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UNIFORM CROSSNORMS

BARRY SIMON

A crossnorm on a pair of Banach spaces (X, Y) is a norm,
a, on the algebraic tensor product X(*)Y obeying a(x®y) —
11 x 11 11 y 11 for allxeX, ye Y. When Schatten introduced cross-
norms, he singled out two general classes of crossnorms: the
dualizable crossnorms (called by him "crossnorms whose asso-
ciates are crossnorms") and the uniform crossnorms. These
are crossnorms which induce in a natural way other cross-
norms: in the dualizable case, a crossnorm, a^ on X* ® Y*9

and in the uniform case, a crossnorm, a, on Sf{X)®^f{Y)
where Sf{X) is the algebra of bounded operators on X. Our
main new result is a proof that if a is a uniform crossnorm,
then α:, the induced crossnorm on JzffJX) ® <2f(Y) is
dualizable.

This result will be applied to the theory of tensor products of
commutative Banach algebras.

§1* Basic definitions and facts* We recall several definitions
from Schatten [5]:

DEFINITION 1. A norm a on X®Y, the algebraic tensor product
of two Banach spaces X and Y, is called a crossnorm if and only if
ot{x®y) = ||α?|| \\y\\ for all xeX,ye Y.

DEFINITION 2. A crossnorm, α, on X( )Y is called dualizable if
and only if for all I e X*, μ e Y*9 z e X®Y:

\(l®μ)(z)\£\\l\\\\μ\\a(z).

REMARKS. 1. We have replaced Schatten's awkward "crossnorm
whose associate is a crossnorm" whith the term "dualizable crossnorm".

2. It is a simple exercise [5] to show that if a is dualizable,
and λ e P ® 7 * , then

ad(χ) = sup \X(z)\/a(z)
X®Y

defines a crossnorm, ad, on X*®Γ*.

DEFINITION 3. ad is called the dual crossnorm of a (Schatten
uses the term associated crossnorm).

We will use £f(X) to denote the Banach algebra of all bounded
operators on X.
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DEFINITION 4. A crossnorm, a, on X®Y is called uniform if
and only if for all Ae J^(X), Be jSf(Y) and zeXQY:

a({A®B)z)^ I! A|| \\B\\a(z) .

Similar to dualizable crossnorms, for Ce Jϊf(X) (•) J*?(Y), the
quantity

ά(C) = sup a(Cz)/a(z)
z e x®Y

defines a crossnorm a on Jί?(X) (•) ^(Y).

DEFINITION 5, a is called the induced crossnorm of a.
There is an elementary fact about crossnorms which does not

seem to have been noted in the literature:

THEOREM 1. Every uniform crossnorm is dualizable.

Proof. Let I e X*, μ e Y*. Pick ^ 0 in 1 , ^ 0 in 7. Let
Ae^(X) be given by Axr = l(x')x and Be^(Y) by By' = μ{yf)y«

Then | | A | | = \\l\\ \\x\\, \\ B\\ = \\μ\\ \\y\\ and

a((A®B)z) = \(l0μ)(z)\(a(x(g)y)= \\x\\ \\y\\ \ (I (x) μ){z) \ .

It follows that if

a{{A®B)z)^ || A | | \\B\\a(z) ,

then

\\μ\Mz).

Finally we recall the two "canonical" crossnorms of Schatten and
some facts about them:

DEFINITION 6. Ύ is the function o n l ® 7 given by

Ύ(z) = infίΣH^H 11^111*= Σ ^ Θ 2/J
i i

DEFINITION 7. Given s e X ® Y, define Π, e =S^(X*, F), the bounded
operators from X* to Y by

Π {l) =

λ is the function on I ® Γ given by

Σ
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where || |Uur*,r> is the operator norm.

THEOREM 2. (Schatten [5])
(a) 7 and λ are uniform (dualizable) crossnorms.
(b) If a is any crossnorm a <̂  7.
(c) A norm is a dualizable crossnorm if and only ifX^oc^j.

REMARKS. 1. Schatten calls 7 the greatest crossnorm and λ the
least crossnorm whose associate is a crossnorm.

2. We will use the symbols 7x®r and λx(?F where there might
be some confusion as to which algebraic tensor tensor product is
intended.

3. The completion of X® Y in the crossnorm, a, will be denoted

2* The main result* The main new result of this paper is:

THEOREM 3. Let a be a uniform crossnorm on X(*)Y. Then the
induced norm ά on J*f(X)®J*f(Y) is dualizable.

This is a rather technical looking result but it is motivated by a
fairly simple problem which we discuss in § 3. The heart of the proof
is the following density lemma.

LEMMA 1. Let X be a Banach space. Endow ^f(Xγ with the
weak-"" topology. Given le^f(X) and xeX, let LltXe£f(X)* be
defined by Ll)X(A) = l(Ax). Then the (weak *-) closed convex hull of
{L ί fa.|||ϊ|| = ||a;|| = 1} is the entire unit ball in J*?(X)*.

Proof. Suppose Lo e £f(X)* and Lo is not in the closed convex
hull of {LZ,J||Z|| = ||α?|[ = 1}. Then by the Hahn-Banach theorem,
there exists a weak *-continuous linear functional, A, on J*f(X)* with
ReA(LltX) ^ a for all I and x with | | ί | | = 1, | |x| | = 1, and with Re Λ(L0) >
a. Since LltCX = cLhx for any scalar c, by rescaling A, we can suppose
\A(Lι,x)\ ^ 1; A(L0) > 1. But every weak *-continuous functions A is
of the form A(L) = L(A) for some Ae^f(X) (see [4], pp. 114-115).
Thus sup|iZh:=|1X|l==1| l(Ax) I <£ 1 and LQ(A) > 1. The first inequality implies
IIAII ^ 1 so the second implies | |L 0 | | > 1.

Proof of Theorem 3. By Theorem 2, we need only show that
λ^(χ,®^(y, ^ a. But, by definition, if C= Σ ί U i ^ ί ® ^ e
then λ(C) = I! Πcli where Π c : £f(X)*-+J*?(Y) by n.(L) =
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Since f[c has this form, it is weak ^-continuous, i.e., if La-+L in
the £?{X)* -weak* topology, then Iίc(La)-+UC(L) in j^(Γ)-norm.
Thus ||Πβll = supL65|IIL(£)IU(r> for a n y s e t S whose closed convex
hull is the unit ball of Jϊf(X)*. Using the lemma and

we conclude:

sup {| (I <g> μ)[C(x ®y)]\\leX*,μeY*,xeX,yeY;

Let α be a uniform crossnorm, then since a is dualizable,

] (I (x) μ)[C(x (g)y)]\^ ad(l <g) μ)a(C(x (g) 7/))

^ &(C)a

We conclude λ ^ α and with that, the theorem.

3* Tensor products of commutative Banach algebras* Now let
§XX, SX2 be Banach algebras with identities.

DEFINITION 8. If SCX and 2l2 are Banach algebras (with identity)
a crossnorm, α, on ^ (•) Sl2 (which is an algebra) is called a JB-
algebra crossnorm if and only if <x(xy) <̂  a(χ)a(y) for all #, 2/ e 3^ ® 212

Surprisingly, the following question is open.

Question 1. Let Sl^ §l2 be commutative Banach algebras with
identity. Let σ( ) denote the spectrum of the algebra . Let a be
a J5-algebra crossnorm on % (•) SI2. Then §lx (x)α 2l2 is a commutative
^-algebra. Is σ(% (x)α Sί2) - ^(StJ x σ(2t2)?

One can be more explicit. If I is a multiplicative linear functional
on $L1<g)a%t, then Z( ® 1 ) and ί(l(g) ) define elements Z^σίSt!) and
Z2 G σ(St2) with I = ix (g) Z2. Thus, to conclude that (7(31! (x)α 2C2) = (/(SCO x
cr(3ί2), it is sufficient to show that for any i1eσ(§I1) and keaQk),
lx (g) ϊ2 defines an α-bounded linear functional on St ® 3k which then
extends to % (x)a % We conclude:

LEMMA 2. [7] // oc is a Banach algebra crossnorm on commu-
tative algebras wnich is dualizable, then σ(% ® α %>) — σ(%) x σ(%ι)

Question 2. Is every Banach algebra crossnorm on commutative
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Banach algebras dualizable?
An affirmative answer to Question 2 would, of course, imply an

affirmative answer to Question 1. Our main remark is that Theorem
3 implies that question 1 has an affirmative answer in a situation
which arises quite often in practice.

THEOREM 4. Let X and Y be Banach spaces and let a be a uni-
form crossnorm. Let % be a commutative subalgebra of Sf{X) and
let Slg be a commutative subalgebra of £f(Y). Let §1 be the subalgebra
of £f(X(x)aY) generated by

{A® BlAe^

Then

21 - S^φ SU, σ(Sl) = σ(%) x

Proof. That §1 = %, ®« % is a trivial fact. That <7(δl) = σ^) x
σ(2t2) follows from Theorem 3 and Lemma 2.

REMARKS. 1. This theorem is not new in the case Xand Fare
Hubert spaces and a is the Hubert space inner product. For a on

is a C*-norm, so by a result of Takesaki [6] α ^
By the "local nature" of λ[5], one concludes ά ^ λHl<g)a2.

2. The special case of this theorem where X and Y are commu-
tative Banach algebras and % = {Lx \xeX}, SX2 = {Ly \yeY} with
Lab — ab, is due to J. Gil de Lamadrid [2]. He proves in his special
case that a ^ λ without requiring a Hahn-Banach argument as in
Lemma 1.

3. The special case of this theorem where % and 2t2 are
generated by the resolvents of a single operator has been proven by
Reed-Simon [4] using the fact that the only compact analytic sub-
varieties of C2 are points. We note in passing that Theorem 3 does
not allow a simplification of [4] since the machinery needed to prove
the special use of Theorem 4 is needed to prove other results.

4. Under the hypotheses of the theorem it is also quite easy to
prove dn — d%γ x d%2 where 3 is the Shilov boundary. The proof is the
same as in the special case §XX (x)r St2 [1].
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