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Abstract

Let p,,(x) be the orthonormal polynomials associated to a measure du of compact support in
R. If E¢supp(dp), we show there is a 6 >0 so that for all n, either p, or p,,; has no zeros in
(E —6,E+ 0). If E is an isolated point of supp(u), we show there is a J so that for all n, either
Dn OF pyy has at most one zero in (E — J, E 4 J). We provide an example where the zeros of p,
are dense in a gap of supp(dp).
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let du be a measure on R whose support is not a finite number of points and with
J1x["du(x)< oo for all n=0,1,2, ... . The orthonormal polynomials p,(x;du) or
pn(x) are determined uniquely by

pu(x) = y,x" + lower order, 7y,>0, (1.1)

/pn(x)pm(x) d;u(x) = 511m- (12)
There are a,>0, b,eR for n>1 so that

Xpu(X) = @ps1Pny1(X) 4+ bur1pu(X) + anpp(x) (1.3)
(many works use a, 1, b, 1, where we use a,, b,).
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In this paper, we will be interested in the zeros of p,(x; du). The following results
are classical (see, ¢.g., Freud’s book [4]):

(1) The zeros of p,(x) are real and simple.

(2) If (a,b) nsupp(du) = 0, then if a = —oo or b = +00, p, has no zeros in (a,b)
and, in any event, (a,b) has at most one zero of p,(x).

(3) In the determinate case, if xoesupp(du) and d>0, for all large n, p,(x) has a
zero in (xo — 0, xo + ).

Define
Nyu(x9,0) = # of zeros of p,(x) in (xo — J,x¢ + 0).
Then (1)—(3) immediately imply:

(i) If xo is a non-isolated point of supp(du), then for any
0>0, lim,_, o, Ny(x9,0) = c0.
(i) If xo is an isolated point of supp(du) and J = dist(xg, supp(dp)\{xo}), then
N, (xp,0) is never more than 2, and for all 6>0 and n large, N,(xo,d)>1.
(iii) If xo ¢ supp(du) and 6 = dist(x, supp(du)), then N, (xo,d) is never more than 1.

(1) is fairly complete, but (ii), (iii) leave open how often there is one vs. two points
in case (ii) and zero vs. one in case (iii). One might guess that a zero near
xo ¢supp(dp) and two zeros near an isolated x¢ in supp(du) are not too common
occurrences.

Example. If du is even about x = 0, then p,(—x) = (—1)"p,(x). Thus, if n is odd,
p2(0) = 0. So if 0¢supp(dp), we still have N, (0,0) = 1 for all small 6 and n odd. If
zero is an isolated point of du, p, for n even has a zero at x,, near 0, but not equal to
0 (since zeros are simple), so also at —x,,, that is, N,(0,0) = 2 for é small and n even.
So “not too common” can be as often as 50% of the time. Our goal here is to show
this 50% is a maximal value.

It is surprising that there do not seem to be any results on these issues until a
recent paper of Ambroladze [1], who proved

Theorem (Ambroladze [1]). If supp(dp) is bounded and x, ¢ supp(du), then for some
0>0, liminf,_, ,, N,(xp,d) = 0.

Thus, we can use N,(xo,0) to distinguish when xyesupp(du). Our goal in this
paper is to prove

Theorem 1.1. Let d = dist(xo, supp(du))>0. Let 6, = d*/(d + V2 a,1) (where a, is
the recursion coefficient given by (1.3)). Then either p, or p,. (or both) has no zeros in
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(x0 — On, X0 + 6p). In particular, if a,, = sup, a,< oo and ., =d*/(d + \/ia%), then
(X0 — 000, X0 + 0o ) does not have zeros of p; for two successive values of j.

Theorem 1.2. Let xy be an isolated point of supp(du). Then there exists a dy>0, so
that if 6, = dg/(do +2 auy1), then at least one of p, and p,.1 has no zeros or one zero
in (X0 — On, Xo + 0y). In particular, if a,, = sup, a,< oo and 6., = di/(dy + V2a.,,),
then for all large n, either N,(x9,05) =1 or Nyi1(x0,05) = 1.

We will prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. In Section
4, we present an example of a set of polynomials whose zeros are dense in a gap of
the spectrum.

It is a pleasure to thank Leonid Golinskii and Paul Nevai for useful
correspondence.

2. Points outside the support of du

We arrived at the following lemma by trying to abstract the essence of
Ambroladze’s argument [1]; it holds for orthogonal polynomials on the complex
plane. Let du be a measure on C with finite moments and infinite support, and let
pn(z;dp) be the orthonormal polynomials. Define the reproducing kernel

Kulzw) =3 p(@m(w), (2.1)
=0

so in L*(C,du), for any polynomial 7 of degree n or less,

/Kn(z7 w)n(w) du(w) = n(z). (2.2)

Lemma 2.1. Suppose zoeC, p;j(w) =0 for some j<n+ 1. Then

120 — W] >|(192j(22<>))|1/2 dist(w, supp(dp)). (2.3)
n 0, <0

Proof. Let ¢(z) =p;(z)/(z—w), which has deg(q)<n. Thus, by (2.2),
{K(-,20),4(-)> = q(z0) so, by the Schwarz inequality,

i (20)]
|zo — w|

< gl 11K, 20)ll-

By (2.2), |IK(-2)|| = K(z0,20)"* and clearly, ||g||<dist(w,supp(dp))”[p;l| =
dist(w, supp(du))~". This yields (2.3). O

The following only holds in the real case:
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Lemma 2.2. For any xeR and n,

Ko, )dist(x, supp(dp)* <a2y |72 (x) + p2(x)): (24)

Proof. The Christoffel-Darboux formula [4] says
| Pt (X)Pn (V) — P (V) Pa(X)

K, (x,y) = ans x—y )
so since {p;,pk) = Oj,

[1(x = VK, )P = lanir Plpp (%) + ()], (2.5)
Clearly,

16 = ) Ko, )| P> dist (x, supp(dp) Ko, )1 (2.6)

and, as above, ||K,(x,")||* = K,(x,x), which yields (2.4). O

Remark. An alternate way of seeing (2.5) is to let  be the trial vector
(po(x), ..., pn(x),0,0, ...) and note that in terms of the standard Jacobi matrix ((J —

x)lp)j:O unless j =n,n+ 1, in which case the values are —a,.1p,+1(x) and
Gy 1pa(), (2.6) s then just [|( — )| > dist(x, supp(dpa)) ||

Proof of Theorem 1.1. By (2.4), we have that

K (xo, x0)dist(xo, supp(dp))* <2ay, py (X0) (2.7)
and/or
Ky (x0, Xo)dist (xo, supp(dp))* <2, pr (%) (2.8)

Suppose (2.7) holds. Then, by (2.3), if w is a zero of p,.1(x) and if d =
diSt(XOa supp (d:u'))a

I 1
|xo — w|=—

\/z Apt1

1 1
>

- ﬁawrl
which leads directly to |xo — w|>d?/(d + a,.1V2). O

d dist(w, supp(dp))

d(d — |w— x¢])

Remark. There is also a Christoffel-Darboux result for polynomials on the
unit circle 0D = {z| |z| = 1} in C. This leads to the following: If dyu is a measure
on 9D and zo€ 9D has d = dist(zg, supp(du)) >0, then the circle of radius d?/(2 + d)
has no zeros of the orthogonal polynomials. Golinskii has pointed out that the
theorem of Fejér [3] that the zeros lie in the convex hull of supp(du) implies there are
no zeros in the circle of radius d? /2 and this is a stronger result, so we do not provide
the details.



S.A. Denisov, B. Simon | Journal of Approximation Theory 121 (2003) 357364 361
3. Isolated points of the support of du

To prove Theorem 1.2, we will make use of the second kind polynomials [4,7]
associated to du and {p,}. This is a second family of polynomials, ¢, defined by

recursion coefficients, d,, b, with
(in = dp+1, bn = bn+1. (31)

They have the following two critical properties:

Proposition 3.1. (i) The zeros of p,y1 and q, interlace. In particular, between any two
zeros of pui1 is a zero of qy.

(i) If x¢ is an isolated point of du and dv is a suitable measure with respect to which
the ¢’s are orthogonal, then xo ¢ supp(dv).

These are well known. (i) follows from the fact that the zeros of p,.; are
eigenvalues of the matrix

Ji(,”H) = bidy + aidj41 +ai—16;5-1, 1<ij<n+1

and the zeros of ¢, are the eigenvalues of
jf-;?) = bidy + didj1 + 1051, 1<i,j<n

which is the matrix J;"Jfl) with the top row and left column removed. (ii) follows

because of the relation that v obeys for all ze C\R (see, e.g., [7]):

[ (Y] 62

(if the moment problem is indeterminate, this is one possible v). Isolated points of du
are poles of [du(x)/(x —z) so [dv(x)/(x — z) is regular there.

Proof of Theorem 1.2. Let dy = dist(xo, supp(dv)) >0 by (ii) of Proposition 3.1. By
Theorem 1.1 and (3.1), either ¢,_; or ¢, has no zeros in (xg — J,, X9 + J,). By the
intertwining result (Proposition 3.1(i)), either p,, or p,; cannot have two zeros in this
interval. [

Remark. Let x( be an isolated point of du. If besupp(du) is such that |xo — b| =

dist(xo, supp(du)\{xo}) and [du(y)/|y — b| = <o, then dv has an isolated point in
between x( and b, and so dy may be strictly less than dist(xo, supp(du)\{xo}).

4. An example of dense zeros in the gap

Nevai raised the issue of whether as n varies, the single possible zero of p, in a gap
(a,b) of supp(du) can yield all of (a,b) as limit points, or if the situation of a single
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(or finite number of) limit point as in the example in Section 1 is the only possibility.
In this section, we describe an explicit bounded Jacobi matrix so that supp(du) =
[-5,—1]U[l, 5] but the set {xe(—1,1)|p,(x) =0 for some n} is dense in [—1, 1].
Note: While this paper was in the refereeing process, we received a paper of
Peherstorfer [5], who also constructs examples, very different from ours, of dense
Zeros in a gap.
Let {B; } ~, be the sequence

— _1 1 _1 11 7
ﬁlaﬁ27"' - 7 0725__5 a 7074727Za_§7"'

which goes through all dyadic rationals in (—1, 1) with denominator 2* successively
for k =1,2,3, ... with each j/2¥ “covered” multiple times. Let L be the Jacobi
matrix with

02;7,1:3, a2n:17 n:1727"'7 (41)
b =B, if 2n*<k<2(n+1)>* (4.2)
by = .

We claim that

(1) supp(du) =[-5,-1]uU[l,3].
(2) There is an x, with |x, — 8,|<2-37%" so that

Papny1y—1(Xn) = 0. (4.3)
This provides the claimed example.

Remarks. (1) By adjusting a; and a, (but keeping ay,) = a1; ax, = az), we can
replace [—5,—1]U[1,5] by [-3 — &, —1]U[l, 3 + €], but our method seems to require
bands larger than the size of the gap.

(2) One can replace (4.2) by by = p,, for £, <k</{,4 so long as /.1 — ¢, > 0.

(3) We believe that the measure associated to L is purely singular.

To prove the claims, we let Ly be the Jacobi matrix with a’s given by (4.1) but
b, =0, and L, the period two, doubly infinite matrix on Z which equals Ly when
restricted to Z". By the general theory of periodic Schrédinger operators [6], the
spectrum of L, is the two bands where |A(x)| <2 where A is the discriminant, that is,
the trace of the two-step transfer matrix. If a;, a, are the two values of a (so
a; =3, a; = 1 in our example), a simple calculation shows that

1 2

AR) = 7 (2 = (@] ),

so A(x) = +2 occurs at x = +|a; +ay|. Thus,
spec(Lo) = [—4,—2]U|[2,4]. (4.4)
The orthonormal polynomials pﬁ,(]) for Ly at x = 0 obey the recursion relation
0 0
Pia(0) = =395 (0),
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so we have

0 0 n
P =0, p(0) = (-3)". (4.5)

By the general theory of restricting periodic operators to the half-line, spec(Ly) is
spec(Ly ) plus a possible single eigenvalue in the gap (—2,2). Since there is a
symmetry, the only possible eigenvalue is at x = 0, but (4.5) says that 0 is not an

eigenvalue since )", p;(0)]* = oo. Thus, spec(Lo) = [~4, —2]U[2,4] also. L — Ly is
a diagonal matrix, so it is easy to see [[L— Lo||=sup;p;=1. Thus,
spec(L) = Uye(o11)x +spec(Lo) = [=5,—1]U[L, 5]. On the other hand, since the 5’s
are equal to f3; on arbitrary long runs, a Weyl vector argument (see [2, p. 36]) shows
that

spec(L)DUﬁj + spec(Ly) = [-5,—1]U]l, 5]

so claim 1 is proven.
Let L,.r be the n x n matrix obtained by taking the first » rows and columns of L.

Then the zeros of p,(x) are precisely the eigenvalues of L, (see [7, Proposition 5.6]).
Let ¢; be the j component vector with (pE)O)(O),ng)(O), ,p]((i)l(O)). Then if j is odd so

p\”(0) = 0, and we have Ly rg; = 0. Thus, if j = 2(n + 1)* — 1,
[(L/;F - ﬂn)(pj}k = (bk - ﬁn)(pj,k' (46)

If 2n* <k <2(n+ 1)2 — 1, the right-hand side is zero and its absolute value is always
less than 2[¢; ;| Thus,

2_
(Lir = Bo)ll” _ 4555 3*

DS s
k=0
<4. 374}1

by (4.5) and a simple estimate. Thus, L;r has an eigenvalue within 2- 372" of f,,
proving claim 2.
This completes the example.
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