. Looking for solutions of

jðn� 1Þ þ jðnþ 1Þ ¼ bjðnÞ; ð2:13Þ
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one tries jðnÞ ¼ zn and finds zþ z�1 ¼ b; so the solutions are z ¼ m and m�1:
Let

j�ðnÞ ¼ m�n:

Both solve (2.13) if m obeys (2.12). Since m51; jþ is ‘2 at þ1; j� at �1; so
the right-hand side of (2.11) which has the form ðm�1 � mÞ�1j�ðminðn;mÞÞ
jþðmaxðn;mÞÞ 
 GnðmÞ is ‘2 in m for each n with ððW0 � bÞGnÞðmÞ ¼ 0 if
m=n: By a direct computation (essentially m�1 � m is the Wronskian of jþ
and j�), ðb0 � W ÞGn ¼ dn; that is, GnðmÞ ¼ ½ðb0 � W Þ�1dn�ðmÞ; proving
(2.11). ]

Remark. Alternatively, one can use Fourier analysis to compute the
inverse.

Because of (2.11), the following operator will enter in our discussion,
fbngn2Z is a positive sequence of finite support,

ðLmÞnm ¼ b1=2
n mjn�mjb1=2

m : ð2:14Þ

Recall the definition (2.8) of Smð�Þ: The crucial lemma is

Proposition 2.7. Let 05m5Z41: Then for any n;

Sþn ðLmÞ4Sþn ðLZÞ: ð2:15Þ

Remark.

(1) Since TrðLmÞ is constant, individual eigenvalues cannot all be
monotone.

(2) This is a special case of the warm-up to the proof of Lemma 4 in
[12]. Our proof is close to the proof there, except where [12] uses eigenvalue
perturbation at mj ¼ 0; we use symmetry.

Proof. Given a bounded positive sequence fmng
1
n¼�1; we define

ðLfmngÞk‘ ¼
b1=2
k b1=2

‘

Q‘�1
j¼k mj if k4‘;

ðLfmngÞ‘k if k > ‘;

(

so Lm is Lfmng when all mn ¼ m: Thus, (2.15) follows if we show Sþn ðLfmngÞ is
monotone in mn 2 ½0;1Þ when fmjgj=n are held fixed. Let f ðmÞ be this
function when mn takes the value m: Lfmjgj=n; mn¼m is affine in m for each
matrix element is either constant or a multiple of m: More precisely, in matrix
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notation we have

Lfmjgj=n;mn¼m ¼
A 0

0 B

 !
þ m

0 C

Cw 0

 !
;

where A; B; and C depend only on fmjgj=n: So by Proposition 2.4(iii), f ðmÞ
is a convex function of m:

On the other hand, if U is the diagonal matrix,

ðUjÞð‘Þ ¼
�jð‘Þ ‘4n;

jð‘Þ ‘5nþ 1;

(

or, as a block matrix, U ¼
1 0
0 �1

� �
; then ULfmgU�1 ¼ Lf *mmg where

*mm‘ ¼
m‘ if ‘=n;

�m‘ if ‘ ¼ n;

(

that is, we have

U
A mC

mCw B

 !
U�1 ¼

A �mC

�mCw B

 !
¼ Lfmjgj=n; mn¼�m:

Since Eþ
j ; and so Sþj ; are invariant under unitary transformations, we see

f ð�mÞ ¼ f ðmÞ: An even convex function is monotone increasing on ½0;1Þ;
so Sþn ðLfmngÞ is monotone in each mn in the region mn50: ]

We are now ready to prove what is essentially Theorem 1 in case an 
 1:

Theorem 2.8. Let W0 be the free whole-line Schr .oodinger operator and B a

positive finite-rank diagonal matrix. Let W ¼ W0 þ B: Then

XNþðW Þ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ
j ðW Þ2 � 4

q
4TrðBÞ: ð2:16Þ

Proof. (Following Hundertmark et al. [12]). Since B is finite rank, we
know that Nþ

j ðW Þ51: Define mj by m�1
j þ mj ¼ Eþ

j with mj51: By (2.9) and
the remark after Proposition 2.6,

KEþ
j
¼ ððEþ

j Þ
2 � 4Þ�1=2Lmj ð2:17Þ

with Lm given by (2.14). By (2.10),

Eþ
j ðKEþ

j
Þ ¼ 1: ð2:18Þ
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Since for a > 0; Eþ
j ðaAÞ ¼ aEþ

j ðAÞ; (2.17) and (2.18) implyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ
j ðW Þ2 � 4

q
¼ Eþ

j ðLmjÞ: ð2:19Þ

Thus,

XNþðW Þ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ
j ðW Þ2 � 4

q
¼ Eþ

1 ðLm1
Þ þ Eþ

2 ðLm2
Þ þ � � � þ Eþ

NþðLmNþ Þ: ð2:20Þ

But, by (2.15) and m15m25 � � �5mNþ
51;

Eþ
1 ðLm1

Þ þ Eþ
2 ðLm2

Þ ¼ Sþ1 ðLm1
Þ þ Eþ

2 ðLm2
Þj

4 Sþ1 ðLm2
Þ þ Eþ

2 ðLmÞ

¼ Sþ2 ðLm2
Þ

4 Sþ2 ðLm3
Þ;

so by induction,

Xk
j¼1

Eþ
j ðLmj Þ4Sþk ðLmk Þ4Sþk ðLmkþ1

Þ

and thus (2.20) implies

XNþðW Þ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ
j ðW Þ2 � 4

q
4
XNþ

j¼1

Eþ
j ðLm¼1Þ ¼ TrðBÞ;

since Lm¼1 is the rank one operator b1=2
n b1=2

m with a single nonzero eigenvalue
equal to TrðLm¼1Þ ¼ TrðBÞ: ]

Remark. The proof shows the inequality is strict if Eþ
1 ðLmÞ is strictly

monotone. Thus, the inequality is strict if rank ðBÞ52:

There is a standard argument of Aizenman–Lieb [1] which we can use to
go from a ð1

2
; 1Þ bound (power of E � 2; power of b) to a general ðp;p þ 1

2
Þ

for any p51
2
:

Theorem 2.9. Under the hypothesis of Theorem 2.8, we have, for any

p51
2
;

XNþðW Þ

j¼1

jEþ
j ðW Þ � 2jp4

1

2

Gðp þ 1Þ
Gðp þ 3

2
Þ
Gð2Þ
Gð3

2
Þ

TrðjBjpþ1=2Þ: ð2:21Þ
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Proof. Note first that since bn4ðbnÞþ 
 maxð0; bnÞ; if positivity of B is
dropped, we still have that

XNþðW Þ

j¼1

jEþ
j ðW Þ � 2j1=24

1

2

X
n

ðbnÞþ ð2:22Þ

by using (2.5), W0 þ B4W0 þ Bþ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4

p
42jE � 2j1=2:

Let r > 0: Then

ðEþ
j ðW Þ � 2 � rÞþ ¼ ðEþ

j ðW � r1Þ � 2Þþ;

so (2.22) implies

XNþðW Þ

j¼1

jEþ
j ðW Þ � 2 � rj1=2

þ 4
1

2

X
n

ðbn � rÞþ: ð2:23Þ

Now the well-known integral for a5p;

Gðp þ 1Þ
Gðp � aÞGðaþ 1Þ

Z 1

0

ð1 � xÞaxp�a�1 dx ¼ 1

with scaling implies for any a5p:

apþ ¼ Cp;a

Z 1

0

ða� rÞaþr
p�a�1 dr; ð2:24Þ

where Cp;a ¼ Gðp þ 1Þ=Gðp � aÞGðaþ 1Þ: Equations (2.23) and (2.24)
immediately imply that

XNþðW Þ

j¼1

jEþ
j ðW Þ � 2jp4

1

2

Cp;1=2

Cpþ1=2;1

X
n

ðbnÞ
pþ1=2
þ ; ð2:25Þ

which implies (2.21). ]

Similarly, we have

Theorem 2.10. Under the hypothesis of Theorem 2.8, we have for any

p51;

XNþðW Þ

j¼1

jEjðW Þ � 2jp4TrðjBjpÞ: ð2:26Þ
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Proof. Since E52 implies

E2 � 4 ¼ ðE � 2Þ2ðE þ 2Þ

5 ðE � 2Þ2;

(2.16) implies (2.26) for p ¼ 1: The result for general p51 follows as above,
where above we get a factor of Cp;1=2=Cp�1=2;1; here we get Cp;1=Cp;1 ¼ 1: ]

So far, we have proven a bound on Eþ
j ; but they immediately imply

bounds on E�
j : One can prove that by analogy, but it is even easier to use the

unitary map

ðVuÞðnÞ ¼ ð�1ÞnuðnÞ;

which has

VW ðfang; fbngÞV �1 ¼ W ðf�ang; fbngÞ ¼ �W ðfang; f�bngÞ;

so

E�
j ðW ðfang; fbngÞÞ ¼ �Eþ

j ðW ðfang; f�bngÞÞ: ð2:27Þ

Thus, for example,

XNr

j¼1

jE�
j ðW Þ2 � 4j1=24

X
n

ð�bnÞþ

¼
X
n

ðbnÞ�; ð2:28Þ

where x� ¼ ð�xÞþ ¼ �minð0; xÞ; so jxj ¼ xþ þ x� and we obtain (1.3) for the
case an 
 1:

3. BOUNDS FOR JACOBI MATRICES

The following elementary observation lets us pass from bounds in case
an 
 1 to the general case. Note that

�jan � 1j 1

1 �jan � 1j

 !
4

0 an
an 0

 !
4

jan � 1j 1

1 jan � 1j

 !

for any an real since for any x in R;
� jxj

x
x
jxj

�
50 since it has determinant

0 and trace 2jxj50: This immediately implies by repeated use at each pair of
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indices

W ðfan 
 1g; fb�n gÞ4W ðfang; fbngÞ4W ðfan 
 1g; fbþn gÞ; ð3:1Þ

where

b�n ¼ bn � ðjan�1 � 1j þ jan � 1jÞ: ð3:2Þ

Equations (3.1) and (2.5) immediately imply

Theorem 3.1. Let f be monotone increasing on ð0;1Þ and even. Then

f ðE�
j ðW ðfang; fbngÞÞÞ4f ðE�

j ðW ðfan 
 1g; fb�n gÞÞÞ; ð3:3Þ

where b�n is given by (3.2).

With this, we can now prove our three main theorems:

Proof of Theorem 1. By (3.3), (2.23), and (2.28),

X
n

ð½ðEþ
n Þ

2 � 4�1=2 þ ½ðE�
n Þ

2 � 4�1=2Þ

4
X
n

ð½bn þ jan�1 � 1j þ jan � 1j�þ þ ½bn � jan�1 � 1j � jan � 1j��Þ

4
X
n

ð½bn�þ þ ½bn��Þ þ 4
X
n

jan � 1j: ð3:4Þ

In obtaining (3.4), we used ½xþ y�þ4xþ þ yþ and ½xþ y��4x� þ y� and
that a given jan � 1j occurs in four terms with ½bn�� and ½bnþ1��: ]

Proof of Theorem 2. By (3.3), (2.21), and (2.27),

X
n

ðjEþ
n � 2jp þ

X
n

jE�
n þ 2jpÞ4 dp

X
n

ð½bn þ jan�1 � 1j þ jan � 1j�pþ1=2
þ

þ ½bn � jan�1 � 1j � jan � 1j�pþ1=2
� Þ; ð3:5Þ

where

dp ¼
1

2

Gðp þ 1Þ
G p þ 3

2

� � Gð2Þ
G 3

2

� �:
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Now for any q51 (q will be p þ 1
2
), xq is convex, so

ðaþ bþ gÞq ¼ 3q
a
3
þ

b
3
þ

g
3

� �q

4 3q�1½aq þ bq þ gq�;

from which (1.6) holds if we note that cp ¼ 3ðpþ1=2Þ�1 dp: ]

Proof of Theorem 4. As stated, (1.8) is an immediate consequence of
Theorem 2.10 and (3.1).

We kept this bound in form (1.8) to get an exact result as l ! 1: We
could use the same method of proof of Theorem 2 to get

X
n

jEþ
n � 2jp þ

X
n

jE�
n þ 2jp43p�1

X
n

jbnjp þ 4
X
n

jan � 1jp
" #

: ]

We believe it could be true that (1.3) holds with jan � 1j replaced by
ðan � 1Þþ and, in particular, we know that (1.6) and (1.8) hold when p51 if
jan � 1j is replaced by ðan � 1Þþ: To see the latter, we note that}by a
convexity plus evenness argument much like that in the proof of Proposition
2.7}

Pk
j¼1 E

þ
j ðW ðfang; fbngÞÞ is monotone in an in the region an50: Thus for

p ¼ 1; (1.6) and (1.8) hold with ðan � 1Þþ for we move those a’s with an > 1
to the diagonal as we did in (3.1), and use the monotonicity just noted to
move an’s in ð0; 1Þ up to 1: Once one has the result for p ¼ 1; it follows for
p51 by the Aizenman–Lieb argument.

The fact that in (1.6) for p51 and in the Bargmann bound of Appendix
A, one can take ðan � 1Þþ leads us to conjecture (1.3) holds with ðan � 1Þþ
rather than jan � 1j:

4. EXAMPLES

Example 4.1. W has all an ¼ 1; all n; and all bn ¼ 0 for n=0: If
b0 
 b > 0; then there is an eigenvalue at energy E ¼ mþ m�1 with m51 and
eigenfunction jn ¼ mjnj: To have the eigenfunction fit at n ¼ 0; we need

2mþ b1 ¼ E1

or

b ¼ m�1 � m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4

p
:

This example has equality in (1.3) for all values of b > 0 (and also b50 it
turns out) and shows one cannot decrease the value 1 in front on

P
jbnj:
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Example 4.2. W has all bn ¼ 0; all n; and all an ¼ 1; n=0: If a0 
 a > 1;
there is an eigenvalue at energy E ¼ mþ m�1 with 05m51: Then jn ¼ m�n

for n40 and jn ¼ mn�1 for n51 since j must be symmetric around n ¼ 1
2:

The eigenfunction condition at 0 reads

mþ a ¼ mþ m�1

or a ¼ m�1: Thus,

a� a�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4

p
:

There is a second eigenvalue at energy �E (there has to be by the symmetry
(2.27)). Thus,

LHS of ð1:3Þ ¼ 2ða� a�1Þ

¼ 2ð1 þ a�1Þða� 1Þ:

The two sides of (1.3) are not equal for any a; but the ratio goes to 1 as a # 1
since 2ð1 þ a�1Þ " 4: Thus, the 4 in front of the ja� 1j cannot be made
smaller. However, both this example and the discussion in Appendix A
suggest it might be possible to replace ja� 1j by ða� 1Þþ:

As noted above, the best constant for the W case is the same as for the J
case.

Example 4.3. (Proof of Theorem 3). Shift to the Jacobi case. Take an
example with an 
 1 and bn ¼ 0; except for n ¼ m; 2m; . . . ;Nm where bn ¼ b:
As m ! 1; there are n eigenvalues above 2 which all approach the solution

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4

p
¼ b: So long as b51; jEn � 2j51

6
b2; so

X
n

jEn � 2jp5N
b2

6

� �p

: ð4:1Þ

In the translation invariant norm jj � jj; let a ¼ jjðan 
 1; b1 ¼ 1; bn ¼ 0 for

n=1Þjj: Then for the ða; bÞ of this b;N ;m example,

jjða; bÞjj4Nab: ð4:2Þ

Let N0ðeÞ; b0ðeÞ solve

N
b
6

� �p

¼ 2e�1;

Nab ¼
e
2
;



LIEB–THIRRING INEQUALITIES FOR JACOBI MATRICES 123
so

b ¼ c1e2=1�2p ! 0;

N ¼ c2e�ð1þ2pÞ=ð1�2pÞ ! 1;

since p51
2
: Increase N slightly to be an integer. Thus,X

n

jEn � 2jp5e�1; jjða; bÞjj4e;

proving Theorem 3.

5. BOUNDS IN HIGHER DIMENSION

In this section, we want to use the ideas of Laptev–Weidl [6] to prove
bounds on operators on ‘2ðZnÞ: We begin with the discrete Schr .oodinger
operator case. Let H0 be defined on ‘2ðZnÞ by

ðH0uÞðnÞ ¼
X

jm�nj¼1

uðmÞ

and

ðVuÞðnÞ ¼ V ðnÞuðnÞ:

Lemma 5.1. Let W0 act on ‘2ðZ;X Þ where X is a Hilbert space, and let

BðnÞ : X ! X be self-adjoint and trace class with
P

n TrðjBðnÞjÞ51: Then,X
j

ðE�
j ðW0 þ BÞ2 � 4Þ1=24TrX ðB�Þ; ð5:1Þ

where B�ðnÞ ¼ maxð�BðnÞ; 0Þ is defined via the functional calculus.

Proof. Suppose BðnÞ50: As with (2.14), define Lm : ‘2ðZ;X Þ ! ‘2ðZ;X Þ
by

ðLmÞmn ¼ B1=2
n mjn�mjB1=2

m :

As with Proposition 2.7, 05m5Z41 implies

Sþn ðLmÞ4Sþn ðLZÞ

and then the proof of (2.16) extends. ]
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Theorem 5.2. If V 2 LpðZn;X Þ for p51 where X is a Hilbert space, that is,
V ðxÞ : X ! X is a symmetric compact operator such that

P
x2Zn TrX jV ðxÞjp5

1; thenX
j

jEþ
j ðH0 þ V Þ � 2njp þ

X
j

jE�
j ðH0 þ V Þ þ 2njp4

X
x2Zn

TrX jV ðxÞj
p: ð5:2Þ

Proof. By the Aizenman–Lieb idea, (2.24), it suffices to prove this for
p ¼ 1: As usual, we can suppose V50 and prove the result for Eþ

j : Write

H0 ¼ H0;1 þ H0;f2;...;ng;

where H0;1 involves neighbors in one direction and H0;f2;...;ng neighbors in the
other directions. Note that

ðH0;1 þ H0;f2;...;ng þ V � 2nÞþ

4ðH0;1 þ ðH0;f2;...;ng þ V � 2ðn� 1ÞÞþ � 2Þþ ð5:3Þ

and thusX
j

jEþ
j ðH0 þ V Þ � 2nj ¼ Tr‘2ðZn;X ÞððH0 þ V � 2nÞþÞ

4Tr‘2ðZ;‘2ðZn�1;X ÞÞððH0;1 þ ðH0;f2;...;ng þ V � 2ðn� 1ÞÞþ � 2ÞþÞ

4
X
n1

Tr‘2ðZn�1;X ÞððH0;f2;...;ng þ V ðn1; �Þ � 2nþ 2ÞþÞ

by (5.1) and ðE2 � 4Þ1=25ðjEj � 2Þ: An inductive argument completes the
proof. ]

For the other moment result, it will be convenient to phrase things in
terms of the classical constants,

Lc‘p;n ¼ ð2pÞ�n=2

Z
jkj41

jkj2p dnk

¼ 2�np�n=2 Gðp þ 1Þ
Gðp þ 1 þ n

2
Þ
: ð5:4Þ

These constants have several important features. First, the argument that
led to (2.25) says that if

XNþ

j¼1

jEþ
j � 2jp4aLc‘p;n

X
n

jbnjpþn=2 ð5:5Þ
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for some p ¼ p0; it holds for all p > p0: Second,

Lp¼1=2; n¼1 ¼ 2�1p�1=2
1
2

ffiffiffi
p

p
1

" #
¼

1

4
;

so the consequence of (5.1) and ðE2 � 4Þ1=252ðjEj þ 2Þ1=2 is that (5.5) holds
for n ¼ 1; p ¼ 1

2
; and a ¼ 2:

Finally, we note that from (5.4) and Fubini, we have

Lc‘p;n ¼
Yn¼1

j¼0

Lc‘pþj=2;1: ð5:6Þ

Theorem 5.3. Let V 2 Lpþn=2ðZn;X Þ for p51: ThenX
j

jEþ
j ðH0 þ V Þ � 2njp þ

X
j

jE�
j ðH0 þ V Þ þ 2njp

42nLc‘p;n
X
x2Zn

TrX jV ðxÞjpþn=2: ð5:7Þ

Proof. We exploit (5.3), but use (5.5) for a ¼ 2; n ¼ 1; p51
2

at each stage
of the induction. We then get (5.7) with a constant

Yn�1

j¼0

2Lc‘pþ1=2;1 ¼ 2nLc‘p;n

by (5.6). ]

As in the one-dimensional case, Theorem 5.2 is better for large coupling.
Indeed, it is exact in the large coupling regime, while Theorem 5.3 gives
more information on the eigenvalues very close to �2n in the regime of slow
decay of V ðnÞ at infinity.

As with the one-dimensional case, we can handle nonconstant off-
diagonal terms which approach 1 fast enough at infinity. Let BðZnÞ be set of
bonds in Zn; that is, the set of unordered pairs b ¼ ðijÞ with i; j 2 Zn; ji� jj ¼
1: Given fabgb2BðZnÞ; a nonnegative real number ab for each bond b ¼ ðijÞ;
one can define

ðH0ðabÞuÞðnÞ ¼
X

jm�nj¼1

aðnmÞuðmÞ: ð5:8Þ

The analog of (3.3) is then

H0 þ V �4H0ðabÞ þ V4H0 þ V þ; ð5:9Þ
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where

V �ðnÞ ¼ V ðnÞ �
X

jm�nj¼1

jaðmnÞ � 1j; ð5:10Þ

so, for example, we getX
j

½Eþ
j ðH0ðabÞ þ V Þ þ E�

j ðH0ðabÞ þ V Þ�4
X
n

jV ðnÞj þ
X
b

4jab � 1j: ð5:11Þ

Remark. Since the bound in Theorem 1 is optimal both for large and
small couplings, the curious reader might wonder whether it is possible to
keep some of its structure also in higher dimension. This is indeed the case.
For constant diagonal terms and scalar potential, we have the two boundsX

n¼1;...;Nþ

½ðEþ
n Þ

2 � 4�1=2 þ
X

n¼1;...;N�

½ðE�
n Þ

2 � 4�1=24
X
x2Zn

jV ðxÞj

andX
n¼1;...;Nþ

½ðEþ
n Þ

2 � 4�1=2 þ
X

n¼1;...;N�

½ðE�
n Þ

2 � 4�1=242n�1Lc‘1;n�1

X
x2Zn

jV ðxÞj1þðn�1Þ=2:

Simply use the induction in the dimension idea to strip off the first
coordinate x1 and then use either Theorem 5.2 or 5.3 in n� 1 dimension. Of
course, the above extension to nonconstant diagonal terms also applies.
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APPENDIX A. THE BARGMANN BOUND

Our goal in this appendix is to prove

Theorem A.1. Let N ðfag; fbgÞ be the number of eigenvalues of J ðfag;
fbgÞ outside ½�2; 2�: Then

N ðfag; fbgÞ4
X1
n¼1

ðnjbnj þ ð4nþ 2Þðan � 1ÞþÞ; ðA:1Þ

where ðxÞþ ¼ maxðx; 0Þ:
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This is related to a result of Geronimo [8, 9]. We provide a proof here
because it is easy from our machinery earlier. One of Geronimo’s proofs of
this result, Theorem III.1 in [9], has an error in the argument that allows for
an51; since his Lemma III.1 is wrong. Earlier papers that show N51 if
(A.1) holds include Geronimo–Case [10] and Chihara–Nevai [6].

Note. (1) If you translate Geronimo’s result in [8] into our normalization
(he has J0 with a 
 1

2
; not a ¼ 1), then where we have ð4nþ 2Þðan � 1Þþ; he

has ð4nþ 4Þðan � 1Þþðan þ 1Þ; which is weaker in two regards: 4nþ 254nþ
4 and we have no an þ 1: We note that by looking at bn ¼ 0 and an ¼ 1 for
n52; one finds examples with N ¼ 2 and ða1 � 1Þþ arbitrarily close to

ffiffiffi
2

p
�

1 so that constant in front of ða1 � 1Þþ must be at least 2ð
ffiffiffiffiffiffiffiffiffiffiffi
2 þ 1

p
Þ and, in

particular, 4n does not work.
(2) We actually have separate inequalities for Nþ and N�:
Step 1: an 
 1; bn50: The proof of Bargmann’s bound [2] given by

Birman [3] and Schwinger [25] works in this case. By (2.10) and the
monotonicity with A ¼ J0; B ¼ J � J0; for b > 2;

# of eigenvalues of Aþ B5b

¼ # of b05b so that Kb0 has eigenvalue ¼ 1

¼ # of eigenvalues of Kb51 ðA:2Þ

4TrðKbÞ ðA:3Þ

4TrðK2Þ; ðA:4Þ

where (A.2) follows from the fact that jjKbjj # 0 as b ! 1 and the strict
monotonicity of the eigenvalues of Kb noted in the proof of Proposition 2.5.
Equation (A.3) holds since

TrðKbÞ ¼
X
Eþ
j ðKbÞ

Eþ
j 5

X
Eþ
j ðKbÞ51

Eþ
j 5ð# of eigenvalues of Kb51Þ

since Kb > 0: Equation (A.4) holds since Kb4K2:
The same argument that led to Proposition 2.6 shows that ½ðb� J0Þ

�1�nm
¼ wðbÞ�1jðbÞ

� ðminðn;mÞÞjðbÞ
þ ðmaxðn;mÞÞ where j� solve J0j ¼ bc with jþ 2

L2 at infinity, j�ð0Þ ¼ 0; and w is their Wronskian. As b # 2; jþðnÞ ! 1;
j�ðnÞ ! n; and their Wronskian is 1 so

ðK2Þnm ¼ minðn;mÞb1=2
n b1=2

m

and
TrðK2Þ ¼

X1
n¼1

nbn;

proving (A.1) in this case.
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Step 2: an41; bn50: Let J0ðfangÞ be J with bn ¼ 0: We claim if an41 and
b > 2; then

ðb� J0ðfangÞÞ
�1
nm4ðb� J0Þ

�1
nm : ðA:5Þ

This is a simple maximal principle argument. One first notes that if fnðmÞ ¼
ðb� J0ðfangÞÞ

�1
nm ; then fnðmÞ > 0 (expand ð1 � b�1J Þ in a geometric series).

Next, one notes that

ððb� J0ÞfnÞðmÞ ¼ dnm � ð1 � am�1Þfnðm� 1Þ � ð1 � amÞfnðmÞ

4dnm:

Since ðb� J0Þ
�1 also has a positive matrix, applying it preserves pointwise

matrix inequalities, so

fnðmÞ4½ðb� J0Þ
�1dn�m ¼ ðb� J0Þ

�1
nm ;

proving (A.5).
Now (A.5) shows the Birman–Schwinger kernel for J0fang and J ðfan; bngÞ

is dominated (in the sense of inequalities on matrix elements) by this for J0

and J ðfan 
 1; bngÞ; so Step 1 implies

TrðK2ðfan; bngÞÞ4TrðK2ðfan 
 1; bngÞÞ ¼
X1
j¼1

nbn:

Note we do not have an operator inequality of the form ðb� J0ðfangÞÞ
�1

4ðb� J0Þ
�1; so individual eigenvalues may not have an inequality (this is

Geronimo’s error in [9]).
Step 3: Adding b’s of both signs. Fix an with 05an41: Let J ðfbngÞ be the

Jacobi matrix with bn along the diagonal and N�ðfbngÞ the number of
eigenvalues E with �E > 2: Since J ðf�ðbnÞ�gÞ4J ðfbngÞ4J ðfðbnÞþgÞ; we
have

N�ðfbngÞ4N�ðf�ðbnÞ�gÞ;

so by (A.1) for bn50 and (2.27), we have (A.1) for the case 04an41:
Step 4 (General Case): Now use the idea at the start of Section 3 but only

for an’s with an > 1: Then (A.1) holds in general since this idea reduces to the
case an41: We use here that

2nðan � 1Þþ þ 2ðnþ 1Þðan � 1Þþ ¼ ð4nþ 2Þðan � 1Þþ:
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