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UNIFORM CROSSNORMS

BARRY SIMON

A crossnorm on a pair of Banach spaces (X, Y) is a norm,
a, on the algebraic tensor product X® Y obeying a(z @ y) =
Hell lyll forallz€ X, ye Y. When Schatten introduced cross-
norms, he singled out two general classes of crossnorms: the
dualizable crossnorms (called by him ‘‘crossnorms whose asso-
ciates are crossnorms’’) and the uniform crossnorms. These
are crossnorms which induce in a natural way other cross-
norms; in the dualizable case, a crossnorm, az, on X*(® Y*,
and in the uniform case, a crossnorm, &, on & (X)® &£ (Y)
where .&°(X) is the algebra of bounded operators on X. Our
main new result is a proof that if « is a uniform crossnorm,
then &, the induced crossnorm on F(X)® L (Y) is
dualizable.

This result will be applied to the theory of tensor products of
commutative Banach algebras.

§1. Basic definitions and facts. We recall several definitions
from Schatten [5]:

DEFINITION 1. A norm @ on X (®Y, the algebraic tensor product
of two Banach spaces X and Y, is called a crossmorm if and only if
alz@y) = ||z|] [ly]] for all xe X, ye Y.

DEFINITION 2. A crossnorm, «, on X @Y is called dualizable if
and only if for all le X*, re Y*, 2e X@Y:

U@ =11 [|#lla) .

REMARKS. 1. We have replaced Schatten’s awkward “crossnorm
whose associate is a crossnorm” whith the term “dualizable erossnorm?”.

2. It is a simple exercise [5] to show that if a is dualizable,
and v e X* @Y™, then

a;(\) = sup [\(2) [/a(z)
26 X@Y
defines a crossnorm, @, on X* @®Y*.

DEFINITION 3. «, is called the dual crossnorm of a (Schatten

uses the term associated crossnorm).
We will use &2 (X) to denote the Banach algebra of all bounded

operators on X.
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DEFINITION 4. A crossnorm, &, on X @Y is called uniform if
and only if for all Ae & (X), Be &£ (Y) and ze X@®Y:

a((A® B)z) = || Al [| Blla(z) .
Similar to dualizable crossnorms, for Ce (X)) @® < (Y), the
quantity
&@(C) = sup a(Cz)/a(z)
ze X@OY

defines a crossnorm & on <(X) (® 7 (Y).

DEFINITION 5. @ is called the induced crossnorm of a.
There is an elementary fact about crossnorms which does not
seem to have been noted in the literature:

THEOREM 1. Every uniform crossnorm is dualizable.

Proof. Let lcX* peY* Pick 20 in X,y=0 in Y. Let
Ac (X)) be given by A’ = l(a)x and Be <7 (Y) by By = pr)y.
Then [[All = [IL][ [[|], [| BI| = [[#]| [|y]| and

a(A® B)z) = [ @ MmR) (@@ @y = (ki [yl [t mE)].
It follows that if
a(A® B)z) = [|All [| Blla(z) ,
then
&z = (1] [ #]ek) .

Finally we recall the two “canonical” crossnorms of Schatten and
some facts about them:

DEFINITION 6. 7 is the function on X (®Y given by
(@) = inf {3 o] fw:ll 12 = 2wy

DEFINITION 7. Givenze X (@Y, define [], e <7(X*,Y), the bounded
operators from X* to Y by

m . 0=

n
(.2 %®yz>
2=1

) is the function on X @Y given by
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)“(z) = || ].—.[ZHI./(X*,Y)

where || + ||z x+y, is the operator norm.

THEOREM 2. (Schatten [5])

(a) v and \ are wuniform (dualizable) crossmorms.

(b) If «a is any crossnorm & < .

(¢) A morm is a dualizable crossmorm if and only if v < a < 7.

REMARKS. 1. Schatten calls v the greatest crossmorm and \ the
least crossmorm whose associate is a crossnorm.

2. We will use the symbols 7;er and Ayey Where there might
be some confusion as to which algebraic tensor tensor product is
intended.

3. The completion of X (® Y in the crossnorm, «, will be denoted
XR.Y.

2. The main result. The main new result of this paper is:

THEOREM 3. Let « be a uniform crossnorm on X @Y. Then the
induced norm & on L (X)@® L (Y) is dualizable.

This is a rather technical looking result but it is motivated by a
fairly simple problem which we discuss in §3. The heart of the proof
is the following density lemma.

LeMMA 1. Let X be a Banach space. Endow £ (X)* with the
weak-* topology. Given le ¥ (X) and xe X, let L;,e L (X)* be
defined by L,,,(A) = l(Ax). Then the (weak *-) closed comvex hull of
{Li. 11Tl = |l2|] = 1} is the entire unit ball in £ (X)*.

Proof. Suppose L, &< (X)* and L, is not in the closed convex
hull of {L,,|[|l|| =|l«|l = 1}. Then by the Hahn-Banach theorem,
there exists a weak *-continuous linear functional, 4, on & (X)* with
Re A(L,,,) < a for all [ and « with ||l|| = 1, ||z]| = 1, and with Re 4(L,) >
a. Since L,,, = ¢L,, for any scalar ¢, by rescaling 4, we can suppose
|A(L,,,) | £ 1; A(Ly) > 1. But every weak *-continuous functions 4 is
of the form A(L) = L(A) for some Ae ¥ (X) (see [4], pp. 114-115).
Thus sup,;—is=| I(A%)| £ 1 and Ly(A) > 1. The first inequality implies
[J]A]] £1 so the second implies || L,|| > 1.

Proof of Theorem 3. By Theorem 2, we need only show that
Moo rm = @. But, by definition, if C=3», A,Q B;e ¥ (X)@® <(Y),
then MC) = || II. | where [[.: &= (X)*—<2(Y) by II.(L) = 23, L(4,)B,.
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Since T], has this form, it is weak *-continuous, i.e., if L,— L in
the &~ (X)* -weak* topology, then [I.(L.) — Il.(L) in < (Y)-norm.
Thus [|T1.]| = supres ! 1. (L))o for any set S whose closed convex
hull is the unit ball of &~ (X)*. Using the lemma and

[ Bl = sup {{(By) (|| ]l = lyll = 1},

we conclude:

X?(X)@Z(Y)(C) =
sup ([0 @ MICERy]lle X*, preY*, ve X, ye ¥; ||l
= [l = llz]] = |lyll =1} .

Let @ be a uniform erossnorm, then since a is dualizable,

[T MICE QY] = 2l ® a(Clr & )
= a(0)a,(l @ pa@ Q y)
= a(C) ||t el Heell Nyl -

We conclude M < & and with that, the theorem.

3. Tensor products of commutative Banach algebras. Now let
A, A, be Banach algebras with identities.

DEerFINITION 8. If 21, and 9, are Banach algebras (with identity)
a crossnorm, «, on U, @, (which is an algebra) is called a B-
algebra crossmorm if and only if a(zy) < a(x)a(y) for all z, y e A, @® A,.

Surprisingly, the following question is open.

Question 1. Let 9, A, be commutative Banach algebras with
identity. Let o(-) denote the spectrum of the algebra .. Let a be
a B-algebra crossnorm on 2, ® 2. Then A, ®, A, is a commutative
B-algebra. Is (Y, ®.Wy) = o) x a,)?

One can be more explicit. If [ is a multiplicative linear functional
on A ®. Ay, then I(-®1) and (1K -) define elements I, €o(A) and
l,eo@,) with I=1, Q1. Thus, to conclude that o(, Q.U = o (2,) X
o), it is sufficient to show that for any l,eo(,) and l,eo(@2L),
l, ® 1, defines an a-bounded linear functional on 2 (® A, which then
extends to U, X.2A, We conclude:

LemMA 2. [7] If a is a Bamnach algebra crossmorm on commu-
tative algebras wwich is dualizable, then o, Q. 2W) = o(A) X o@L,).

Question 2. Is every Banach algebra crossnorm on commutative
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Banach algebras dualizable?

An affirmative answer to Question 2 would, of course, imply an
affirmative answer to Question 1. Our main remark is that Theorem
8 implies that question 1 has an affirmative answer in a situation
which arises quite often in practice.

THEOREM 4. Let X and Y be Banach spaces and let & be a uni-
form crossmorm. Let A, be a commutative subalgebra of & (X) and
let N, be a commutative subalgebra of & (Y). Let N be the subalgebra
of L(XR.Y) generated by

{ARQ B|Aec; Be,}.
Then

AN=AXR; U, 0A) = o(A) X oA,) .

Proof. That U = A, Qz N, is a trivial fact. That o) = o (A,) X
o(2,) follows from Theorem 3 and Lemma 2.

ReEmMARKS. 1. This theorem is not new in the case X and Y are
Hilbert spaces and « is the Hilbert space inner product. For & on
LAX)Q® £ (Y) is a C*-norm, so by a result of Takesaki [6] & =
Mgz By the “local nature” of A[5], one concludes & = Ny gq,-

2. The special case of this theorem where X and Y are commu-
tative Banach algebras and U, = {L,|xe X}, %, = {L,|ye Y} with
L,b = ab, is due to J. Gil de Lamadrid [2]. He proves in his special
case that & = A without requiring a Hahn-Banach argument as in
Lemma 1.

3. The special case of this theorem where 9, and 9, are
generated by the resolvents of a single operator has been proven by
Reed-Simon [4] using the fact that the only compact analytic sub-
varieties of C* are points. We note in passing that Theorem 3 does
not allow a simplification of [4] since the machinery needed to prove
the special use of Theorem 4 is needed to prove other results.

4. Under the hypotheses of the theorem it is also quite easy to
prove 0y = 0y, X Oy, Where 6 is the Shilov boundary. The proof is the
same as in the special case o, R, A, [1].
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