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Abstract

For Jacobi matrices with a, = 1 + (=1)"an™, b, = (—1)"pn", we study bound states and
the Szegd condition. We provide a new proof of Nevai’s result that if y >%, the Szegd condition
holds, which works also if one replaces (—1)" by cos (un). We show that if o = 0, B0, and
y<%7 the Szegd condition fails. We also show that if y =1, « and f are small enough
B+ 8a% <4 will do), then the Jacobi matrix has finitely many bound states (for o =0, 8
large, it has infinitely many).
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

This paper focuses on Jacobi matrices, that is, operators J on /*(Z.), where
7, ={1,2,...}, given by (b, real, a,>0)

(Ju)(n) = ayu(n+ 1) + byu(n) + ap_u(n — 1), (1.1)

where the a,_ju(n — 1) term is dropped if n = 1. We define Jy by ¢, = 1, b, = 0, and
will suppose J — Jy is compact, s0 gess(J) = [—2,2]. We are interested especially in
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the Szegd condition,

2 _
zu);L/ lg<V4dvE> E__,. (1.2)
2n ), 2npe |4 — E?

where v is the spectral measure for J and the vector §;. We will also consider some
aspects of Schrédinger operators —4 + V.
In 1979, Nevai [25] proved a conjecture of Askey that if
71 n 71 n
V% o), b =0T o), (13

a, =1+

then the Szegd condition holds. Our goal here is to understand this result from the
point of view of sum rules recently used to study the Szegd condition by Killip—
Simon [17] and Simon—Zlatos [32], and to consider various extensions and borderline
cases, in particular, the following four questions:

(1) Nevai [25] allows replacement of e by CU% with y>% and still gets (1.2). Is

n n’
y = % a borderline or just where Nevai’s method fails? We will see that y = % is

indeed a borderline and that a, =1, b, = 1)y obeys (1.2) if and only if y>%.

This is a subtle issue: one might think the key is that b,, | — b, decay faster than
n~!, in which case y = % is not special but, as is the case in many other situations
[18], b, €5 is critical; see Theorem 2 below.

(2) What is the condition on the errors O(n~2) in (1.3)? Nevai actually shows if
those errors, e,(n),ep(n), obey >~ ,(logn)|ej(n)< oo for je{a,b}, then (1.2)
still holds. In line with the advances in [17,32], we will only require
S, lej(n)| < oo, for je{a,b}. Indeed, our results are logarithmically better

<;,‘/3" [logn] ™7, then

than Nevai’s in the leading term. If “TU" in (1.3) is replaced by
Nevai’s method requires y > 1, while we require only y>%.

(3) What about other oscillatory potentials like % for ne(0,2m)? (1.3) is the case
n = n. Although it is possible his methods extend to this case, the conditions in
Nevai’s paper require cancellations in b, + b,11 and do not work for y#mn. We
will accommodate general 7.

(4) Nevai’s work suggests that % is akin to n~? potentials, which suggests
that for |o|+ |B| small, (1.3) has finitely many eigenvalues outside [—2,2]
while for |«| + |f] large, it has infinitely many. We will prove the finiteness
result below. We note that while he does not discuss this case explicitly,
Chihara’s conditions in [7] imply finitely many bound states if @, = 1 and |f] is
small.

For Jacobi matrices, our main results are:
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Theorem 1. Suppose

ap=1+c¢, +d, 1 —dy, (1.4)
by =en+ fur1 —fu (L.5)
with
0
> leal + leal + ldul* + [ ful < o0 (1.6)
n=1
Then Z(J)< oo and
> WEF(J) —4<oo, (1.7)
e

where El-J—r (J) are the eigenvalues of J in +(2, o).

Remark 1. Incase g, — 1 = 1(;—1)” +eu(n), b, = G + ep(n), we define

n’

o0 a(_l)n o0 ﬁ(_l)n
d, = — = . .
R O Sl (18)
j=n Jj=n
Since the sums are O(n™7), (1.6) is then true if Y |e,(n)| + |e;(n)|< oo and y>1.
(2) If by, is instead <" it is still true that £, = — 57, <" is O(n~"), and so in

/2, and thus this theorem also includes cases like Cosnﬂ where b, + b, does not have
cancellations.

(3) By mimicking the construction of Wigner and von Neumann (see, e.g., [28,
Example 1, Chapter XIII.13], one can construct Jacobi matrices J with a,~1 + %

and b,,~(771>” as n— oo which have 0 as an eigenvalue embedded in the essential
spectrum.

As a converse to Theorem 1, we note

Theorem 2. Suppose
(i) limsup[—>77, log(a)]> — oo,
(D) S (ay — 1)* + b2 = 0.

Then Z(J) = 0.

Remark. If g, = l(or a, = exp(ﬂ)), by =P and y<l

- n, 2, then this implies

Z(J) = o0, showing y = 1 is the borderline.
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Proof. Suppose Z(J)< oo and (i) holds. Then, by Theorem 1 of Simon-Zlatos [32],
(1.7) holds. A fortiori, the quasi-Szegd condition, (1.8) of Killip—Simon [17], and the
% Lieb-Thirring bound hold. So, by Theorem 1 of Killip—Simon [17], (ii) fails. Thus,
(1) +Z(J)< oo = not (ii). So (i) + (i) = Z(J) = 0. O

Theorem 3. Suppose a, = 1 and (1.5) holds with

lim sup 7°||e,| + [/‘;,|2 + [ﬁ,+1|2] <t (1.9)
n

Then J has only finitely many bound states. If (1.4) and (1.5) hold and

lim sup #2[|c] + |eni| + 24|dy_1|* + 48|d,|* + 24|dys1 )
n

+ el + 615> + 611’ <4 (1.10)

then J has finitely many bound states.
Remark. In particular, ifa, = 1,5, = ﬁ(;l)n, and |B| <31, then J has only finitely many
bound states. If || > 1, it is proven in [11] that J has infinitely many bound states.

Also, ifa, =1 + @ and b, as before, then for > + 82 <5y, J has also only finitely

many bound states, but this bound seems to be far from optimal.

The techniques we will use are two-fold: First, we will use the result of Simon—
Zlatos [32] that if —Zjﬁl log (a;) is conditionally convergent, then (1.2) holds if
and only if (1.7) holds (by a case-type sum rule). This means that all the results
on finiteness on Z(J) which we are discussing are equivalent to suitable bounds
on eigenvalues. Second, to bound eigenvalues, we will use ideas developed in
the 1970s to discuss Schrodinger operators with oscillatory potentials
[1,5,6,8,9,15,16,23,30,31,33]. Interestingly, the focus of that work was to handle
wild, pathological cases like ¥ (r) = (14 r) %e/sin (e!/") or V(r)=(1+7r)%¢
sin (¢"), which are extremely unbounded near r = 0 or r = oo but whose oscillators
cause —4 + V', defined by quadratic form methods, to be well behaved. In fact, we
believe that the most interesting examples are ones like #~!sin (r) which are not
unbounded at all, but oscillatory and slowly decaying.

See also the recent work [24], which discusses form boundedness and form
compactness of Schrédinger operators using methods inspired by the above papers.

Most of the 1970s papers discuss scattering or self-adjointness results, although
Combescure—Ginibre [9] and Chadan—Martin [6] do discuss bounds on the number
of bound states. Since they were not as efficient in using operator bounds, we begin
in Section 2 with the continuum Schrddinger operator case. In Section 3, we discuss
the growth of N(AV') as 21— oo for long-range oscillatory potentials. We will prove
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Theorem 4. Let V(x) = (1 + |x[)Psin (|x|) for 2> p>1.0n R’, we have
—a_+b_VPSNOVY<ay + b 2P
for suitable (p-dependent) a4, by >0.

We note that if f>2s0 Vg e L'/?, then it is known (see [28, Theorem XIII.80]) that

lim 27ANGV) = 2 / (—Vp(x)"* d'x
L0 (275) Vp(x)<0

with 7, the volume of the unit ball in R".

In Section 4, we discuss the discrete Schrédinger case, that is, Jacobi matrices with
a, = 1. In Section 5, we discuss the general Jacobi case. The appendix contains
bounds on the O(n?) situation that we will need in the body of the paper. Since
these have not been proven in the Jacobi case with optimal constants, it was
necessary to include this appendix. In particular, in Theorems A.6 and A.7, we study
Jacobi matrices J with |a, —1|~% and [b,|~% and discuss finiteness (resp.
infinitude) of the discrete spectrum of J in [—2,2]°, depending on whether 2y, +
yb<%, (resp. 2y, + yb>i), thereby extending results of Chihara [7].

2. The continuum Schrédinger case

Let W be an R’-valued C! function on R’ or a piecewise C' continuous function
on R so that V - W is also bounded. In fact, once one has the bounds below, it is easy
to accommodate arbitrary distributions W with We L' 4+ L* (when v>3) even if
V - W is not bounded. For our applications of interest, we make these simplifying
assumptions.

Proposition 2.1 (Combescure-Ginibre lemma [9]). If ¢ C°,
<o, VW [<2|[Woll[[Vol|. (2.1)
Proof. First, integrate by parts, {¢,VWe¢p) =2Re{ W¢,Vep). Then use the
Schwarz inequality. [
Theorem 2.1. Let H= A+ V,+V-W and H = —A+ 2V, — 4W?2. Then
H>1H,. (2.2)
In particular, if N(V') is the number of negative eigenvalues of —A + V', then

N(Vi+V-W)SNQ2V, —4W?) (2.3)
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and if E,(V) = Tr([-HE_ ., o)(H)]") for H=—A+V is the Lieb-Thirring sum of
eigenvalue powers, then

E,(Vi +V - W)<27PE,(2V, — 4W?). (2.4)

Proof. By (2.1),

(O, (=A+TVI+VIW)p)> = Lo, (—A+ V)oY —elp,—Ap> —e ' Lo, W)

=000 (At Ty o)

In the absence of a V; term, the optimal choice of ¢ is ¢ = % (to minimize ﬁ), SO we

make that choice in general. It yields (2.2), which in turn immediately implies (2.3)
and (2.4). O

Bound (2.1) and its proof are taken from Combescure—Ginibre [9]. While they use
the Schwarz inequality, they do not explicitly note (2.2), which causes them to make
extra arguments that can be less efficient than using (2.2). For example, if V] =0,
v =3, and

2 (4r) 2 3¢ dv? W2(x) W2 (y)
w” = (4n) /d dy —|x—y\2

then (2.3) and the Birman—Schwinger principle immediately imply that
N(V-W)<16w?,
while Combescure—Ginibre [9] only claim
N(V - W)<16w?(1 +w)?,

which is much worse for large w.

For v=1, V; =0, (2.3) is a result of Chadan—Martin [6] who use Sturm
comparison methods rather than the Schwarz inequality and the Combescure—
Ginibre lemma. Theorem 2.2 has some immediate consequences:

Corollary 2.3. For v=3,
NV + V- W) <a (Tl + L. (2.5)
For general v andp}% ifv=1,p>0ifv=2 and p=0 if v=3,

p+v /2 2p+v
E, (Vi + VW) <, (10005 + 1 WIEE). (2.6)



D. Damanik et al. | Journal of Functional Analysis 205 (2003) 357-379 363

Proof. Eq. (2.5) is just the Cwikel-Lieb—Rozenblum [10,19,29] bound, given in (2.3).
Eq. (2.6) is the Lieb-Thirring bound [21,22] when p is strictly larger than the minimal
value. p =0 for v=3 is (2.5) while p :%, v=1 is due to Weidl [35] (see also
Hundertmark—Lieb—Thomas [13]). O

If v=3 and VeL"?, we have N(1V)<cA"?, but (2.5) only implies that
NGV + VW) <P 4 el

In the next section, we see that in some specific cases, N(4V) really does grow at
rates arbitrarily close to A".

Corollary 2.4. If v#2 and 4W? — 2V1<%\ x| 72, then —A+ Vi + VW, has no
bound states. If 4W?* <\~ 2) =2 x| 72 and Vie L'? (if v=3) or [(1 4 |x])| V], (x) dx< o
(v=1), then —4+ V) + V Wi has finitely many bound states.

Proof. The first statement is immediate from (2.3) and Theorem A.3. The second
follows from

— A2V =AW = —(1 —e)d — 4W? —ed + 2V

and the Cwikel-Lieb—Rozenblum estimate if v>3 and Bargmann’s bound if
v=1. 0O.

Example 2.5. If V = m,lx ) we can write V =V, + V- W where W = (- Cm(’)

“:i’lf ) (r) where f'€ C* vanishes near 0 and is 1 near oo. This shows that for o<1,

—A + AV} has finitely many bound states for all 4, and when « = 1, it has finitely
many bound states if || is small. An argument similar to that in [11] shows that if
o =1 and A is large, —4 + AV has an infinity of negative eigenvalues. [

3. Schrodinger operators at large coupling

Our purpose here is to prove Theorem 4 that Vj = sin(r ,; (with 2>B>1) has

N(AV}) growing as 28 for ) large. We give the details when v = 1 on a half-line and
then discuss the case when v=2.

Proof of Theorem 4. Half-line case: We begin with the upper bound. Let ¢ (r) be a
C® function with ||@g||,, = 1, which is 0 if r<R and 1 if r> R + 1. By translation,

we may assume the deI‘lthlVCS dd(” R are uniformly bounded in x and R (for fixed

a). Let Wg(r)=— [" @r(s)Vp(s)ds and Vig=Vs—4Wg. Define Vogr(r) =




364 D. Damanik et al. | Journal of Functional Analysis 205 (2003) 357-379

max>, | V1 r(s)|. Then

> (—%;—;—AV;R) +%(—%j—;—8ﬁW§)~ (3.1)
Next, note that
Wg(r)< C(max (r,R)) . (3.2)
We also have
|Var(r)| <r® (3.3)

and is zero if r> R+ 1.
Calogero [3] has proven that if V' is monotone decreasing and non-negative,

then N(—V)<2an~! [” |V (s)|"*ds. This bound, (3.1)~(3.3), and the fact that
dim (E(_ 0)(4 + B)) <dim E(_, 9)(A4) +dim E(_,, ¢)(B) (by the variational princi-
ple) imply that for any R,

R+1 ©
NV < C [11/2 / r P dr 4 / max(R,r) " dr
0 0
= GA'PR'P2 4 R
since 1 <f<2. Pick R = VB and get
N(AVg)<2CAVP.

On the other side, consider the operator H(1), which is 7%2 + AV} with Dirichlet
boundary conditions added at the points (2n+3)n+% Adding such boundary
conditions only increases the operator, so N(A1Vj)># of negative eigenvalues of
H(7). In each interval of the form [(23)r —Z, (243)n + %], sin(r) is less than —1, so

2 V2 py
V< — 7 on the entire interval. The lowest Dirichlet eigenvalue of —%2 on

)
2[(2n+3)n]
such an interval is %7 so each interval with

2[(2n + 3)n)f 4

contributes an eigenvalue so
NGV =GP,

This completes the proof of Theorem 4 in the half-line case.
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One might think that it would help to use the fact that small » intervals provide
O(/'?) eigenvalues rather than just the 1 we use, but a detailed analysis shows it
improves the constant in front of VP but not the power.

Higher dimensions: The lower bound is similar to the half-line case. We have
sin(r) < —% on annuli which we can partially cover with suitable disjoint cubes of
fixed size, finding cubes where V is deep enough when the distance of the cube from
the origin is no more than CA". The number of such cubes is O(1"/#) so we get an
0(7"'F) lower bound.

For the upper bound when v>=3, we can replace Calogero’s bound with the
Cwikel-Lieb-Rozenblum bound. Since [ r#/2d'r = C4R P/ and [ r P
d'r = CsR'-P) | we find

N(Vp) < C[APRUF2) 4y RU-P)]

so picking R = 2'/#, we get NGV <CYP,

y = 2 is messier. We will sketch the idea, but omit the details. One needs to use the
spherical symmetry and consider each partial wave separately. By using the analog of
(3.1), we see, on functions of angular momentum /7, there is an effective potential
which bounds —A + 4V} from below, viz,

2

_ 2 -2
—E-FE—/IV ﬁ}gijH)—i max (r, R) b,

Vietr =

We need to consider three regions:

() /> Csi'P: Take R = 2'/# and find Vs et =0 so there are no bound states.

(i) 1</< AP We take R = 2/P, drop the /:;24 term, and use Calogero’s bound

to get a bound per partial wave of Cy2'F as in the one-dimensional case.
(iii) # = 0: The singularity of —r~2 at both 0 and infinity requires us to place

Dirichlet boundary conditions at 1 and a point R, = 22/P=1 which for large A is
much larger than R, = A'/# (since %< 1 <ﬁ<ﬂ—31). On (Ry, 0 ), we can use the
fact that V> — %ﬁogr and Theorem A.2 to see the Dirichlet operator has no
bound states. On (0, 1), we can bound the / = 0 states by all states for the
Dirichlet Laplacian in L?({|x|<1},d?x) with Dirichlet boundary conditions

with energy below ¢,4 (where ¢ = max<; — (slii(:;),,). It is known (by Weyl’s

theorem, see [28, p. 271]) that this is asymptotically ¢j94 since v = 2. In (1, Ry),
we can use Calogero’s bound where now “V” is —4’% —IVar —42% W,%. We get
a bound by ¢y fle ‘f—’ + e il/P, Taking into account the possible two states lost
by adding the Dirichlet boundary conditions in the / = 0 space, we get

NV <eisAPOMPY 4+ era(A+ 2P + log (|2

+ 1),

which is the required large 22# bound. O
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4. Discrete Schrodinger operators

Our main goal in this section is to extend (2.1) and Theorem 2.2 to the discrete
case. It will be convenient to consider operators on all of Z and get bounds on Jacobi
matrices by restriction. We will also restrict to eigenvalues above energy 2. One can
then control energies below —2 by using

UnJ ({an} {ba}) Us ' = —T({an}, {~bu}), (4.1)
where J({a,}, {b,}) is the Jacobi matrix (1.1) with parameters a,, b,, and
(Upu) (n) = (=1)"u(n). (4.2)
On /*(Z), define two operators Hy and 4, as
(Hou)(n) = u(n+ 1) + u(n — 1), (4.3)
(34u)(n) = u(n + 1) — u(n). (4.4)

Then 6_ = 07, is given by
(6-u)(n) = u(n — 1) — u(n)
and
0,0_=0_64=2—Hy (4.5)

(forif 6, =R—1land 6_ =L —1,then RL=LR =1and Hy =L + R). Let b, and
fn be sequences on Z and suppose

By = St —fo = (5, (4.6)
Then in /*(Z), for u real and of finite support,
Cusbuy =3 bylu(n)l?
= (r1 = L)lu(m)?
= > fullun =P = |u(m))
={o_u,f(1+Luy. (4.7)

Since |[0_ul]* = <u,0,.0_ud> = {u, (2 — Ho)u) by (4.5), we see that
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Lemma 4.1. If b is given by (4.6), then

|, buy |< Cuy (2= Ho)ud P12 u, (f* + f2ud]'?, (4.8)

where
f; = fat1- (4-9)
Proof. In getting (4.8), we used (4.5) and (4.7),
1/ (1 + Lyl P <2 firl * + 2| Lul P = 2| ful|* + 2] |fue |

and the fact that, because of ||x| — [y||<|x — y|, we also have
Cful, (2= Hollul> =3 Ju(n +1)] = |u(n)* < Cu, (2 — Ho)u

so it suffices to prove the result for real-valued sequences u. [

We will later need the following estimate that was proven along the way (we get Jj
by restricting to u’s of support on Z,):

|, 0f | <2|<uy (2 — Hoyu || <u 5 (f2 + f2ud | (4.10)

<eu, 2= Joyuy +& " Cuy (f + 7 uy. (4.11)
Theorem 4.2. Let b, be a sequence on 7. so that lim,_, », Z?:I b; exists, and let

fi==3b, @.12)

Jj=n

Let J be the Jacobi matrix with a, = 1 and b’s given by b,,. Let J* be the Jacobi matrix
with a, = 1 and b’s given by

+2(2 4+ 17). (4.13)

Then

) dim E(p o) (J) <dim Egg . (J*), (4.14)

(i) dim E(_,, _5)(J)<dim E(_,, _5)(J 7). (4.15)
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(iii) If the eigenvalues E of J* outside [—2,2] obey

D (E(T*) =2)" < o0 (4.16)
J
for some o and for both J* and J~, then
> (EW) -2 <. (4.17)
J
Proof. Define
o0

so if f is extended to Z by setting f; = 0 for k<0, we have b = f — f. Thus, by (4.8) as
operator on /*(Z),

—b=1[—(2— Ho) = 2(f> +/7)]

SO
2— Ho—b=3[(2— Ho) = 2(f* +/7)].

Now restrict to functions supported on Z, to get
2-J=l2-J". (4.18)

This yields (4.14) and (4.1) then yields (4.15). The two together imply (4.17). O

Example. Let b, = /f(;l)n. Then f,~ — %@ + O(ni) and the leading term in
22(f2 4 /%) = 4(4)* = . By Theorem A.6, if f> <1, J(a = 1,b) has finitely many
eigenvalues, that is, |f] <% produces finitely many eigenvalues.

On the other hand, if || >1, it is known [11] that H has an infinite number of
bound states. It would be interesting to determine the exact value of the coupling

constant, where the shift from finitely many to infinitely many bound states takes
place.

Proof of the First Assertion in Theorem 3. By (4.18), if b, has form (1.4) and J= is

formed with bF = 2eX +2(f2 +f2,,), then

27712507
If (1.9) holds, then

lim sup n?[|h ] <1
n

so J* have finitely many bound states by Theorem A.6. [
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5. Oscillatory Jacobi matrices

In this section, we will prove Theorems 1-3 by accommodating general values of
a, within the bounds of the last section. Recall that R acts as Ru(n) = u(n+ 1) and
we defined 6, = R—1. It will be convenient to write the Jacobi matrix J =
aR + R*a + b in “divergence form,” that is, write it as J = —d", go; + ¢. Let us first
consider the whole-line case: Given sequences a,b on Z., we extend them to
sequences on Z by setting a, = 1 and b, = 0 for n<0. We denote the corresponding
operator on /*(Z) by K. With af = R*aR, that is, a* =a, |, and —0go; =
—R*gR+gR+ R'g—g, we see that g=a and ¢=b+a+a*. Thus, recalling
0.0, =2 — Hy,

K=-68ad,+b+a+d
=Hy+b+a+d —2—5 (a—1)dy,
which shows
Cu, Kuy = Cu, Hyud + {u, (b+a+da —2ud — (5 u, (a—1)dud.
By restriction to u’s supported on 7, we get
CuyJuy = {uyJouy + {uy (b+a+d* —2)ud — {dsu, (a—1)dud, (5.1)

where one should keep in mind that af = 1.
We first estimate the third term in (5.1). Writing « as in (1.4), that is,
a=14c+9d.d, it reads

{opu,(a—1)0uy = {oqu,coruy + {ou, (04d) d4u). (5.2)
With (x)_ = max(—x,0), the negative part, we have

{oqu,couy = — {dyu,c_diuy

= (ea)_(luln+ D) + u(n)[* — 2 Re(u(n + Du(n)))
> = > 2en)_(jutn+ DP + Ju(n)P)

= —2u,(c- +Fu, (5.3)

where one should keep in mind that ¢f = 0. For the last term in (5.2), we note that
by (4.11),

<6+u? (5+d)5+u> = — <5+u,A5+u>,
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where
A=A, =¢2—-J) -‘1-%(612 +d?).
Now since A4 =0,
(5 u, A6t uy =1|4*(R — 1)ul)?

< 2/[4" Rul? + 2]} 4"

= {u,[2(R*AR) + 2A4)u.
We have R*JoR = Jy, R*fR = f, and R*fR = f*. Thus we arrive at

(oqu, (04d)ouy > — {u,Bu)

with

B=4c(2 - Jo) + & [(d%) + 2d* + d?).

Writing b = e+ 0. f, as in (1.5), and putting (5.1)—(5.4), together, we have

S, (2= uy = (1 = 4e) Cu, (2= Jo)up
— Cu, (e + Je| + |c*] + &7 (%) + 2d* + d))u)
=, (04f + (01d)" + 0, d)uy.
Estimating the last term in (5.5) again with the help of (4.11) yields

Cu,2—=Tuy = (1= (u4v+4e)) u, (2 — Jo)ud
— Gt (et Il + 1> — 3G (2 +77>
- G%) Cu, ((d*? +2d° + P)ud.
Choosing i = v = & = 5, we get
2-J=ip—Jy—w],

where

W =2e+2|c| + 2|c*| + 12[(/)* + (H*] + 48[(d*)* + 2(d)* + (d)?).

(5.4)

(5.5)
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Proof of Theorem 1. Egs. (1.6) and (5.8) imply

> Wal< .

Thus, by Hundertmark—Simon [14], (1.7) holds for the eigenvalues of Jy+ Wj. By
(5.7) and (4.1), and the min—max principle, (1.7) holds for J.

Moreover, by (1.3) and (1.6), > (a, — 1) is conditionally convergent and, by (1.6),
S (a, — 1)*< 0. It follows that 3" log(a,) is conditionally convergent. Thus, by
Theorem 1 of Simon-Zlatos [32], Z(J)< 0. O

Proof of Theorem 3. By (5.8) and (1.10), for large n,

1—¢
|VV11|<W

for some &> 0. It follows, by Theorem A.6, that Jy &+ W has only finitely many bound
states. Hence, by (4.1), (5.7), and the min—max principle, J has finitely many bound
states. [
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Appendix A. Finiteness of the eigenvalue spectrum for potentials of a definite sign

We need information on finiteness results for nonoscillatory potentials. For
Schrédinger operators, these results are well known, but we include some discussion
here for two reasons: Optimal constants for Jacobi matrices are not known. The
weak L'/? results we discuss are new. We begin with a version of Hardy’s inequality
with optimal constant:

Theorem A.l1. Let Hy = —% on L*(0, o) with u(0) = 0 boundary conditions. Let V

be a bounded function on [0, c0) with V(x)—0 at infinity. Then

W If V()c)>(4x2)_1 for all (resp. all large) x, then Hy+ V has no (resp. finitely
many) bound states. In particular, for any @€ Q(Hy), the form domain of Hy,

2
"”;;?' dx</|V(p(x)|2dx. (A.1)

This is known as Hardy's inequality.
i) IfrVx)<—-(>1+ 8)(4)62)71 for x> Ry and some Ry,e>0, then Hy+ V has an
infinite number of bound states.
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Remark. We only assume V' bounded to avoid technicalities. In fact, one can use
(A.1) to discuss Vs with V(x)> —1x72 —c.

Proof. Sturm’s theory (see [28, pp. 90-94]) says that the number of negative
eigenvalues of Hy + V is precisely the number of zeros of —u”(x) + V(x)u(x) =0,
u(0) = 0, and that any other solution of —w” 4+ Vw = 0 has a zero between any two
zeros of u, and vice-versa. Thus, if some solution, w, of —w” 4+ Vw = 0, is positive,
Hjy + V has no eigenvalues, and if it has an infinity of zeros, Hy + V has an infinity
of eigenvalues.

u(x) = x'/2 solves —u” — Ix~2u =0, showing (i). On the other hand, u(x) = x*
with (o — 1) = 4(1 + &) solves —u” — }(1 +&)x~>u = 0. If >0, o has an imaginary
part and Re(x*) has an infinity of zeros. This plus a comparison theorem implies the
results. O

d_ 1

Remark. There are two other ways to prove Hardy’s inequality: Let a = - — 5.

Then a*a = Hy — (4x2)71; a careful version of this proof requires consideration of
boundary conditions at x = 0. Second [12], (A.1) is equivalent to x~'p~2x~!' <4.
Changing variables from x to e“ = x, using the explicit form p~2(x,y) = max(x, )
for the kernel of p~—2 with Dirichlet boundary conditions at zero, one gets that

1 .
! is unitarily equivalent to convolution with ¢~2 on L?(R). This operator

xp 2
1 .
has norm ffw ¢ 2" du = 4. This argument also shows that the operator has
continuous spectrum, so if its norm is larger than 1, a Birman—Schwinger-type
argument provides an alternate proof of an infinity of bound states.
For reasons that will become clear when we discuss the two-dimensional case, we

need more on the borderline —ﬁx’z case. [

Theorem A.2. Let

1 1

X,(x) = a2 VL(2,00)(X) (A.2)

x2(log x)*
Let V be a bounded function on [0, o) with V(x)—0 as x— oo. Then

() If V(x) = X,—14(x) for large x, then Hy + V has finitely many bound states.
(i) If V(x)<X,(x) for some y>3 and all large x, then Hy+ V has infinitely many
bound states.

Proof. Let u, = x'/?(log x)* in the region x>2. Then
—u" + Xv;f':fo((zxfl)u =0

by a direct calculation. The proof is now identical to that of Theorem A.1. [
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Theorem A.3. Let Hy= —A on L*(R"). Let V be a bounded function on R' with
V(x)—0 as |x|> co. Then

() If v=3 or on L*([0, c0)) with Dirichlet boundary conditions at 0 and V (x)> —

2
@M*z, then —A + V has no negative spectrum. If this holds for all |x|> Ry,
then —A+V has finite negative spectrum. In any event, one has Hardy’s
inequality,

(V=2 [lox)’
4 |x2|

d"x</|V(p(x)|2 d"x. (A.3)

(ii) If v=2 and V(x)> — (|x[log Ix|)72 for all |x|=Ry, then —A+ V has finite
negative spectrum.

(i) If v#£2 and V(x)< — (1 +¢) %M_z for |x| =Ry, then —A + V has infinite
negative spectrum.

(iv) If v=2and V(x)< — (1 +¢) % (|x[log |x|) 72 for all |x|> Ry, then —A + V has an
infinite negative spectrum.

Proof. By the min—max principle, it suffices to consider the case where V' is
spherically symmetric. In that case, —4 + V is unitarily equivalent (see [27, pp. 160—
161]) to a discrete sum @ Hy,, on @ L*([0, c0),dr) where

& (v-Dr-3)1 K
H/,m* dr2+ 4 r_2+r_2+V7

where x,_¢ = 0 and all other x’s have x, >0 and x, — co. Since (“7134(”7& -i1="
this result follows from the previous two theorems.

The following result seems to be new:

Theorem A.4. Let v=3. Let V(x) be a function on R® so that for any o, m(x) =
{x||V (x)|>a}]| is finite. Suppose

—2\"'
lim o> .2 A4
lim o m(a) <t ( 5 ) , (A.4)

where t, is the volume of the unit ball in R". Then —A + V has a finite number of bound
States.

Proof. Let V= <"_42)2 Lo my(a) = [{x|Vo(x)>a}| = 1,(5) 072 so  (A4)

I

implies V = V; + V>, where V,eL"? and V> has a spherical rearrangement, Vs
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(see [20]) with
Vi<(l—e)Vg
for some ¢>0. Now —A+ V =g(—4)+ Vi + (1 —&)[-4+ (1 —&) "' V3]. By the
Cwikel-Lieb—Rozenblum [10,19,29] bound, ¢(—4) + V; has finite negative spectrum.
By (A.3),
=) v <1

The Brascamp-Lieb—Luttinger inequality [2] shows

V2 2a) vl P <73 2 -y v 2L
It follows that —4 + (I — &)~ V5 has no negative spectrum. [

We note that the main part of this paper has results that extend some of these
results to Schrédinger operators with oscillatory potentials; see Theorem 2.2. We
now turn to the discrete Jacobi case, beginning with

Theorem A.S. Let Jy be the free Jacobi matrix. Then

Z ﬁ Ju(m)[* < (u, (2 = Jo)u). (A.5)
n=1

Remarks. (1) We will see below that % is the optimal constant in this inequality, that
is, it is false if}—‘ is replaced by a larger constant.
(2) However, 4,17 can be replaced by 4]7—&—3257 or, more generally, [(1 —i—%)l/ i+

(1-1"2 -2l

Proof. There is a Sturm theory in the discrete case [26,34]. One needs to look at zeros
of the linear interpolation of u. In particular, if b, is such that there is a positive
solution uy of

(J() + b)u() = 2Ll0 (A6)

then (2 — Jy — b)=0. Let uy(n) = n'/? for n=>0. Define for n>1,

B 1/2 12
up(n) n n

Thus (A.6) is obeyed so (2 —Jo —b)=0 or 3 bylu(n)]* < (u, (2 — Jo)u) for any u.
Since (1 —x)"/*=1- Sty X" with ¢,=0 and ¢ =4, by, >4 O
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Theorem A.6. Let J be a Jacobi matrix with

lim sup n?|a, — 1] =7, (A7)
lim sup #%|b,| = v, (A.8)

both finite with
Zya + b <% (A9)

Then J has finitely many bound states outside [—2,2].

Remark. (1) As we will see, the % in (A.9) cannot be improved.
(2) In [7], Chihara proves J has finitely many eigenvalues if

lim sup(?[(a, — 1)1 (by + by1)]) <1k (A.10)

(We take his Jacobi matrix and multiply by 2 to get the [—2,2] rather than [—1, 1]
normalization; then his ¢, and 4, are related to ours by a, = /44,1, b, = 2c,.) This
leads to 2y, + 7, <1—167 so our result, which is best possible, is better by a factor of 4.

(3) Because having no eigenvalues remains true if the a,’s are decreased, (A.7) can
be replaced by n*(a, — 1), although it still must be true that a,—1 as n— 0.

Proof. By (4.1), it suffices to prove the spectrum above 2 is finite. Pick ¢ so that

2y, + 7, + 38 1
47 <= A1l

1—¢ 4 ( )
By changing a, and b, on a finite set (which, because it is a finite rank perturbation of
J, cannot change the finiteness of the number of eigenvalues), we can assume for
all n,

2(y, +e)

+¢
ot = Al lan = <= 57— an =12 —2 |bn|<” :

(A.12)

By (5.1), we then have

(u, 2= Nu)= (1= &)(u, (2 = Jo)u) - i g+t 3e o

n=1

n? n

2
Uy

>(1—¢)|(u, (2 - Jou —%i—

n=1

N

where we first use (A.11) and then (A.5). O

In the other direction, we have



376 D. Damanik et al. | Journal of Functional Analysis 205 (2003) 357-379

Theorem A.7. Let J be a Jacobi matrix with

liminf n*(a, — 1) =y, (A.13)
lim inf #%b, = y, (A.14)

with y,20, 7,20, and
29, + >3 (A.15)

Suppose also that

lim |a, — 1|+ |b,| = 0.
n— o0
Then J has an infinity of eigenvalues in [2, 00).

Remark. The existence of O(ni) potentials with an infinity of eigenvalues evoked
some interest because case [4] claimed that if sup n*[|a, — 1| + |b,|] < o0, there were

only finitely many eigenvalues. Chihara [7] produced a counterexample with b, ~#,
3

a, — 1 ~g5 (after changing to our normalization), so 2y, + 7y, = %, larger than the
needed % our theorem allows.

Proof. If there are only finitely many eigenvalues, the solution of (J — 2)u = 0 with
u(0) = 0 has only finitely many zeros so, by restricting to the region beyond the zeros
and using Sturm theory, we see there is an Ny so
u(n) =0, n<Ny= {u,(2-J)u)y=0. (A.16)
Define d, = min (a,, 1 +%), b, = min (bn,28) so
lim [n(d, — 1) +n* (a1 — 1) +n%b,] = 2y, + 7, >1. (A.17)
By (5.1) and (A.16) if u(n) = 0 for n< Ny,

0< (u, (2 — J)u)

8

an(u(n) = u(n+ 1)+ (=by = (ay = 1) = (@1 — 1))u(n)’

Il

i
S
i

(=by — (@, — 1) = (@1 — D]u(n)? (A.18)

NgE

a,(u(n) —u(n + 1))2 +

/A
NgE

n=1 1

3
Il

since b, =>b,, etc.
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Given ¢e Cy°(0,0) and / = 1,2, ..., pick
W, = \/Z(p(;) (A.19)

Since supp(¢p) is a compact subset of (0, c0), u) =0 if n<e/ for some £>0, so

(A.18) holds for ¢ large. Since a,— 1,

8
S
N
S~—
\
S
—
N
~—
—_

Similarly, by (A.17),

S [ (= 1) — (@1 — D)
n=1
- ~ s o)1
- ;nz[_bn — (@, — 1) = (@1 — 1)] (52 v
o (2’))ax_; Vb) (x)z dx

we thus have that

2 1
A= 2y, +7y, >
dx? x2

0

violating Theorem A.1(ii). This contradiction proves that J must have infinitely
many eigenvalues. [
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