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Abstract: We study the Case sum rules, especially C0, for general Jacobi matrices.
We establish situations where the sum rule is valid. Applications include an extension of
Shohat’s theorem to cases with an infinite point spectrum and a proof that if
lim n(an − 1) = α and lim nbn = β exist and 2α < |β|, then the Szegő condition
fails.

1. Introduction

This paper discusses the relation among three objects well known to be in one-one
correspondence: nontrivial (i.e., not supported on a finite set) probability measures, ν,
of bounded support in R; orthogonal polynomials associated to geometrically bounded
moments; and bounded Jacobi matrices. One goes from measure to polynomials via
the Gram-Schmidt procedure, from polynomials to Jacobi matrices by the three-term
recurrence relation, and from Jacobi matrices to measures by the spectral theorem.

We will use J to denote the Jacobi matrix (an > 0)

J =




b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .

. . . . . . . . . . . .


 . (1.1)

ν will normally denote the spectral measure of the vector δ1 ∈ �2(Z+) and Pn(x) the
orthonormal polynomials.

We are interested in J ’s close to the free Jacobi matrix, J0, with bn = 0, an = 1,
and dν0(E) = (2π)−1χ[−2,2]

√
4 − E2 dE. Most often, we will suppose J −J0 is com-

pact. That means σess(J ) = [−2, 2] and J has only eigenvalues outside [−2, 2], of
multiplicity one denoted E±

j with E+
1 > E+

2 > · · · > 2 and E−
1 < E−

2 < · · · < −2.

� Supported in part by NSF grant DMS-9707661.
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One of the main objects of study here is the Szegő integral

Z(J ) = 1

2π

∫ 2

−2
ln

( √
4 − E2

2πdνac/dE

)
dE√

4 − E2
. (1.2)

The Szegő integral is often taken in the literature as

(2π)−1
∫ 2

−2
ln

(
dνac

dE

)
dE√

4 − E2
,

which differs from Z(J ) by a constant and a critical minus sign (so the common con-
dition that the Szegő integral not be −∞ becomes Z(J ) < ∞ in our normalization).
There is an enormous literature discussing when Z(J ) < ∞ holds (see, e.g., [1, 2, 7, 9,
13, 14, 16, 17, 22, 24]). It can be shown by Jensen’s inequality that Z(J ) ≥ − 1

2 ln(2)

so the integral can only diverge to +∞.
We will focus here on various sum rules that are valid. One of our main results is the

following:

Theorem 1. Suppose

A0(J ) = lim
N→∞

(
−

N∑
n=1

ln(an)

)
(1.3)

exists (although it may be +∞ or −∞). Consider the additional quantities Z(J ) given
by (1.2) and

E0(J ) =
∑
±

∑
j

ln

[
1
2

(
|E±

j | +
√

(E±
j )2 − 4

)]
. (1.4)

If any two of the three quantities A0(J ), E0(J ), and Z(J ) are finite, then all three are,
and

Z(J ) = A0(J ) + E0(J ). (1.5)

Remarks. 1. It is not hard to see that E0(J ) < ∞ if and only if

∑
±

∑
j

√
(E±

j )2 − 4 < ∞. (1.6)

2. The full theorem (Theorem 4.1) does not require the limit (1.3) to exist, but is more
complicated to state in that case.

3. If the three quantities are finite, many additional sum rules hold.
4. This is what Killip-Simon [11] call the C0 sum rule.
5. Peherstorfer-Yuditskii [17] (see their remark after Lemma 2.1) prove that if Z(J ) <

∞, E0(J ) = ∞, then the limit in (1.3) is also infinite.

Theorem 1 is an analog for the real line of a seventy-year old theorem for orthogonal
polynomials on the unit circle:

1

2π

∫ 2π

0
ln

(
dνac

dθ

)
dθ =

∞∑
n=0

ln(1 − |αj |2), (1.7)
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where {αj }∞j=1 are the Verblunsky coefficients (also called reflection, Geronimus, Schur,
or Szegő coefficients) of ν. This result was first proven by Verblunsky [27] in 1935,
although it is closely related to Szegő’s 1920 paper [24].

For J ’s with J −J0 finite rank (and perhaps even with
∑∞

n=1 n(|an−1|+|bn|) < ∞),
the sum rule (1.5) is due to Case [2]. Recently, Killip-Simon [11] showed how to exploit
these sum rules as a spectral tool (motivated in turn by work on Schrödinger opera-
tors by Deift-Killip [5] and Denissov [6]). In particular, Killip-Simon emphasized the
importance in proving sum rules on as large a class of J ’s as possible.

One application we will make of Theorem 1 and related ideas is to prove the following
(≡ Theorem 5.2):

Theorem 2. Suppose σess(J ) ⊂ [−2, 2] and (1.6) holds. Then Z(J ) < ∞ if and only if

lim inf
N

(
−

N∑
n=1

ln(an)

)
< ∞. (1.8)

Moreover, if these conditions hold, then

(i) The limit A0(J ) in (1.3) exists and is finite.
(ii) limN→∞

∑N
n=1 bn exists and is finite.

(iii)

∞∑
n=1

(an − 1)2 +
∞∑

n=1

b2
n < ∞. (1.9)

Results of this genre when it is assumed that σ(J ) = [−2, 2] go back to Shohat [22]
with important contributions by Nevai [14]. The precise form is from Killip-Simon [11].
Nikishin [16] showed how to extend this to Jacobi matrices with finitely many eigen-
values. Peherstorfer-Yuditskii [17] proved Z(J ) < ∞ implies (i) under the condition
E0(J ) < ∞, allowing an infinity of eigenvalues for the first time. Our result cannot
extend to situations with E0(J ) = ∞ since Theorem 1 says if (i) holds and Z(J ) < ∞,
then E0(J ) < ∞.

We will highlight one other result we will prove later (Corollary 6.3).

Theorem 3. Let an, bn be Jacobi matrix parameters so that

lim
n→∞ n(an − 1) = α, lim

n→∞ nbn = β (1.10)

exist and are finite. Suppose that

|β| > 2α. (1.11)

Then Z(J ) = ∞.

Remark. In particular, if α < 0, (1.11) always holds. Equation (1.11) describes three-
quarters of the (2α, β) plane.

In Sect. 6, we will discuss the background for this result, and describe results of
Zlatoš [28] that show if |β| ≤ 2α and one has additional information on the approach
to the limit (1.10), then Z(J ) < ∞. Thus Theorem 3 captures the precise region where
one has (1.10) and one can hope to prove Z(J ) = ∞.

Theorem 3 will actually follow from a more general result (see Theorem 4.4, 6.1,
and 6.2).
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Theorem 4. Suppose (1.9) holds and that either lim sup(− ∑n
j=1(aj − 1 + 1

2bj )) = ∞
or lim sup(− ∑n

j=1(aj − 1 − 1
2bj )) = ∞. Then Z(J ) = ∞.

The main technique in this paper exploits the m-function, the Borel transform of the
measure, ν:

mν(E) =
∫

dν(x)

x − E
. (1.12)

Since ν is supported on [−2, 2] plus the set of points {E±
j }, we can write

mν(E) =
∑
±

∑
j

ν({E±
j })

E±
j − E

+
∫ 2

−2

dν(x)

x − E
. (1.13)

It is useful to transfer everything to the unit circle, using the fact that z 	→ E = z+z−1

maps D = {z | |z| < 1} onto the cut plane C\[−2, 2]. Thus we can define for |z| < 1,

M(z) = −mν(z + z−1). (1.14)

The minus sign is picked so Im M(z) > 0 if Im z > 0. We use M(z; J ) when we want
to make the J -dependence explicit. The function M is meromorphic in D with poles at
(β±

j )−1 such that

E±
j = β±

j + (β±
j )−1 (1.15)

with |β±
j | > 1. We sometimes drop the explicit ± symbol and count the βj ’s in one set.

We define a signed measure dµ# on [0, 2π ] by Im M(reiθ )dθ → dµ#(θ) weakly as
r ↑ 1. Hence µ# is positive on (0, π) and negative on (π, 2π). Actually, M(z) = M(z̄)

implies dµ#(π + θ) = −dµ#(π − θ), so we let

µ ≡ µ# � [0, π ]. (1.16)

By general principles [21],

Im M(eiθ ) ≡ lim
r↑1

Im M(reiθ ) = dµac

dθ
(θ) = π

dνac

dx
(2 cos θ) (1.17)

for a.e. θ ∈ (0, π). One actually has that if

dµ̃(θ) ≡ 2 sin θ dµ#(θ) = 2| sin θ | d|µ#|(θ) (1.18)

then for any interval I ⊂ (0, π) ∪ (π, 2π),

µ̃(I ) = πν(2 cos I ). (1.19)

The reason why we exclude 0, π , 2π is possible mass points of ν at ±2. These do not
translate to µ# because Im M(±r) = 0 (notice that r + r−1 → ±2 as r → ±1 is not a
nontangential limit).
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By (1.19), µ̃([0, 2π ]) ≤ 2π , so µ̃ is a finite measure. This need not be true for µ#,
as can be seen from (1.18) and (1.19). Indeed, these formulae show that µ# is finite if
and only if

∫ 2

−2
χ(−2,2)(x)

dν(x)√
4 − x2

< ∞, (1.20)

where χ(−2,2) ensures that possible mass points at ±2 do not enter here.
We would now like to write (1.13) (or rather its imaginary part) in terms of M . The

pole terms (including those at ±2, if they are present) translate directly, and so

Im M(z) = Im
∑
±

µ({±1})
z + z−1 − 2

+ Im
∑
j

µ({β−1
j })

z + z−1 − (βj + β−1
j )

+ K(z), (1.21)

where

K(z) ≡ Im
∫ 2

−2
χ(−2,2)(x)

dν(x)

z + z−1 − x

and we use µ({β−1
j }) for the weights ν({Ej }) (and µ({±1}) for ν({±2})). We note that

since µ({β−1
j }) are point masses of a probability measure, we have

∑
j

µ({β−1
j }) ≤ 1

with the µ({±1}) terms included in the sum as β±∞ ≡ ±1.
We will rewrite K(z) in terms of the Poisson kernel. Assume first that (1.20) holds,

that is, µ# is a finite measure. Notice that K(reiθ ) is a harmonic function in D. Moreover,
since the imaginary parts of the pole terms go to 0 as r ↑ 1,

K(reiθ ) − Im M(reiθ ) → 0

as r ↑ 1, uniformly for θ in compact subsets of (0, π) ∪ (π, 2π). This means that
K(reiθ ) dθ → dµ#(θ) weakly as measures on (0, π) ∪ (π, 2π). Clearly K(±1) = 0
and µ#({0, π}) = 0, and so K(reiθ ) dθ → dµ#(θ) as measures on [0, 2π ]. Since K(z)

is harmonic in D, it follows (see, e.g., [21]) that

K(z) =
∫ 2π

0
P(z, eiϕ)

dµ#(ϕ)

2π
, (1.22)

where P(z, w), with |z| < 1, |w| = 1, is the Poisson kernel

P(z, w) ≡ 1 − |z|2
|z − w|2 (1.23)

or

Pr(θ, ϕ) ≡ P(reiθ , eiϕ) = 1 − r2

1 + r2 − 2r cos(θ − ϕ)
. (1.24)
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Then using the fact that µ# is odd under reflection, we can rewrite (1.21) as

Im M(reiθ ) = Im
∑
j

µ({β−1
j })

reiθ + r−1e−iθ − (βj + β−1
j )

+
∫ π

0
Dr(θ, ϕ)

dµ(ϕ)

2π
, (1.25)

where

Dr(θ, ϕ) = Pr(θ, ϕ) − Pr(θ, −ϕ). (1.26)

This is because M(z) = M(z̄), so that µ = −µ# � [−π, 0].
As we shall see, it turns out that (1.25) holds even if (1.20) fails, although (1.22)

is meaningless in that case. We only need to consider θ, ϕ ∈ [0, π ]. Then obviously
Dr(θ, ϕ) ≥ 0, and (1.24) and (1.26) show

Dr(θ, ϕ) = (1 − r2)2r(cos(θ − ϕ) − cos(θ + ϕ))

(1 + r2 − 2r cos(θ − ϕ))(1 + r2 − 2r cos(θ + ϕ))

= Pr(θ, ϕ)
4r sin θ sin ϕ

1 + r2 − 2r cos(θ + ϕ)
.

Notice that if θ, ϕ ∈ [0, π ], then 2r cos(θ + ϕ) ≤ 2r| cos θ |. Since r < 1, we have

sin2(θ) + 2| cos θ | = 1 − cos2(θ) + 2| cos θ | ≤ 2 ≤ 1 + r2

r
,

which implies

r sin2(θ)

1 + r2 − 2r| cos θ | ≤ 1.

Hence

0 ≤ Dr(θ, ϕ)

sin ϕ
≤ 4Pr(θ, ϕ)

sin θ
(1.27)

for θ, ϕ ∈ (0, π) and r < 1.
Using (1.19), the integral in (1.25) can now be estimated as

0 ≤
∫ π

0

Dr(θ, ϕ)

sin ϕ

dµ̃(ϕ)

4π
≤ ‖Pr‖∞

sin θ
,

and so is finite (notice that if θ = 0, π , then Dr(θ, ϕ) ≡ 0). Moreover, if νn are prob-
ability measures which coincide with ν outside of [−2, −2 + 1

n
] ∪ [2 − 1

n
, 2], satisfy

(1.20), and νn → ν weakly, then clearly for any θ ∈ [0, π ] and r < 1,

M(reiθ ; νn) → M(reiθ ; ν)

and
∫ π

0
Dr(θ, ϕ) dµn(ϕ) →

∫ π

0
Dr(θ, ϕ) dµ(ϕ).

Since the sum in (1.25) is the same for νn and ν, and (1.25) holds for νn, it holds for ν.
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Section 2, the technical core of the paper, proves some convergence results about
integrals of ln[Im M(reiθ )]. It is precisely such integrals that arise in Sect. 3 where,
following Killip-Simon [11], we use the well-known

−m(z; J )−1 = z − b1 + a2
1m(z; J (1)),

where J (1) is J with the top row and leftmost column removed. We will be able to
prove sum rules that compare J and J (1). In Sect. 4, we will then list various sum rules,
including Theorems 1 and 4. Section 5 proves Theorem 2 and Sect. 6 discusses Coulomb
Jacobi matrices (J − J0 decays as n−1) and Theorem 3 in particular.

It is a pleasure to thank Mourad Ismail, Rowan Killip, and Paul Nevai for useful
discussions.

2. Continuity of Integrals of ln(ImM)

In this section, we will prove a general continuity result about boundary values of interest
for M-functions of the type defined in (1.24). We will consider suitable weight functions,
w(ϕ), on [0, π ], of which the examples of most interest are w(ϕ) = sink(ϕ), k = 0 or
2. Our goal is to prove that

lim
r↑1

∫
ln[Im M(reiϕ)] w(ϕ) dϕ =

∫
ln[Im M(eiϕ)] w(ϕ) dϕ (2.1)

and that the convergence is in L1 if the integral on the right is finite. All integrals in this
section are from 0 to π if not indicated otherwise. We define

d(ϕ) ≡ min(ϕ, π − ϕ) (2.2)

and we suppose that

0 ≤ w(ϕ) ≤ C1 d(ϕ)−1+α (2.3)

for some C1, α > 0 and that w is C1 with

|w′(ϕ)w(ϕ)−1| ≤ C2 d(ϕ)−β (2.4)

for C2, β > 0. For weights of interest, one can take α = β = 1.

Remarks. 1. For the applications in mind, we are only interested in allowing “singu-
larities” (i.e., w vanishing or going to infinity) at 0 or π , but all results hold with
unchanged proofs if d(ϕ) ≡ min{|ϕ − ϕj |} for any finite set {ϕj }. For example,
w(ϕ) = sin2(mϕ) as in [12] is fine.

2. Note that by (2.3),
∫ π

0 w(ϕ) dϕ < ∞.

The main technical result we will need is:

Theorem 2.1. Let M be a function with a representation of the form (1.25) and let w be
a weight function obeying (2.3) and (2.4). Then (2.1) holds. Moreover, if

∫
ln[Im M(eiϕ)]w(ϕ) dϕ > −∞ (2.5)

(it is never +∞), then

lim
r↑1

∫ ∣∣ln[Im M(reiϕ)] − ln[Im M(eiϕ)]
∣∣ w(ϕ) dϕ = 0. (2.6)



400 B. Simon, A. Zlatoš

Let ln± be defined by

ln±(y) = max(0, ± ln(y))

so

ln(y) = ln+(y) − ln−(y),

|ln(y)| = ln+(y) + ln−(y).

We will prove Theorem 2.1 by proving

Theorem 2.2. For any a > 0 and p < ∞, ln+[Im(M(eiϕ))/a] ∈ Lp((0, π), w(ϕ)dϕ),
and

lim
r↑1

∫ ∣∣∣∣ln+
(

Im M(reiϕ)

a

)
− ln+

(
Im M(eiϕ)

a

)∣∣∣∣
p

w(ϕ) dϕ = 0. (2.7)

Theorem 2.3. For any a > 0, we have

lim
r↑1

∫
ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ =

∫
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ. (2.8)

Proof of Theorem 2.1 given Theorems 2.2 and 2.3. By Fatou’s lemma and the fact that
for a.e. ϕ, Im M(reiϕ) → Im M(eiϕ), we have

lim inf
r↑1

∫
ln−[Im M(reiϕ)] w(ϕ) dϕ ≥

∫
ln−[Im M(eiϕ)] w(ϕ) dϕ. (2.9)

Since Theorem 2.2 says that sup0<r≤1

∫
ln+[Im M(reiϕ)]w(ϕ) dϕ < ∞, it follows that

if
∫

ln−[Im M(eiϕ)]w(ϕ) dϕ = ∞, then (2.1) holds.
If (2.5) holds, then

lim
a↓0

∫
ln−

[
Im M(eiϕ)

a

]
w(ϕ) dϕ = 0

since ln−(y/a) is monotone decreasing to 0 as a decreases. Given ε, first find a so
∫

ln−
[

Im M(eiϕ)

a

]
w(ϕ) dϕ <

ε

3

and then, by (2.8), r1 < 1 so for r1 < r < 1,
∫

ln−
[

Im M(reiϕ)

a

]
w(ϕ) dϕ <

ε

3
.

By (2.7), find r2 < 1, so for r2 < r < 1,
∫ ∣∣∣∣ln+

[
Im M(reiϕ)

a

]
− ln+

[
Im M(eiϕ)

a

]∣∣∣∣ w(ϕ) dϕ <
ε

3
.

Writing

|ln(α) − ln(β)| ≤
∣∣∣∣ln+

(
α

a

)
− ln+

(
β

a

)∣∣∣∣ + ln−
(

α

a

)
+ ln−

(
β

a

)
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we see that if max(r1, r2) < r < 1, then
∫ ∣∣ln[Im M(reiϕ)] − ln[Im M(eiϕ)]

∣∣ w(ϕ) dϕ < ε

so (2.6) holds. ��
We will prove Theorem 2.2 by using the dominated convergence theorem and stan-

dard maximal function techniques. We let the maximal function of the measure µ̃ defined
in (1.18) be

µ̃∗(x) = sup
0<a<π

µ̃(x − a, x + a)

2a
.

The Hardy-Littlewood maximal inequality for measures (see Rudin [21]) says that

|{x | µ̃∗(x) > λ}| ≤ 3µ̃(0, π)

λ
. (2.10)

Lemma 2.4. Let M satisfy (1.25), and let α be the sum of the weights of the poles (β±
j )−1.

Then for 0 < r < 1 and 0 ≤ θ ≤ π ,

Im M(reiθ ) ≤ µ̃∗(θ)[sin θ ]−1 + αr−1[sin θ ]−2. (2.11)

Proof. Since Dr(θ, ϕ) ≤ Pr(θ, ϕ) and Pr is a convolution operator with a positive even
function of ϕ decreasing on [0, π ] with

∫ 2π

0 Pr(ϕ) dϕ/2π = 1, we have, by standard
calculations, (1.18), (1.19), and (1.27), that

∫ π

0
Dr(θ, ϕ)

dµ(ϕ)

2π
≤

∫ π

0

4Pr(θ, ϕ)

sin θ

dµ̃(ϕ)

4π
≤ µ̃∗(θ)

sin θ
.

On the other hand, for |β| ≥ 1,
∣∣∣∣

1

z + z−1 − β − β−1

∣∣∣∣ =
∣∣∣∣

z

(z − β)(z − β−1)

∣∣∣∣ ≤ |z|
|Im z|2 = 1

r sin2 θ

if z = reiθ , so summing the pole term shows,

Im
∑
j

µ({β−1
j })

z + z−1 − βj − β−1
j

≤
∑

j µ({β−1
j })

r sin2(θ)
.

��
Proof of Theorem 2.2. Let

f1(θ) = µ̃∗(θ)[sin θ ]−1 f2(θ) = 2[sin(θ)]−2.

For a.e. θ , ln+[(Im M(reiθ ))/a] → ln+[(Im M(eiθ ))/a]. By (2.11) for all 1
2 < r < 1,

ln+[(Im M(reiθ ))/a] ≤ ln+[(f1(θ) + f2(θ))/a]. Thus if we prove that for all p < ∞,
∫ ∣∣∣∣ln+

(
f1(ϕ) + f2(ϕ)

a

)∣∣∣∣
p

w(ϕ) dϕ < ∞,
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we obtain (2.7) by the dominated convergence theorem. Since

|ln+(x)|p ≤ C(p, q)|x|q

for any p < ∞, q > 0, and suitable C(p, q), and

|x + y|q ≤ 2q |x|q + 2q |y|q,

it suffices to find some q > 0, so
∫

(|f1(ϕ)|q + |f2(ϕ)|q) w(ϕ) dϕ < ∞.

Since for v−1 + t−1 = 1,
∫

|f1(ϕ)|qw(ϕ) dϕ ≤
(∫

|f1(ϕ)|qv dϕ

)1/v(∫
|w(ϕ)|t dϕ

)1/t

and w(ϕ) ∈ Lt for some t > 1 by (2.3), it suffices to find some s > 0 with
∫

(|f1(ϕ)|s + |f2(ϕ)|s) dϕ < ∞. (2.12)

By (2.10) and Cauchy-Schwartz,

∫
|f1(ϕ)|s dϕ ≤

( ∫
|µ̃∗(ϕ)|2s dϕ

)1/2( ∫
| sin ϕ|−2s dϕ

)1/2

< ∞

and
∫ |f2(ϕ)|s dϕ < ∞ whenever s < 1

2 . ��
As a preliminary to the proof of Theorem 2.3, we need

Lemma 2.5. Let w obey (2.4). Let 0 < ϕ0 < π and let ϕ1, ϕ2 ∈ [0, π ] obey

(a) d(ϕ1) ≥ d(ϕ0), d(ϕ2) ≥ d(ϕ0), (2.13)

(b) |ϕ1 − ϕ2| ≤ d(ϕ0)
β . (2.14)

Then for C3 = C2 exp(C2),
∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C3|ϕ1 − ϕ2| d(ϕ0)
−β. (2.15)

Proof.
∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ =
∣∣∣∣exp

( ∫ ϕ2

ϕ1

w′(η)

w(η)
dη

)
− 1

∣∣∣∣
≤ |exp(C2|ϕ2 − ϕ1| d(ϕ0)

−β) − 1| (2.16)

by (2.4) and (2.13). But |ex − 1| ≤ e|x||x|, so by (2.14),
∣∣∣∣
w(ϕ1)

w(ϕ2)
− 1

∣∣∣∣ ≤ C2 exp(C2)|ϕ1 − ϕ2| d(ϕ0)
−β,

which is (2.15). ��
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We will also need the following pair of lemmas:

Lemma 2.6. Let 0 < η < θ < π − η and

Nr(θ, η) =
∫ θ+η

θ−η

Dr(θ, ϕ)
dϕ

2π
.

Then

0 ≤ [1 − Nr(θ, η)] ≤ 4(1 − r)

r sin2(η)
. (2.17)

Proof. We have

1 =
∫ 2π

0
Pr(θ, ϕ)

dϕ

2π
,

so since Dr ≤ Pr , Nr ≤ 1 and

1 − Nr(θ, η) ≤ 2

2π

∫
ϕ∈[0,2π ]
|θ−ϕ|≥η

Pr(θ, ϕ) dϕ.

If |θ − ϕ| ≥ η, then

Pr(θ, ϕ) = 1 − r2

(1 − r)2 + 4r sin2[ 1
2 (θ − ϕ)]

≤ 2(1 − r)

4r sin2( 1
2η)

≤ 2(1 − r)

r sin2(η)
,

and (2.17) is immediate. ��
Lemma 2.7. If

∫ π

0 Im M(eiθ ) dθ �= 0, then for θ ∈ [0, π ], r ∈ ( 1
2 , 1),

Im M(reiθ ) ≥ c(r−1 − r) sin θ. (2.18)

Proof. In terms of the real line m function, for E2 > 0, E1 real,

Im[−m(E1 − iE2)] ≥ E2

π

∫ 2

−2

Im m(E) dE

(E1 − E)2 + E2
2

, (2.19)

since we have dropped the positive contributions of νsing to Im(−m). Now if z = reiθ ,

M(z) = −m(E1 − iE2),

where z + z−1 = E1 − iE2 or E1 = (r + r−1) cos θ , E2 = (r−1 − r) sin θ . If r > 1
2 ,

then |E1| ≤ 5
2 , |E2| ≤ 3

2 , and in (2.19), |E| ≤ 2. Thus

Im M(z) ≥ cE2(z)

which is (2.18). ��
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Proof of Theorem 2.3. Since ln− is a decreasing function, to get upper bounds on
ln−[Im M(reiθ )/a], we can use a lower bound on Im M . The elementary bound

ln−(ab) ≤ ln−(a) + ln−(b) (2.20)

will be useful.
As already noted, Fatou’s lemma implies the lim inf of the left side of (2.8) is bounded

from below by the right side, so it suffices to prove that

lim sup
r↑1

∫ π

0
ln−

(
Im M(reiϕ)

a

)
w(ϕ) dϕ ≤

∫ π

0
ln−

(
Im M(eiϕ)

a

)
w(ϕ) dϕ. (2.21)

Pick γ and κ so 0 < max(β, 1)γ < κ < 1
2 and let θ0(r) = (1−r)γ , η(r) = (1−r)κ .

We will bound Im M(reiθ ) from below for d(θ) ≤ θ0(r) using (2.18), and for d(θ) ≥
θ0(r), we will use the Poisson integral for the region |ϕ − θ | ≤ η(r).

By (2.18) and (2.3),

∫
d(ϕ)≤θ0(r)

ln−
(

Im M(reiϕ)

a

)
w(ϕ) dϕ ≤ Caθ

α
0 [ln−(r−1 − r) + ln− θ0],

which goes to zero as r ↑ 1 for any a. So suppose d(θ) > θ0. Write

Im M(reiθ ) ≥
∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ) Im M(eiϕ)
dϕ

2π

= Nr(θ, η)

∫ θ+η(r)

θ−η(r)

Dr(θ, ϕ)

2πNr(θ, η)
Im M(eiϕ) dϕ. (2.22)

For later purposes, note that for d(θ) > θ0, (2.17) implies

0 ≤ 1 − Nr(θ, η) ≤ C(1 − r)1−2κ , (2.23)

which goes to zero since κ < 1
2 . Using (2.22) and (2.20), we bound ln−[Im M(reiθ )/a]

as two ln−’s. Since ln− is convex and Dr(θ, ϕ)/2πNr(θ, η) χ(θ−η,θ+η)(ϕ) dϕ is a prob-
ability measure, we can use Jensen’s inequality to see that

w(θ) ln−
[

Im M(reiθ )

a

]
≤ w(θ) ln−[Nr(θ, η)]

+
∫ θ+η(r)

θ−η(r)

w(θ)

w(ϕ)

Dr(θ, ϕ)

Nr(θ, η)
w(ϕ) ln−

[
Im M(eiϕ)

a

]
dϕ

2π
.

(2.24)

In the first term for the θ ’s with d(θ) ≥ θ0(r), Nr obeys (2.23) so
∫

d(θ)≥θ0(r)

w(θ) ln−[Nr(θ, η)] dθ = O((1 − r)1−2κ) → 0. (2.25)

In the second term, note that for the θ ’s in question, Nr(θ, η)−1 − 1 = O((1 − r)1−2κ)

and by (2.15), w(θ)/w(ϕ) − 1 = O((1 − r)κ−βγ ). Since Dr(θ, ϕ) ≤ Pr(θ, ϕ), we thus
have
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∫
d(θ)≥θ0

ln−
[

Im M(reiθ )

a

]
w(θ) dθ

≤ O((1 − r)1−2κ) + [1 + O((1 − r)1−2κ)][1 + O((1 − r)κ−βγ )]∫
d(θ)≥θ0|ϕ−θ |≤η

Pr(θ, ϕ)w(ϕ) ln−
[

Im M(eiϕ)

a

]
dϕ

dθ

2π
. (2.26)

Since the integrand is positive, we can extend it to {(θ, ϕ) | θ ∈ [0, 2π ], ϕ ∈ [0, π ]}
and do the θ integration using

∫
Pr(θ, ϕ)dθ/2π = 1. The result is (2.21). ��

This concludes the proof of Theorem 2.1. By going through the proof, one easily sees
that

Theorem 2.8. Theorem 2.1 remains true if in (2.1) and (2.6), ln[Im M(reiϕ)] is replaced
by ln[g(r) sin ϕ + Im M(reiϕ)], where g(r) ≥ 0 and g(r) → 0 as r ↑ 1.

Proof. In the ln+ bounds, we get an extra [sup 1
2 <r<1 g(r)] sin θ in f2(θ). Since we still

have pointwise convergence, we easily get the analog of Theorem 2.2. In the proof of
Theorem 2.3, Fatou is unchanged since g(r) → 0, and since

ln−(g(r) sin ϕ + Im M(reiϕ)) ≤ ln−(Im M(reiϕ))

the lim sup bound has an unchanged proof. ��

3. The Step-by-Step Sum Rules

We will call J a BW matrix (for Blumenthal-Weyl) if J is a bounded Jacobi matrix with
σess(J ) = [−2, 2], for example, if J − J0 is compact. Let J (n) be the matrix resulting
from removing the first n rows and columns. Let {E±

j (J )}∞j=1 be the eigenvalues of J

above/below ±2, ordered by ±E±
1 ≥ ±E±

2 ≥ · · · with E±
j (J ) defined to be ±2 if

there are only finitely many eigenvalues k < j above/below ±2. Then by the min-max
principle,

±E±
j+n(J ) ≤ ±E±

j (J (n)) ≤ ±E±
j (J ). (3.1)

We have limj→∞ E±
j (J ) = ±2 if J is a BW matrix.

It follows by the convergence of sums of alternating series that if f is even or odd
and monotone on [2, ∞) with f (2) = 0, then

lim
N→∞

∑
±

N∑
j=1

[f (E±
j (J )) − f (E±

j (J (n)))] ≡ δfn(J ) (3.2)

exists and is finite. If β±
j is defined by E±

j = β±
j + (β±

j )−1 with |βj | > 1, we define

X
(n)
� (J ) as δfn(J ) for

f (E) =
{

ln|β| � = 0
− 1

�
[β� − β−�] � = 1, 2, . . .

. (3.3)
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In addition, we will need

ζ
(n)
� (J ) =

{
− ∑n

j=1 ln(aj ) � = 0
2
�

limm→∞[Tr(T�(
1
2Jm;F )) − Tr(T�(

1
2J

(n)
m−n;F ))] � = 1, 2, . . .

, (3.4)

where Jm;F is the finite matrix formed from the first m rows and columns of J and T�

is the �th Chebyshev polynomial (of the first kind). As noted in [11, Prop. 4.3], the limit
in (3.4) exists since the expression is independent of m once m > � + n.

Note that

ζ
(n)
1 (J ) =

n∑
j=1

bj , (3.5)

ζ
(n)
2 (J ) =

n∑
j=1

1
2b2

j + (a2
j − 1), (3.6)

as computed in [11].
Note that by construction (with J (0) ≡ J ),

X
(n)
� (J ) =

n−1∑
j=0

X
(1)
� (J (j)) (3.7)

and

ζ
(n)
� (J ) =

n−1∑
j=0

ζ
(1)
� (J (j)). (3.8)

As final objects we need

Z(J ) = 1

4π

∫ 2π

0
ln

(
sin θ

Im M(eiθ , J )

)
dθ, (3.9)

and for � ≥ 1,

Z±
� (J ) = 1

4π

∫ 2π

0
ln

(
sin θ

Im M(eiθ , J )

)
(1 ± cos(�θ)) dθ, (3.10)

Y�(J ) = − 1

2π

∫ 2π

0
ln

(
sin θ

Im M(eiθ , J )

)
cos(�θ) dθ. (3.11)

We include “sin θ” inside ln(. . . ) so that Z(J0) = Z±
� (J0) = Y�(J0) = 0 because

M(z, J0) = z. Notice that (3.9) is the same as (1.2). Indeed,

Im M(eiθ , J ) = sgn(π − θ) π
dνac

dE
(2 cos θ)

for a.e. θ ∈ (0, 2π), and the factor (4π)−1 replaces (2π)−1 because under z 	→ z + z−1

the unit circle covers (−2, 2) twice.
Of course,

Z±
� (J ) = Z(J ) ∓ 1

2 Y�(J ) (3.12)
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when all integrals converge. By Theorem 2.2, the ln− piece of the integrals in (3.9)–
(3.11) always converges. Since 1 ± cos(�θ) ≥ 0, the integrals defining Z(J ), Z±

� (J )

either converge or diverge to +∞. We therefore always define Z(J ) and Z±
� (J ) although

they may take the value +∞. Since [1±cos(�θ)] ≤ 2, Z(J ) < ∞ implies Z±
� (J ) < ∞,

so we define Y�(J ) by (3.12) if and only if Z(J ) < ∞.
If Z(J ) < ∞, we say J obeys the Szegő condition or J is Szegő. If Z±

1 (J ) < ∞, we
say J is Szegő at ±2 since, for example, if Z+

1 (J ) < ∞, the integral in (3.9) converges
near θ = 0 (E = 2 cos(θ) near +2) and if Z−

1 (J ) < ∞, the integral converges near
θ = π (i.e., E = −2). Note that while Z+

1 (J ) < ∞ only implies convergence of (3.9)
at θ = 0, it also implies that at θ = π the integral with a sin2 θ inserted converges
(quasi-Szegő condition).

Our main goal in this section is to prove the next three theorems

Theorem 3.1 (Step-by-Step Sum Rules). Let J be a BW matrix. Z(J ) < ∞ if and only
if Z(J (1)) < ∞, and if Z(J ) < ∞, we have

Z(J ) = − ln(a1) + X
(1)
0 (J ) + Z(J (1)), (3.13)

Y�(J ) = ζ
(1)
� (J ) + X

(1)
� (J ) + Y�(J

(1)); � = 1, 2, 3, . . . . (3.14)

Remarks. 1. By iteration and (3.7)/(3.8), we obtain if Z(J ) < ∞, then Z(J (n)) < ∞
and

Z(J ) = −
n∑

j=1

ln(aj ) + X
(n)
0 (J ) + Z(J (n)), (3.15)

Y�(J ) = ζ
(n)
� (J ) + X

(n)
� (J ) + Y�(J

(n)); � = 1, 2, 3, . . . . (3.16)

2. We call (3.13)/(3.14) the step-by-step Case sum rules.

Theorem 3.2 (One-Sided Step-by-Step Sum Rules). Let J be a BW matrix. Z±
1 (J ) < ∞

if and only if Z±
1 (J (1)) < ∞, and if Z±

1 (J ) < ∞, then we have for � = 1, 3, 5, . . . ,

Z±
� (J ) = − ln(a1) ∓ 1

2 ζ
(1)
� (J ) + X

(1)
0 (J ) ∓ 1

2 X
(1)
� (J ) + Z±

� (J (1)). (3.17)

Remark. Theorem 3.2 is intended to be two statements: one with all the upper signs
used and one with all the lower signs used.

Theorem 3.3 (Quasi-Step-by-Step Sum Rules). Let J be a BW matrix. Z−
2 (J ) < ∞ if

and only if Z−
2 (J (1)) < ∞, and if Z−

2 (J ) < ∞, then for � = 2, 4, . . . , we have

Z−
� (J ) = − ln(a1) + 1

2 ζ
(1)
� (J ) + X

(1)
0 (J ) + 1

2 X
(1)
� (J ) + Z−

� (J (1)). (3.18)

Remarks. 1. The name comes from the fact that since 1 − cos 2θ = 2 sin2 θ , Z−
2 (J ) is

what Killip-Simon [11] called the quasi-Szegő integral,

Z−
2 (J ) = 1

2π

∫ 2π

0
ln

(
sin θ

Im M(eiθ , J )

)
sin2 θ dθ. (3.19)

2. Since Z(J ) < ∞ implies Z+
1 (J ) and Z−

1 (J ) < ∞, and Z+
1 (J ) or Z−

1 (J ) < ∞
imply Z−

2 (J ) < ∞, we have additional sum rules in various cases.
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3. In [12], Laptev et al. prove sum rules for Z−
� (J ) where � = 4, 6, 8, . . . . One can

develop step-by-step sum rules in this case and use it to streamline the proof of their
rules as we streamline the proof of the Killip-Simon P2 rule (our Z−

2 sum rule) in
the next section.

The step-by-step sum rules were introduced in Killip-Simon, who first take r < 1 (in
our language below), then take n → ∞, and then r ↑ 1 with some technical hurdles to
take r ↑ 1. By first letting r ↑ 1 with n < ∞, and then n → ∞ as in the next section,
we can both simplify their proof and obtain additional results. The idea of using the
imaginary part of

−M(z; J )−1 = −(z + z−1) + b1 + a2
1M(z; J (1)) (3.20)

is taken from Killip-Simon [11].

Proof of Theorem 3.1. Taking imaginary parts of both sides of (3.20) with z = reiθ and
r < 1, we obtain

[Im M(reiθ ; J )] |M(reiθ ; J )|−2 = (r−1 − r) sin θ + a2
1 Im M(reiθ ; J (1)). (3.21)

Taking ln’s of both sides, we obtain

ln

(
sin θ

Im M(reiθ ; J )

)
= t1 + t2 + t3, (3.22)

where

t1 = −2 ln|M(reiθ ; J )|, (3.23)

t2 = −2 ln a1, (3.24)

t3 = ln

(
sin θ

g(r) sin θ + Im M(reiθ ; J (1))

)
, (3.25)

where

g(r) = a−2
1 (r−1 − r). (3.26)

Let

f (z) = M(rz; J )

rz
,

so f (0) = 1 (see (3.20)). In the unit disk, f (z) is meromorphic and has poles at
{(rβ±

j (J ))−1 | j so that |β±
j (J )| > r−1} and zeros at {(rβ±

j (J (1)))−1 | j so that

|β±
j (J (1))| > r−1}. Thus, by Jensen’s formula for f :

1

4π

∫ 2π

0
t1 dθ = − ln r +

∑

|β±
j (J )|>r−1

ln|rβ±
j (J )| −

∑

|β±
j (J (1))|>r−1

ln|rβ±
j (J (1))|.

By (3.1), the number of terms in the sums differs by at most 2, so that the ln(r)’s cancel
up to at most 2 ln(r) → 0 as r ↑ 1. Thus as r ↑ 1,

1

4π

∫ 2π

0
(t1 + t2) dθ → − ln(a1) + X

(1)
0 (J ). (3.27)
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It follows by (3.22) and Theorems 2.1 and 2.8 (with w(ϕ) = 1) that Z(J ) < ∞ if
and only if Z(J (1)) < ∞, and if they are finite, (3.13) holds.

It also follows that if Z(J ) < ∞, we have L1 convergence of the ln’s to their r = 1
values. That implies convergence of the integrals with cos(�θ) inside. Higher Jensen’s
formula as in [11] then implies (3.14). In place of ln|βr−1|, we have (rβ)� − (rβ)−�, but
the sums still converge to the r = 1 limit since we can separate the β� and β−� terms,
and then the r’s factor out. ��
Proofs of Theorems 3.2 and 3.3. These are the same as the above proof, but now the
weight w is either 1 ± cos(θ) or 1 − cos(2θ) and that weight obeys (2.3) and (2.4). ��
Corollary 3.4. Let J be a BW matrix. If J and J̃ differ by a finite rank perturbation,
then J is Szegő (resp. Szegő at ±2) if and only if J̃ is.

Proof. For some n, J (n) = J̃ (n), so this is immediate from Theorems 3.1 and 3.2. ��
Conjecture 3.5. Let J be a BW matrix. If J and J̃ differ by a trace class perturbation,
then J is Szegő (resp. Szegő at ±2) if and only if J̃ is. It is possible this conjecture is only
generally true if J − J0 is only assumed compact or is only assumed Hilbert-Schmidt.

This conjecture for J = J0 is Nevai’s conjecture recently proven by Killip-Simon.
Their method of proof and the ideas here would prove this conjecture if one can prove
a result of the following form. Let J, J̃ differ by a finite rank operator so that by the
discussion before (3.2),

lim
N→∞

∑
±

N∑
j=1

(√
E±

j (J )2 − 4 −
√

E±
j (J̃ )2 − 4

)
≡ δ(J, J̃ )

exists and is finite. The conjecture would be provable by the method of [11] and this
paper (by using the step-by-step sum rule to remove the first m pieces of J and then
replacing them with the first m pieces of J̃ ) if one had a bound of the form

|δ(J, J̃ )| ≤ (const.)Tr(|J − J̃ |). (3.28)

Equation (3.28) with J = J0 is the estimate of Hundertmark-Simon [10]. We have
counterexamples that show (3.28) does not hold for a universal constant c. However, in
these examples, ‖J‖ → ∞ as c → ∞. Thus it could be that (3.28) holds with c only
depending on J for some class of J ’s. If it held with a bound depending only on ‖J‖, the
conjecture would hold in general. If J was required in J0+ Hilbert-Schmidt, we would
get the conjecture for such J ’s.

4. The Z0, Z
±
1 , and Z

−
2 Sum Rules

Our goal here is to prove that sum rules of Case type hold under certain hypotheses.
Of interest on their own, these considerations also somewhat simplify the proof of the
P2 sum rule in Sect. 8 of [11], and considerably simplify the proof of the C0 sum rule
for trace class J − J0 from Sect. 9 of [11]. Throughout, J will be a BW matrix. There
are two main tools. As in [11], lower semicontinuity of the Z’s in J (in the topology
of pointwise convergence of matrix elements) gets inequalities in one direction. We use
step-by-step sum rules and boundedness from below Z for the other direction.
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We first introduce some quantities involving a fixed Jacobi matrix:

Ā0(J ) = lim sup
n→∞

(
−

n∑
j=1

ln(aj )

)
,

(4.1)

A0(J ) = lim inf
n→∞

(
−

n∑
j=1

ln(aj )

)
,

Ā±
1 (J ) = lim sup

n→∞

(
−

n∑
j=1

(aj − 1 ± 1
2bj )

)
,

(4.2)

A±
1 (J ) = lim inf

n→∞

(
−

n∑
j=1

(aj − 1 ± 1
2bj )

)
,

A2(J ) =
∞∑

j=1

[
1
4b2

j + 1
2G(aj )

]
, (4.3)

where

G(a) = a2 − 1 − ln(a2).

Since G(a) ≥ 0, the finite sums have a limit (which may be +∞).
We note that for a near 1, G(a) ∼ 2(a−1)2. Thus A2(J ) is finite if and only if J −J0

is Hilbert-Schmidt. In (4.2), we can use aj −1 in place of ln(aj ) because if {aj −1} ∈ �2

(e.g., if J − J0 is Hilbert-Schmidt), then
∑|ln(aj ) − (aj − 1)| < ∞. Notice also that

in the case of a discrete Schrödinger operator (i.e., an ≡ 1), Ā0(J ) = A0(J ) = 0.
Next, we introduce some functions of the eigenvalues:

E0(J ) =
∑
j,±

ln|β±
j |, (4.4)

E±
1 (J ) =

∑
j

√
(E±

j )2 − 4 , (4.5)

E2(J ) =
∑
j,±

F(E±
j ), (4.6)

where F(E) = 1
4 [β2 − β−2 − ln(β4)] with E = β + β−1 and |β| > 1. For |E| ∼ 2,

F(E) is O((|E| − 2)3/2). In (4.4) and (4.6), we sum over + and −. In (4.5), we define
E+

1 and E−
1 with only the + or only the − terms.

We need the following basis-dependent notion:

Definition. Let B be a bounded operator on �2(Z+). We say B has a conditional trace
if

lim
�→∞

�∑
j=1

〈δj , Bδj 〉 ≡ c-Tr(B) (4.7)

exists and is finite.

If B is not trace class, this object is not unitarily invariant.
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Our goal in this section is to prove the following theorems whose proof is deferred
until after all the statements.

Theorem 4.1. Let J be a BW matrix. Consider the four statements:

(i) Ā0(J ) > −∞,
(ii) A0(J ) < ∞,

(iii) Z(J ) < ∞,
(iv) E0(J ) < ∞.

Then

(a) (ii) + (iv) ⇒ (iii) + (i),
(b) (i) + (iii) ⇒ (iv) + (ii),
(c) (iii) ⇒ Ā0(J ) < ∞,
(d) (iv) ⇒ A0(J ) > −∞.

Thus (iii) + (iv) ⇒ (i) + (ii). In particular, if A0(J ) = Ā0(J ), that is, the limit exists,
then the finiteness of any two of Z(J ), E0(J ), and Ā0(J ) implies the finiteness of the
third.

If all four conditions hold and J − J0 is compact, then

(e)

lim
n→∞

(
−

n∑
j=1

ln(aj )

)
≡ A0(J ) (4.8)

exists and is finite, and

Z(J ) = A0(J ) + E0(J ). (4.9)

(f) For each � = 1, 2, . . . ,

−
∑
j,±

�−1[β±
j (J )� − β±

j (J )−�] ≡ X
(∞)
� (J ) (4.10)

converges absolutely and equals limn→∞ X
(n)
� (J ).

(g) For each � = 1, 2, . . . ,

B�(J ) = 2

�

{
T�

(
J

2

)
− T�

(
J0

2

)}
(4.11)

has a conditional trace and

c-Tr(B�(J )) = lim
n→∞ ζ

(n)
� (J ) (4.12)

for example, if � = 1,
∑n

j=1 bj converges to a finite limit.
(h) The Case sum rule holds:

Y�(J ) = c-Tr(B�(J )) + X
(∞)
� (J ), (4.13)

where Y� is given by (3.11), X
(∞)
� by (4.10), and c-Tr(B�(J )) by (4.7), (4.11), and

(4.12).



412 B. Simon, A. Zlatoš

Remarks. 1. In one sense, this is the main result of this paper.
2. We will give examples later where Ā0(J ) = A0(J ) and one of the conditions (i)/(ii),

(iii), (iv) holds and the other two fail.
3. For � odd, T�(J0/2) vanishes on-diagonal. By Proposition 2.2 of [11] and the fact

that the diagonal matrix elements of J k
0 are eventually constant, it follows that for

� even, T�(J0/2) eventually vanishes on-diagonal and c-Tr(T�(J0/2)) = − 1
2 . Thus

(g) says c-Tr(T�(J/2)) exists and the sum rule (4.13) can replace c-Tr(B�(J )) by
2
�
c-Tr(T�(J/2)) plus a constant (zero if � is odd and 1/� if � is even). For � even,

c-Tr(T�(J0/2)) = − 1
2 while Tr(T�(J0,n;F /2)) = −1 forn large becauseT�(J0,n;F /2)

has two ends.

Corollary 4.2. Let J − J0 be compact. If Z(J ) < ∞, then − ∑n
j=1 ln(aj ) either con-

verges or diverges to −∞.

Remarks. 1. We will give an example later where Z(J ) < ∞, and limn→∞(− ∑n
j=1

ln(aj )) = −∞.
2. In other words, if J − J0 is compact and Ā0(J ) �= A0(J ), then Z(J ) = ∞.
3. Similarly, if J − J0 is compact and E0(J ) < ∞, then the limit exists and is finite or

is +∞.

Proof. If Z(J ) < ∞ and Ā0 > −∞, then by (b) of the theorem, all four conditions hold,
and so by (e), the limit exists. On the other hand, if Ā0 = −∞, then Ā0 = A0 = −∞. ��
Corollary 4.3. If J − J0 is trace class, then Z(J ) < ∞, E0(J ) < ∞, and the sum rules
(4.9) and (4.13) hold.

Remark. This is a result of Killip-Simon [11]. Our proof that Z(J ) < ∞ is essentially
the same as theirs, but our proof of the sum rules is much easier.

Proof. Since J − J0 is trace class, it is compact. Clearly, Ā0 = A0, and is neither ∞
nor −∞ since aj > 0 and

∑|aj − 1| < ∞ imply
∑|ln(aj )| < ∞. By the bound of

Hundertmark-Simon [10], E0(J ) < ∞. The sum rules then hold by (a), (e), and (h) of
Theorem 4.1. ��
Theorem 4.4. Suppose J − J0 is Hilbert-Schmidt. Then

(i) A±
1 < ∞ and E±

1 < ∞ implies Z±
1 < ∞.

(ii) Z±
1 < ∞ implies Ā±

1 < ∞.
(iii) Z±

1 < ∞ and Ā±
1 > −∞ implies E±

1 < ∞.
(iv) E±

1 < ∞ implies A±
1 > −∞.

Remarks. 1. Each of (i)–(iv) is intended as two statements.
2. In Sect. 6, we will explore (ii), which is the most striking of these results since its

contrapositive gives very general conditions under which the Szegő condition fails.
3. The Hilbert-Schmidt condition in (i) and (iv) can be replaced by the somewhat weaker

condition that
∑
j,±

(|E±
j | − 2)3/2 < ∞. (4.14)

That is true for (ii) and (iii) also, but by the Z−
2 sum rule, (4.14) plus Z±

1 < ∞ implies
J − J0 is Hilbert-Schmidt.
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Theorem 4.5. Let J be a BW matrix. Then

Z−
2 (J ) + E2(J ) = A2(J ). (4.15)

Remarks. 1. This is, of course, the P2 sum rule of Killip-Simon [11]. Our proof that
Z−

2 (J ) + E2(J ) ≤ A2(J ) is identical to that in [11], but our proof of the other half
is somewhat streamlined.

2. As in [11], the values +∞ are allowed in (4.15).

Proof of Theorem 4.1. As in [11], let Jn be the infinite Jacobi matrix obtained from J

by replacing a� by 1 if � ≥ n and b� by 0 if � ≥ n + 1. Then (3.15) (noting J
(n)
n = J0

and Z(J0) = 0) reads

Z(Jn) = −
n∑

j=1

ln(aj ) +
∑
j,±

ln|β±
j (Jn)|. (4.16)

[11, Sect. 6] implies the eigenvalue sum converges to E0(J ) if J − J0 is compact,
and in any event, is bounded above by E0(J ) + c0, where c0 = 0 if J − J0 is compact
and otherwise,

c0 = ln|β+
1 (J )| + ln|β−

1 (J )|. (4.17)

Moreover, by semicontinuity of the entropy [11, Sect. 5], Z(J ) ≤ lim inf Z(Jn). Thus
we have

Z(J ) ≤ A0(J ) + E0(J ) + c0. (4.18)

Thus far, the proof is directly from [11]. On the other hand, by (3.15), we have

Z(J ) ≥ Ā0(J ) + lim inf X
(n)
0 (J ) + lim inf Z(J (n)). (4.19)

By the lemma below, limn→∞ X
(n)
0 (J ) = E0(J ). Moreover, by Theorem 5.5 (Eq. (5.26))

of Killip-Simon [11], Z(J (n)) ≥ − 1
2 ln(2), and if J (n) → J0 in norm, that is, J − J0 is

compact, then by semicontinuity of Z, 0 = Z(J0) ≤ lim inf Z(J (n)). Therefore, (4.19)
implies that

Z(J ) ≥ Ā0(J ) + E0(J ) − c, (4.20)

where

c = 0 if J − J0 is compact; c = 1
2 ln(2) in general. (4.21)

With these preliminaries out of the way,

Proof of (d). (iv) and (4.18) imply that

Ā0(J ) ≥ A0(J ) ≥ Z(J ) − E0(J ) − c0 > −∞. (4.22)

Proof of (a). Equation (4.18) shows Z(J ) < ∞, and (d) shows that (i) holds.

Proof of (c). By (4.20) and E0(J ) ≥ 0,

Z(J ) ≥ Ā0(J ) − c,

so Z(J ) < ∞ implies Ā0(J ) < ∞.
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Proof of (b). Since Ā0(J ) > −∞ and c < ∞, (4.20) plus Z(J ) < ∞ implies E0(J ) <

∞. (c) shows that (ii) holds.

Note that (iii), (iv), and (4.20) imply that

A0(J ) ≤ Ā0(J ) ≤ Z(J ) − E0(J ) + 1
2 ln(2) < ∞. (4.23)

Thus we have shown more than merely (iii) + (iv) ⇒ (i) + (ii), namely, (iii) + (iv) imply
by (4.22) and (4.23)

−∞ < Ā0(J ) ≤ A0(J ) + 1
2 ln(2) + c0 < ∞. (4.24)

We can say more if J − J0 is compact.

Proof of (e). Equation (4.23) is now replaced by

A0(J ) ≤ Ā0(J ) ≤ Z(J ) − E0(J ),

since we can take c = 0 in (4.20). This plus (4.22) with c0 = 0 implies Ā0(J ) = A0(J )

and (4.9).

Proof of (f), (g), (h). We have the sum rules (3.15), (3.16). Z(J )± 1
2Y�(J ) is an entropy

up to a constant, and so, lower semicontinuous. Since ‖J (n) − J0‖ → 0, we have

lim inf(Z(J (n)) ± 1
2Y�(J

(n))) ≥ 0. (4.25)

On the other hand, since Z(J (n)) < ∞ and E0(J
(n)) ≤ E0(J ) < ∞, J (n) obeys the sum

rule (4.9). Since − ∑n
j=1 ln(aj ) converges conditionally

lim
n→∞ lim

m→∞

(
−

m+n∑
j=n

ln(aj )

)
= 0.

Moreover, E0(J
(n)) → 0 by Lemma 4.6 below and we conclude that lim Z(J (n)) = 0.

Thus (4.25) becomes

lim inf
n

Y�(J
(n)) ≥ 0, lim sup

n
Y�(J

(n)) ≤ 0

or

lim
n

Y�(J
(n)) = 0. (4.26)

By the lemma below, limn X
(n)
� (J ) = X

(∞)
� (J ) exists and is finite. Since E0(J ) < ∞,

we have that the sum defining X
(∞)
� (J ) is absolutely convergent. This proves (f).

By this fact, (3.16), and (4.26), limn→∞ ζ
(n)
� (J ) exists, is finite, and obeys the sum

rule

Y�(J ) = lim
n→∞ ζ

(n)
� (J ) + X

(∞)
� (J ).

By Propositions 2.2 and 4.3 of Killip-Simon [11], the existence of limn→∞ ζ
(n)
� (J )

is precisely the existence of the conditional trace. ��
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Lemma 4.6. Let J be a BW matrix. Let f be a monotone increasing continuous function
on [2, ∞) with f (2) = 0. Then

lim
n→∞

∞∑
j=1

[f (E+
j (J )) − f (E+

j (J (n)))] =
∞∑

j=1

f (E+
j (J )). (4.27)

Remarks. 1. The right side of (4.27) may be finite or infinite.
2. The sum on the left is interpreted as the limit of the sum from 1 to n as n → ∞,

which exists and is finite by the arguments at the start of Sect. 3.
3. A similar result holds for E−

j and f monotone decreasing on (−∞, −2].

Proof. Call the sum on the left of (4.27) (δf )(J, n). Since E+
j (J (n)) ≤ E+

j (J ), we have

(δf )(J, n) ≥
m∑

j=1

[f (E+
j (J )) − f (E+

j (J (n)))] (4.28)

so, if we show for each fixed j as n → ∞,

E+
j (J (n)) → 2 (4.29)

we have, by taking n → ∞ and then m → ∞, that

lim inf(δf )(J, n) ≥
∞∑

j=1

f (E+
j (J )). (4.30)

On the other hand, since f ≥ 0, for each m,

m∑
j=1

[f (E+
j (J )) − f (E+

j (J (n)))] ≤
m∑

j=1

f (E+
j (J )),

so taking m to infinity and then n → ∞,

lim sup(δf )(J, n) ≤
∞∑

j=1

f (E+
j (J )). (4.31)

Thus (4.29) implies the result, so we need only prove that.
Fix ε > 0 and look at the solution of the orthogonal polynomial sequence un =

Pn(2 + ε) as a function of n. By Sturm oscillation theory [8], the number of sign
changes of un (i.e., number of zeros of the piecewise linear interpolation of un) is the
number of j with E+

j (J ) > 2 + ε. Since J is a BW matrix, this is finite, so there exist
N0 with un of definite sign if n ≥ N0 − 1. It follows by Sturm oscillation theory again
that for all j ,

E+
j (J (n)) ≤ 2 + ε

if n ≥ N0. This implies (4.29). ��
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The combination of this Sturm oscillation argument and Theorem 3.1 gives one tools
to handle finitely many bound states as an alternate to Nikishin [16]. For the oscillation
argument says that if J has finitely many eigenvalues outside [−2, 2], there is a J (n)

with no eigenvalues. On the other hand, by Theorem 3.1, Z(J ) < ∞ if and only if
Z(J (n)) < ∞.

Proof of Theorem 4.5. Z−
2 (J ) is an entropy and not merely an entropy up to a constant

(see [11]). Thus Z−
2 (J (n)) ≥ 0 for all J (n). Moreover, since the terms in A2 are positive,

the limit exists. Thus, following the proofs of (4.18) and (4.20) but using (3.18) in place
of (3.15),

Z−
2 (J ) + E2(J ) ≤ A2(J )

and

Z−
2 (J ) + E2(J ) ≥ A2(J )

which yields the P2 sum rule. In the above, we use the fact that in place of Z(J ) ≥
− 1

2 ln(2), one has Z−
2 (J ) ≥ 0, and the fact that A2(J ) < ∞ implies that J − J0 is

compact. ��
Proof of Theorem 4.4. Let g(β) = ln β − 1

2 (β − β−1) in the region β > 0. Then

g′(β) = β−1 − 1
2 − 1

2β−2 = − 1
2β−2(β − 1)2

so g is analytic near β = 1 and g(1) = g′(1) = g′′(1) = 0, that is, g(β) ∼ c(β−1)3. On
the other hand, h(β) = ln β+ 1

2 (β−β−1) is g(β)+(β−β−1) = β−β−1+O((β−1)3).

Since β+β−1 = E means β−β−1 = √
E2 − 4 and β−1 = O

(√
E − 2

)
, we conclude

that

E > 2 ⇒ ln(β) − 1
2 (β − β−1) = O(|E − 2|3/2),

ln(β) + 1
2 (β − β−1) =

√
E2 − 4 + O(|E − 2|3/2)

while

E < −2 ⇒ ln(|β|) − 1
2 (β − β−1) =

√
E2 − 4 + O(|E + 2|3/2),

ln(|β|) + 1
2 (β − β−1) = O(|E + 2|3/2).

It follows, using Lemma 4.6, that

lim
n→∞ X

(n)
0 (J ) ∓ 1

2X
(n)
1 (J ) = E±

1 + bdd

since Theorem 4.5 implies
∑

j,±
(√

E±2
j − 4

)3
< ∞ (or, by results of [10]). Thus for a

constant c1 dependng only on ‖J − J0‖2, we have

Z±
1 (J ) ≤ c1 + A±

1 + E±
1 (4.32)

by writing the finite rank sum rule, taking limits and using the argument between (4.16)
and (4.17). Since Z±

1 (J ) are entropies up to a constant, we have Z±
1 (J (n)) ≥ −c2 and

so by (3.17),

Z±
1 (J ) ≥ −c2 + Ā±

1 + E±
1 − c‖J − J0‖2

2. (4.33)
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With these preliminaries, we have

Proof of (i), (iv). Immediate from (4.32).

Proof of (ii). Since E±
1 ≥ 0, (4.33) implies

Z±
1 (J ) ≥ −c2 + Ā±

1

so (ii) holds.

Proof of (iii). Immediate from (4.33). ��
Remark. (i)–(iv) of Theorem 4.4 are exactly (a)–(d) of Theorem 4.1 for the Z±

1 sum
rules. One therefore expects a version of (e) of that theorem to hold as well. Indeed, a
modification of the above proof yields for J − J0 Hilbert-Schmidt that if E+

1 , Z+
1 , Ā+

1
are finite, then

Z+
1 (J ) = −

∞∑
n=1

[ln(an) + 1
2bn] +

∑
j,±

[ln|β±
j | + 1

2 (β±
j − (β±

j )−1)]

and if E−
1 , Z−

1 , Ā−
1 are finite, then

Z−
1 (J ) = −

∞∑
n=1

[ln(an) − 1
2bn] +

∑
j,±

[ln|β±
j | − 1

2 (β±
j − (β±

j )−1)].

5. Shohat’s Theorem with an Eigenvalue Estimate

Shohat [22] translated Szegő’s theory from the unit circle to the real line and was able
to identify all Jacobi matrices which lead to measures with no mass points outside
[−2, 2] and have Z(J ) < ∞. The strongest result we know of this type is the following
(Theorem 4′) from Killip-Simon [11] (the methods of Nevai [14] can prove the same
result):

Theorem 5.1. Let σ(J ) ⊂ [−2, 2]. Consider

(i) A0(J ) < ∞ where A0 is given by (4.1).
(ii) Z(J ) < ∞ .

(iii)
∑∞

n=1(an − 1)2 + ∑∞
n=1 b2

n < ∞ .
(iv) A0 = Ā0 and is finite.
(v) limN→∞

∑N
n=1 bn exists and is finite.

Then (under σ(J ) ⊂ [−2, 2]), we have

(i) ⇐⇒ (ii),

and either one implies (iii), (iv), and (v).

We can prove the following extension of this result:

Theorem 5.2. Theorem 5.1 remains true if σ(J ) ⊂ [−2, 2] is replaced by σess(J ) ⊂
[−2, 2] and (1.6).
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Remarks. 1. Gončar [9], Nevai [14], and Nikishin [16] extended Shohat-type theorems
to allow finitely many bound states outside [−2, 2].

2. Peherstorfer-Yuditskii [17] recently proved that E0(J ) < ∞ and (ii) implies (iv) and
additional results on polynomial asymptotics.

Proof. Let us suppose first σess(J ) = [−2, 2], so J is a BW matrix. By Theorem 4.1(a),
(i) of this theorem plus E0(J ) < ∞ implies (ii) of this theorem. By Theorem 4.1(c), (ii)
of this theorem implies (i) of this theorem.

If either holds, then (iv) follows from (e) of Theorem 4.1, (v) from the � = 1 case
of (g) of Theorem 4.1. (iii) follows from Theorem 4.5 if we note that E0 < ∞ implies
E2 < ∞, that Z(J ) < ∞ implies Z−

2 (J ) < ∞ and that G(a) = O((a − 1)2).
If we only have a priori that σess(J ) ⊂ [−2, 2], we proceed as follows. If Z(J ) < ∞,

σac(J ) ⊃ [−2, 2] so, in fact, σess(J ) = [−2, 2]. If A0 < ∞, we look closely at the
proof of Theorem 4.1(a). Equation (4.18) does not require σess(J ) = [−2, 2], but only
that σess(J ) ⊂ [−2, 2]. Thus, A0 < ∞ implies Z(J ) < ∞ if E0(J ) < ∞. ��

There is an interesting way of rephrasing this. Let the normalized orthogonal poly-
nomial obey

Pn(x) = γnx
n + O(xn−1). (5.1)

As is well known (see, e.g. [23]),

γn = (a1a2 . . . an)
−1. (5.2)

Thus

A0 = lim inf ln(γn) (5.3)

and

Ā0 = lim sup ln(γn). (5.4)

Corollary 5.3. Suppose σess(J ) ⊂ [−2, 2] and E0(J ) < ∞. Then Z(J ) < ∞ (i.e., the
Szegő condition holds) if and only if γn is bounded from above (and in that case, it is
also bounded away from 0; indeed, lim γn exists and is in (0, ∞)).

Remark. Actually, lim sup γn < ∞ is not needed; lim inf γn < ∞ is enough.

Proof. By (5.3), γn bounded implies A0 < ∞, and thus Z(J ) < ∞. Conversely,
Z(J ) < ∞ implies −∞ < A0 = Ā0 < ∞. So by (5.2), it implies γn is bounded above
and below. ��

In the case of orthogonal polynomials on the circle, Szegő’s theorem says Z < ∞
if and only if κj is bounded if and only if

∑∞
j=1|αj |2 < ∞, where κj is the leading

coefficient of the normalized polynomials, and αj are the Verblunsky (aka Geronimus,
aka reflection) coefficients. In the real line case, if one drops the a priori requirement
that E0(J ) < ∞, it can happen that γn is bounded but Z(J ) = ∞. For example, if
an ≡ 1 but bn = n−1, then Z(J ) cannot be finite. For J − J0 ∈ �2, so Theorem 4.4(ii)
is applicable and thus, Ā−

1 = ∞ implies Z(J ) = ∞.
But the other direction always holds:

Theorem 5.4. Let J be a BW matrix with Z(J ) < ∞ (i.e., the Szegő condition holds).
Then γn is bounded. Moreover, if J − J0 is compact, then limn→∞ γn exists.



Sum Rules and the Szegő Condition 419

Remarks. 1. The examples of the next section show Z(J ) < ∞ is consistent with
lim γn = 0.

2. This result – even without a compactness hypothesis – is known. For γn is monotone
increasing in the measure (see, e.g., Nevai [15]) and so one can reduce to the case
where Shohat’s theorem applies.

Proof. By Theorem 4.1(c), Z(J ) < ∞ implies Ā0 < ∞ which, by (5.4), implies γn is
bounded. If J − J0 is compact, then Corollary 4.2 implies that lim γn =
exp(lim − ∑n

j=1 ln(aj )) exists but can be zero. ��
Here is another interesting application of Theorem 5.2.

Theorem 5.5. Suppose bn ≥ 0 and

∞∑
n=1

|an − 1| < ∞. (5.5)

Then E0(J ) < ∞ if and only if
∑∞

n=1 bn < ∞.

Proof. If
∑∞

n=1 bn < ∞, E0(J ) < ∞ by (5.5) and the bounds of Hundertmark-Simon
[10]. On the other hand, if E0(J ) < ∞, (5.5) implies A0 < ∞, so by Theorem 5.2,∑N

n=1 bn is convergent. Since bn ≥ 0,
∑∞

n=1 bn < ∞. ��

6. O(n−1) Perturbations

In this section, we will discuss examples where

an = 1 + αn−1 + Ea(n), (6.1)

bn = βn−1 + Eb(n), (6.2)

where E·(n) is small compared to 1
n

in some sense. Our main result will involve the
very weak requirement on the errors that n(|Ea(n)| + |Eb(n)|) → 0. (In fact, we only
need the weaker condition that

∑n
j=1(|Ea(j)| + |Eb(j)|) is o(ln n).) In discussing the

historical context, we will consider stronger assumptions like

E·(n) = γ

n2 + o

(
1

n2

)
. (6.3)

We will also mention examples where the leading n−1 terms are replaced by (−1)nn−1.
These examples are natural because they are just at the borderline beyond J − J0

trace class or A0(J ) < ∞ or Ā0(J ) > −∞.
Here is the general picture for these examples. The (α, β) plane is divided into four

regions:

(a) |β| < −2α. Szegő fails at both −2 and 2.
(b) |β| ≤ 2α. Szegő holds.
(c) β > 2|α| or β = −2α with β > 0. Szegő holds at +2 but fails at −2.
(d) β < −2|α| or β = 2α with β < 0. Szegő holds at −2 but fails at +2.

Remarks. 1. These are only guidelines and the actual result that we can prove requires
estimates on the errors.
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2. Put more succinctly, Szegő holds at ±2 if and only if 2α ± β ≥ 0.
3. We need strong hypotheses at the edges of our regions where |β| = 2|α|. For example,

“generally” Szegő should hold if β = 2α > 0, but if an = 1 + αn−1 − (n ln(n))−1

and bn = 2αn−1, the Szegő condition fails (at −2), as follows from Theorem 6.1
below.

Here is the history of these kinds of problems:

(1) Pollaczek [18–20] found an explicit class of orthogonal polynomials in the region
(in our language) |β| < −2α, one example for each such (α, β) with further study
by Szegő [24, 26] (but note formula (1.7) in the appendix to Szegő’s book [26] is
wrong – he uses in that formula the Bateman project normalization of the parameters
he calls a, b, not the normalization he uses elsewhere). They found that for these
polynomials, the Szegő condition fails.

(2) In [13], Nevai reported a conjecture of Askey that (with O(n−2) errors) Szegő fails
for all (α, β) �= (0, 0).

(3) In [1], Askey-Ismail found some explicit examples with bn ≡ 0 and α > 0, and
noted that the Szegő condition holds (!), so they concluded the conjecture needed
to be modified.

(4) In [7], Dombrowski-Nevai proved a general result that Szegő holds when bn ≡ 0
and α > 0 with errors of the form (6.3).

(5) In [3], Charris-Ismail computed the weights for Pollaczek-type examples in the
entire (α, β) plane to the left of the line α = 1, and considered a class depending on
an additional parameter, λ. While they did not note the consequence for the Szegő
condition, their example is consistent with our picture above.

In addition, we note that in [13], Nevai proved that the Szegő condition holds if
an = 1 + (−1)nα/n + O(n−2) and bn = (−1)nβ/n + O(n−2); see also [4].

With regard to this class, here is our result in this paper:

Theorem 6.1. Suppose

∞∑
n=1

(an − 1)2 + b2
n < ∞, (6.4)

lim sup
N

(
−

N∑
n=1

(an − 1 ± 1
2bn)

)
= ∞ (6.5)

for either plus or minus. Then the Szegő condition fails at ±2.

Proof. Equation (6.5) implies that Ā±
1 (J ) = ∞ so by Theorem 4.4(ii), Z±

1 (J ) = ∞. ��
Remark. The same kind of argument lets us also prove the failure of the Szegő condition
without assuming (6.4), and with (6.5) replaced by the slightly stronger condition that

lim sup
N

(
−

N∑
n=1

(ln(an) ± p bn)

)
= ∞ (6.6)

for some 0 ≤ p < 1
2 . For one can use the step-by-step sum rule for the weight 1 ±

2p cos θ . Equation (6.4) is not needed to control errors in E-sums since they have a
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definite sign near both +2 and −2, and it is not needed to replace ln(a) by a − 1 since
(6.6) has ln(an).

These considerations yield another interesting result. One can prove Theorem 4.1 for
the weight w(θ) = 1±2p cos θ just as we did it for the weight 1. Since w(θ) is bounded
away from zero, the corresponding Z± term is finite if only if Z is. Since p < 1

2 , the
corresponding eigenvalue term is finite if and only if E0 is. Using Theorem 4.1(a)–(d)
for this w(θ), we obtain

Theorem 6.2. Let |p| < 1
2 and |q| < 1

2 .

(i) If

lim sup
N

(
−

N∑
n=1

(ln(an) + p bn)

)
> −∞

and

lim inf
N

(
−

N∑
n=1

(ln(an) + q bn)

)
= −∞

then Z(J ) = ∞.
(ii) If

lim inf
N

(
−

N∑
n=1

(ln(an) + p bn)

)
< ∞

and

lim sup
N

(
−

N∑
n=1

(ln(an) + q bn)

)
= ∞

then E0(J ) = ∞.

In particular, if an = 1, bn ≥ 0, and
∑∞

n=1 bn = ∞, we have Z(J ) = ∞ and
E0(J ) = ∞. On the other hand, if instead

∑∞
n=1 bn < ∞, then Z(J ) < ∞ and

E0(J ) < ∞ (see [11, 10]).

Corollary 6.3. If an, bn are given by (6.1), (6.2) with

lim
n→∞ n[|Ea(n)| + |Eb(n)|] = 0 (6.7)

and 2α ± β < 0, then the Szegő condition fails at ±2.

Remarks. 1. This is intended as separate results for + and for −.
2. All we need is

lim
n→∞ (ln N)−1

N∑
n=1

(|Ea(n)| + |Eb(n)|) = 0

instead of (6.7). In particular, trace class errors can be accommodated.
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Proof. If (6.7) holds,

N∑
n=1

(an − 1) ± 1
2bn = (α ± 1

2β) ln N + o(ln N)

so (6.5) holds if 2α ± β < 0. ��
As for the complementary region |β| ≤ 2α, one of us has proven (see Zlatoš [28])

the following:

Theorem 6.4 (Zlatoš [28]). Suppose |β| ≤ 2α and

an = 1 + αn−1 + O(n−1−ε),

bn = βn−1 + O(n−1−ε)

for some ε > 0. Then the Szegő condition holds.

Remarks. 1. This is a corollary of a more general result (see [28]).
2. In these cases, − ∑N

n=1 ln(an) diverges to −∞. This is only consistent with (4.18)
because E0(J ) = ∞, that is, the eigenvalue sum diverges and the two infinities
cancel.

We can use these examples to illustrate the limits of Theorem 4.1:

(1) If an = 1 and bn = 1
n

, then Z(J ) = ∞ (by Corollary 6.3) while Ā0(J ) = A0(J ) <

∞. Thus E0(J ) = ∞.
(2) If an = 1 − 1

n
, bn = 0, then Z(J ) = ∞ (by Corollary 6.3) Ā0(J ) = A0(J ) = ∞,

but E0(J ) < ∞ since J has no spectrum outside [−2, 2].
(3) If an = 1 + 1

n
, bn = 0, then Z(J ) < ∞ (by Theorem 6.4), but Ā0(J ) = A0(J ) =

−∞ and so E0(J ) = ∞.

Finally, we note that Nevai’s [13] (−1)n/n theorem shows that we can have Z(J ) <

∞, E0(J ) < ∞, and have the sums
∑

an and/or
∑

bn be only conditionally and not
absolutely convergent.
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25. Szegő, G.: On certain special sets of orthogonal polynomials. Proc. Am. Math. Soc. 1, 731–737

(1950)
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