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Abstract

We study ratio asymptotics, that is, existence of the limit of Pnþ1ðzÞ=PnðzÞ (Pn ¼ monic

orthogonal polynomial) and the existence of weak limits of p2
n dm ðpn ¼ Pn=jjPnjjÞ as n-N

for orthogonal polynomials on the real line. We show existence of ratio asymptotics at a single

z0 with Imðz0Þa0 implies dm is in a Nevai class (i.e., an-a and bn-b where an; bn are the off-

diagonal and diagonal Jacobi parameters). For m’s with bounded support, we prove p2
n dm has

a weak limit if and only if lim bn; lim a2n; and lim a2nþ1 all exist. In both cases, we write down

the limits explicitly.
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1. Introduction

In [8], Khrushchev asked two questions about orthogonal polynomials on the unit
circle [5,14,15] and found the following remarkable theorems in terms of the monic
orthogonal polynomials, Fn; the orthonormal polynomials, jn ¼ Fn=jjFnjjL2 ; and

the Verblunsky coefficients, an ¼ �Fnþ1ð0Þ:

ARTICLE IN PRESS

E-mail address: bsimon@caltech.edu.
1Supported in part by NSF Grant DMS-0140592.

0021-9045/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jat.2003.12.002



Theorem A. F�
nþ1ðzÞ=F�

nðzÞ has a limit uniformly in z over compact subsets of D if and

only if either

(i) For c ¼ 1; 2;y; limn-N anþcan ¼ 0; or

(ii) There is aAð0; 1� and lA@D so that limn-N janj ¼ a; limn-N %anþ1an ¼ a2l:

Theorem B. jjnj
2

dm has a weak limit if and only if either

(i) For c ¼ 1; 2;y; limn-N anþcan ¼ 0; or

(ii) There exist a; a0Að0; 1�; lA@D; and integers kX1 and cAf0; 1;y; k � 1g so that

lim
n-N

ja2nkþcþj j ¼
a if j ¼ 0;

a0 if j ¼ k;

0 if j ¼ 1;y; k � 1; k þ 1;y; 2k � 1;

8><
>:

lim
n-N

%a2nkþca2nkþkþc ¼ aa0l:

Khrushchev [8] also describes explicitly the limits in both cases. Our goal in this
paper is to find the analogs of these theorems for orthogonal polynomials on the real
line. The answers and proofs are much simpler—the methods of Khrushchev which
depend heavily on Schur functions do not seem to extend, nor does mapping
bounded intervals on R to @D (as in [15, Section 11.5]) seem to allow direct transfer.

Before stating our results, let us set up notation. Given a measure dm on R withR
x2n dmoN for all n; we let PnðxÞ be the monic orthogonal and pnðxÞ the

orthonormal polynomials. To define them, we suppose henceforth that dm is
nontrivial, that is, not supported on a finite set, and we will also assume throughout
that mðRÞ ¼ 1: Thus Pn is determined by PnðxÞ ¼ xnþ lower order andR

x jPnðxÞ dmðxÞ ¼ 0 for j ¼ 0; 1;y; n � 1: pn ¼ Pn=jjPnjj where jj � jj is the

L2ðR; dmÞ norm.
It is well known [15] that the Pn’s obey a three-term recursion relation. There are

bjAR and ajAð0;NÞ so that

xPnðxÞ ¼ Pnþ1ðxÞ þ bnþ1PnðxÞ þ a2
nPn�1ðxÞ: ð1:1Þ

Our indexing of b1; b2;y and a1; a2;y is not common—often the labelling starts at
b0 and a0: We take this convention from [9] for reasons explained there. Eq. (1.1)
implies inductively that

jjPnjj ¼ anya1 ð1:2Þ

and then that the pn obey the recursion relation

xpnðxÞ ¼ anþ1pnþ1ðxÞ þ bnþ1pnðxÞ þ anpn�1ðxÞ: ð1:3Þ
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In turn, (1.3) suggests we study the Jacobi matrix

J ¼

b1 a1 0 0 ?

a1 b2 a2 0 ?

0 a2 b3 a3 ?

^ ^ ^ ^ &

0
BBB@

1
CCCA: ð1:4Þ

Since fpngNn¼0 is an orthonormal set,

U :
XN

j¼0

vjpj-

v1

v2

^

0
B@

1
CA

is a unitary map of the closed span, S; of the p’s to c2ðZþÞ ðZþ ¼ f1; 2;ygÞ and for

vAS0 ¼ span of p’s, we have U�1JUv ¼ ðmultiplication by xÞ v:
In case the moment problem is determinant [1,13], J is self-adjoint, and dm is just

the spectral measure for J and vector d ¼ ð1; 0;yÞ:
We can now state our main results.

Theorem 1 (
 Theorems 2.1 and 2.2). Suppose that at a single z0AC\R; we have

lim
n-N

Pnþ1ðzÞ
PnðzÞ

¼ f ðzÞ ð1:5Þ

for z ¼ z0: Then, for some aA½0;NÞ and bAR;

lim
n-N

an ¼ a; lim
n-N

bn ¼ b: ð1:6Þ

Conversely, if ð1:6Þ holds and spectrumðJÞ is the spectrum of the operator J; then ð1:5Þ
holds for all zAC\spectrumðJÞ and

f ðzÞ ¼
ðz � bÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
2

; ð1:7Þ

where the branch of the square root is taken with
ffiffiffiffiffiffi
?

p ¼ z þ Oð1=zÞ near z ¼ N:

Theorem 2 (
 Theorems 3.1 and 3.2). Let

dmn ¼ p2
nðxÞ dmðxÞ: ð1:8Þ

Suppose that for c ¼ 1; 2; and 4; limn-N

R
xc dmn exists. Then for a; cA½0;NÞ and

bAR; we have

lim
n-N

bn ¼ b; lim
n-N

a2n ¼ a; lim
n-N

a2nþ1 ¼ c: ð1:9Þ

Conversely, if ð1:9Þ holds, the dmn have supports lying in a fixed bounded interval and

there is a measure drb;a;c so that for any continuous f on R (including f ðxÞ ¼ xc), we

have Z
f ðxÞ dmnðxÞ-

Z
f ðxÞ drðxÞ: ð1:10Þ
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dr is a function of a; b; c only, and if drb;a;c ¼ drb0;a0c0 ; we have b ¼ b0 and either a ¼ a0;

c ¼ c0 or a ¼ c0; c ¼ a0:

Remark. We will show that the existence of the limit
R

xc dmn for c ¼ 2 implies dm
has bounded support.

Theorem 1 is proven in Section 2 and Theorem 2 in Section 3. dr is calculated in
Section 5. Theorems 1 and 2 seem to be optimal in that the two pieces of real data
(1.6) (i.e., a and b) correspond to one complex number f ðz0Þ while the three moments
in Theorem 2 correspond to the real numbers, a; b; and c:

There is previous work of Nevai [10] on the subjects of Theorems 1 and 2. He
proved that (1.6) implies (1.5) with f given by (1.7), and conversely proved that if
(1.5) holds for all zAC\R and f ðzÞ given by (1.7), then (1.6) holds. He did not get a
result depending on a single z0 nor, more importantly, did he show that (1.7) are the
only possible limits in (1.5).

Nevai [10] also proved that if an-a and bn-b; then dmn has a weak limit (he
wrote down the explicit form of drb;a;a for a ¼ c; as we will in Section 5).

Barrios et al. [2] proved that if (1.5) holds at two points with f given by (1.7), then
(1.6) holds. But, like Nevai, they did not address the fact that (1.7) are the only
possible limits.

In [11], Nevai made a conjecture closely related to a special case of Theorem 2.
Namely,

Nevai Conjecture 2.16 (Nevai [11]). If ð1:10Þ holds for all bounded uniformly

continuous functions on R with drðxÞ ¼ p�1w½�1;1�ðxÞð1� x2Þ�1=2
dx; then an-

1
2

and

bn-0:

Corollary to Theorem 2. If one supposes suppðdmÞ is bounded, then Nevai’s conjecture

holds.

Proof. xcpsuppðdmÞ is bounded, so
R

xc dmn converges for c ¼ 1; 2; 4 to the same

limit as for an 
 1
2
and b 
 0: Uniqueness of the limit (and the fact that a ¼ c)

completes the proof. &

Related to this is

Nevai Conjecture 2.17 (Nevai [11]). If for some A; we have
R
N

A
dmn-0; then for every

e40; ½A þ e;NÞ-suppðdmÞ is finite.

We mention

Weaker Nevai Conjecture 2.17. If for some A40; mnðfx j jxj4AgÞ-0; then suppðdmÞ
is bounded.
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Clearly, Nevai Conjecture 2.17 implies the weaker version. The point of this is that
a positive solution of the Weaker Nevai Conjecture 2.17 plus the results of this paper
would imply Nevai Conjecture 2.16.

It is a pleasure to thank Rowan Killip and Paul Nevai for cogent comments.

2. Ratio asymptotics

The two main theorems on limits of Pnþ1ðxÞ=PnðxÞ are as follows:

Theorem 2.1. Suppose an-aA½0;NÞ and bn-bAR: Then for all zAC\spectrumðJÞ;
we have that

lim
n-N

Pnþ1ðzÞ
PnðzÞ

¼
ðz � bÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
2

: ð2:1Þ

Remark. 1. In (2.1), we take the branch of the square root with
ffiffiffiffiffiffi
?

p
Bz for jzj large,

that is, as z-N:
2. For zeR; Pn is nonzero for all n: (2.1) for z0AR\spectrumðJÞ includes the fact

that for z0 fixed, Pnðz0Þa0 for all large n:
3. One can also show that for zAspectrumðJÞ\½b � 2a; b þ 2a� so that z is an

eigenvalue of J;

lim
n-N

Pnþ1ðzÞ
PnðzÞ

¼
ðz � bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
2

: ð2:2Þ

Theorem 2.2. Suppose for one z0 with Im z0a0; limn-N Pnþ1ðzÞ=PnðzÞ exists (and is

finite). Then there exists aA½0;NÞ with bAR so that an-a and bn-b so that ð2:1Þ holds.

In particular, the only functions that can occur as ratio asymptotics are the ones in ð2:1Þ:

Theorem 2.1 is not new. In this generality, it is due to Nevai [10], who also proved
a converse; namely, he showed that if (2.1) holds for all zAC\R; then an-a and
bn-b: But we will sketch two proofs of Theorem 2.1 for the reader’s convenience.
One uses transfer matrices and the other, operator theory.

As a preliminary, we need:

Proposition 2.3. Let fxj;ngn
j¼1 be the zeros of PnðxÞ with

x1;nox2;no?oxn;n: ð2:3Þ

Then

(i)
� Pn�1ðzÞ

PnðzÞ
¼

Xn

j¼0

aj;n

xj;n � z
; ð2:4Þ
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where aj;n40 andXn

j¼1

aj;n ¼ 1: ð2:5Þ

(ii) If Im z40;

0o� Im
Pn�1ðzÞ
PnðzÞ

� �
p

1

Im z
ð2:6Þ

and

Pn�1ðzÞ
PnðzÞ

����
����p 1

Im z
: ð2:7Þ

(iii) If Im z40;

Im
Pnþ1

Pn

� �
XIm z: ð2:8Þ

Proof. (i) Since Pn is monic, PnðzÞ ¼
Qn

j¼1 ðz � xj;nÞ: Since Pn�1=Pn has simple poles

and goes to zero at infinity, (2.4) holds for some aj;n: Multiplying by xi;n � z and

taking z to xi;n; we find

aj;n ¼
Qn�1

c¼1 ðxj;n � xc;n�1ÞQn
c¼1; caj ðzj;n � xc;nÞ

: ð2:9Þ

For j ¼ n; all factors in the right are positive. Since zeros of Pn�1 and Pn interlace as
we decrease j by one, both numerator and denominator each pick up a minus sign
which cancel to prove aj;n40:

The left side of (2.4) is �z�1 þ Oðz�2Þ as z-N since Pn is monic. The right side is

�z�1
Pn

j¼0 aj;n

� �
þ Oðz�2Þ; so (2.5) holds.

(ii) This follows from (2.4) and (2.5) if one notes that for any xAR and z with
Im z40;

0oIm
1

x � z

� �
p

1

jx � zjp
1

Im z
:

(iii) This follows immediately from

Pnþ1ðzÞ
PnðzÞ

¼ z � bnþ1 � a2
n

Pn�1ðzÞ
PnðzÞ

: ð2:10Þ

Since Im Pn�1=Pno0; (2.10) implies (2.8). &

Proof of Theorem 2.2. By replacing x by ðx �Re z0Þ=Im z0 (i.e., translating
and scaling the measure), we can suppose for notational simplicity that z0 ¼ i:
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Let

a ¼ lim
n-N

Pnþ1ðiÞ
PnðiÞ

: ð2:11Þ

By (2.8), Im aX1 so �Imða�1Þ ¼ Im a=jaj240:
Taking imaginary parts of (2.10), we see that

a2
n ¼ ½ImðPnþ1=PnÞ � 1�

Imð�Pn�1=PnÞ
-

ðIm a� 1Þ
Imð�a�1Þ 
 a2

X0 ð2:12Þ

proving an has a limit.
Taking real parts of (2.10) shows

bnþ1 ¼ �a2
n Re

Pn�1

Pn

� �
�Re

Pnþ1

Pn

� �
-� a2 Reða�1Þ �ReðaÞ 
 b: &

ð2:13Þ

Our first proof of Theorem 2.1 is a simple consequence on the following theorem
of Poincaré (see [4,12,14] for proofs):

Theorem of Poincaré. Let ujAC solve the nth order difference equation

unþj ¼ aj;1unþj�1 þ aj;2unþj�2 þ?þ aj;nuj ; ð2:14Þ

j ¼ 1; 2;y: Suppose

(i) aj;na0 for all j:

(ii) limj-N aj;c ¼ Ac exists for c ¼ 1;y; n:

Let l1;y; ln be the solutions of

An þ An�1lþ?þ A1l
n�1 ¼ ln: ð2:15Þ

Suppose fljgn
j¼1 are distinct, and for jak; jljjajlkj: Then, if u is not identically zero,

we have for some k that

lim
j-N

ujþ1

uj

¼ lk: ð2:16Þ

First Proof of Theorem 2.1. Eq. (1.1) is exactly of the form (2.14). Eq. (2.15) becomes

l2 ¼ ðz � bÞl� a2 ð2:17Þ

whose solutions are

l7 ¼
ðz � bÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
2

: ð2:18Þ

To prove (2.1), we must show that if ze½b � 2a; b þ 2a�; then jlþjajl�j and then
identify which root is taken by the ratio.

If a and b are complex numbers, jaþ bj ¼ ja� bj if and only if a and b are

orthogonal as vectors in C ¼ R2; if and only if b ¼ ica for cAR; if and only if
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b2 ¼ �c2a2: Taking a ¼ ðz � bÞ and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
; we see jlþj ¼ jl�j if and

only if

�c2ðz � bÞ2 ¼ ðz � bÞ2 � 4a2

or

z � b ¼ 7
2affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p ð2:19Þ

for cAR: Eq. (2.19) holds if and only if zA½b � 2a; b þ 2a�:
Since jlþjajl�j; l7ðzÞ are analytic in C\½b � 2a; b þ 2a� (as is obvious from

(2.18)). Since lþl� ¼ a2; jlþj jl�j ¼ a2; and lþ ¼ z þ Oð1=zÞ as jzj-N; jlþj4a for

jzj large, and so since jlþj jl�j ¼ a2 and jlþjajl�j implies jl7jaa; we see

jlþj4a jl�joa all zAC\½b � 2a; b þ 2a�: ð2:20Þ
Thus for all zAC\½b � 2a; b þ 2a�; Poincaré’s theorem applies and Pnþ1=Pn has a

limit cðzÞ where for each z; cðzÞ ¼ lþ or cðzÞ ¼ l�:
By (2.6), Pn=Pnþ1 is a normal family on C\R; so cðzÞ is analytic on C\R: By (2.8),

jcðzÞj4jIm zj; so for jzj large, cðzÞ ¼ lþðzÞ and thus, by analyticity, cðzÞ ¼ lþðzÞ for
zAC\R: This establishes (2.1) there.

For zAR\½b � 2a; b þ 2a�;

lim
n-N

pnþ1ðzÞ
pnðzÞ

¼ lim
n-N

1

a

Pnþ1ðzÞ
PnðzÞ

¼ l7ðzÞ
a

:

If the limit is l�ðzÞ; lim jpnþ1=pnjo1; so pnAc2 and zAspectrumðJÞ: Conversely, if it
is lþ; lim jpnþ1=pnj41; so pnec2: Thus (2.1) holds for zAR\spectrumðJÞ and (2.2)
holds for zAspectrumðJÞ\½b � 2a; b þ 2a�: &

Second Proof of Theorem 2.1. Let JðnÞ be the n � n matrix obtained from the first n

rows and columns of J: As is well known,

detðz � JðnÞÞ ¼ PnðzÞ:
Thus, by Cramer’s rule,

Pn�1ðzÞ
PnðzÞ

¼ ðz � JðnÞÞ�1
nn ¼ ðz � J̃ðnÞÞ�1

11 ; ð2:21Þ

where J̃
ðnÞ
ij ¼ J̃

ðnÞ
n�i; n�j; that is,

J̃ðnÞ ¼

bn an�1 0 y y

an�1 bn�1 an�2 y y

0 an�2 bn�2 y y

y y y y y

y y y a1 b1

0
BBBBBB@

1
CCCCCCA
: ð2:22Þ

If J̃ðNÞ is the constant Jacobi matrix an 
 a; bn 
 b; it is clear as operators on c2ðZþÞ;
J̃ðnÞ-J̃ðNÞ strongly. It follows that as operators on c2ðZÞ; ðJ̃ðnÞ � zÞ�1-ðJ̃ðNÞ � zÞ�1
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strongly for Im za0: Thus

Pn�1ðzÞ
PnðzÞ

¼ ðz � J̃ðnÞÞ�1
11 -ðz � J̃ðNÞÞ�1

11 : ð2:23Þ

Let w solve

aðw þ w�1Þ þ b ¼ z ð2:24Þ

with jwjo1: Let un ¼ wn: Thus unAc2 and

ðz � J̃ðNÞÞu ¼ ðaw�1Þd1;

so

ðz � J̃ðNÞÞ�1
11 ¼ aw�1: ð2:25Þ

Solving (2.24), we see that aw�1 ¼ RHS of (2.1). This proves (2.1) on C\R:

On R\spectrumðJÞ; one shows the eigenvalues of J̃ðnÞ (equals zeros of PnðzÞ)
outside ½b � 2a; b þ 2a� converge to the eigenvalues of J so for zAR\spectrumðJÞ;
ðJ̃ðnÞ � zÞ�1-ðJ̃ðNÞ � zÞ�1 strongly also. &

3. Weak asymptotic limits

Let dmn ¼ p2
n dm: In this section, the main theorems are

Theorem 3.1. Suppose

bn-b; a2n-a; a2nþ1-c ð3:1Þ

for bAR; a; cA½0;NÞ: Then as n-N; dmn has a weak limit drb;a;cðxÞ; and for every c;Z
xc dmn-

Z
xc drb;a;cðxÞ: ð3:2Þ

Remark. 1. The hypotheses imply that dm is supported in ½inf bn �
2 supðanÞ; sup bn þ 2 supðanÞ� which is bounded, so weak convergence is equivalent
to convergence of the moments.

2. We will see below that drb0;a0;c0 ¼ drb;a;c implies b0 ¼ b and either a0 ¼ a; c0 ¼ c;

or a0 ¼ c; c0 ¼ a:
3. We will discuss the form of drb;a;c in Section 5.

Theorem 3.2. Suppose for c ¼ 1; 2; and 4;

lim
n-N

Z
xc dmn ¼ Ac: ð3:3Þ

Then for some a; b; c; ð3:1Þ holds. Moreover, A1;A2;A4 determine b; a þ c; ja � cj (i.e.,
they determine b and the unordered pair ða; cÞ).

Remark. 1. We will see A2oN implies supðjbnj þ janjÞoN:
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2. The final assertion proves the second remark after Theorem 3.1.

Our proofs will depend on a graphical representation of
R

xc dmn: Consider the

lattice Zþ ¼ f0; 1;yg: We will consider a random walk on Zþ where at each step,
one either stays at the site one is at or one jumps by a single site. Paths have
unnormalized weights, products over the steps: bkþ1 if one stays at site k; akþ1 is one
move from k to k þ 1 or k þ 1 to k: To be more precise, a path is a sequence
r0; r1;y; rcAZþ so that jrm � rm�1jp1 and

WðrÞ ¼
Yc�1

j¼0

wðrj; rjþ1Þ ð3:4Þ

and

wðrj; rjþ1Þ ¼
bkþ1 if rjþ1 ¼ rj ¼ k;

akþ1 if rjþ1 ¼ rj þ 1 ¼ k þ 1;

ak it rjþ1 ¼ rj � 1 ¼ k � 1:

8><
>: ð3:5Þ

Here is the key tool:

Proposition 3.3.Z
xc dmn ¼

X
rAQn;c

WðrÞ; ð3:6Þ

where Qn;c is the set of all paths of length c with r0 ¼ rc ¼ n:

Proof. Since

xpn ¼ anþ1pnþ1 þ bnþ1pn þ anpn�1;

we see immediately that, by induction in j;

x jpn ¼
X

cj;m;npm; ð3:7Þ

where

cj;m;n ¼
X

rAQn;m; j

WðrÞ

and Qn;m; j is all paths of length j with r0 ¼ n and rj ¼ m: (3.6) follows sinceR
xc dmn ¼ /pn; xcpnS ¼ cc;n;n: &

Proof of Theorem 3.1. Under hypothesis (3.1), J is bounded, so dm has a bounded

support, so weak convergence is equivalent to (3.2). By Proposition 3.3,
R

xc dmn

is a finite sum over paths. This representation shows that if an; bn; and ãn; b̃n

are two sets of Jacobi parameters and limn-N jan � ãnj þ jbn � b̃nj ¼ 0;

then
R

xc dmn �
R

xc d *mn

�� ��-0: Thus we need only prove (3.2) for bn 
 b; a2n 
 a;

a2nþ1 
 c:

ARTICLE IN PRESS
B. Simon / Journal of Approximation Theory 126 (2004) 198–217 207



Fix c: So long as co2n; there is a one-one correspondence between paths rAQn;c

and rAQn;þ1;c by U ¼ TS;

TðrÞj ¼ rj þ 1;

SðrÞj ¼ n � ðrj � nÞ:

S reflects the path in n; T translates by 1: co2n is needed to assure paths do not get
mapped into ones that have rjo0; which is forbidden (and that the inverse does not

do this), showing U is a bijection of Qn;c and Qnþ1;c: The key point is that WðUrÞ ¼
WðrÞ; for if rj ¼ rjþ1; the weight is always b and both S and T interchange links

with weight a and those with weight c: It follows that if b 
 b; a2n 
 a; a2nþ1 
 c;

then
R

xc drn is independent of n once co2n; so the limit exists. Once the moments

exist, they provide a measure since the nonnegative Hankel matrices converge to
nonnegative Hankel matrices. &

Proof of Theorem 3.2.
R

xp2
n dm ¼ bnþ1; so (3.4) for c ¼ 1 implies bnþ1-A1 
 b: Let

d *mðxÞ ¼ dmðx þ bÞ: The Jacobi parameters of *m are given by

ãn ¼ an b̃n ¼ bn � b: ð3:8Þ

Moreover,Z
xc dmn ¼

Xc
j¼0

c

j

� �
ðbÞc�j

Z
x j d *mn ð3:9Þ

and Z
xc d *mn ¼

Xc
j¼0

c

j

� �
ð�bÞc�j

Z
x j dmn: ð3:10Þ

Since b̃n-0 and every odd c random walk has a bk factor in it,
R

xc d *mn-0 for all

odd c: Thus, (3.9) implies
R

x3 dmn exists and then (3.10) that
R

x4 d *mn converges.

Thus, without loss, we suppose A1 ¼ 0 and bn-0:
If bn-0; any path with rj ¼ rjþ1 contributes zero in the limit; so we can restrict to

paths with jrjþ1 � rjj ¼ 1: Thus, looking at the two such paths with r2 ¼ r0 ¼ n;

lim
n-N

a2
nþ1 þ a2

n ¼ A2: ð3:11Þ

In looking at paths with r0 ¼ r4 ¼ n; all those with r2 ¼ n contribute
R

x2 dmn

� �2
; so

lim
n-N

a2
nþ2a2

nþ1 þ a2
na2

n�1 ¼ A4 � A2
2: ð3:12Þ

Thus, using ðx � yÞ2 ¼ ðx þ yÞ2 � 4xy;

lim
n-N

ða2
nþ2 � a2

nþ1Þ
2 þ ða2

n � a2
n�1Þ

2 ¼ 6A2
2 � 4A4: ð3:13Þ
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Suppose an has a limit point, a; that is, anð jÞ-a as j-N for a subsequence. Define

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � a2

p
: By (3.11), for any c ¼ 0;71;72;y;

anð jÞþc-
a c even;

c c odd:

�

In particular, by (3.13),

ja2 � c2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2

2 � 2A4

q
: ð3:14Þ

Since also

a2 þ c2 ¼ A2 ð3:15Þ

there are at most two solutions of (3.14), (3.15):

a2 ¼ 1
2

A2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2

2 � 2A4

q� �
; ð3:16Þ

c2 ¼ 1
2

A2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2

2 � 2A4

q� �
ð3:17Þ

and the one with a; c; reversed. Thus the right sides of (3.16) and (3.17) are the only

limit points of a2
n:

The lemma below completes the proof. &

Lemma 3.4. Let xn be a sequence so that for some a;bAR;

lim
n-N

xn þ xnþ1 ¼ aþ b; ð3:18Þ

lim
n-N

jxn � xnþ1j ¼ ja� bj: ð3:19Þ

Then either

lim
n

x2n ¼ a lim
n

x2nþ1 ¼ b

or

lim
n

x2n ¼ b lim
n

x2nþ1 ¼ a:

Proof. By replacing xn by xn � 1
2
ðaþ bÞ; we can suppose a ¼ �bX0: If a ¼ b ¼ 0;

the result is trivial, so suppose a ¼ �b40: Pick N so that for n4N;

jxn þ xnþ1joa;

jxn � xnþ1j4a:

Thus, since jxn � xnþ1j4jxn þ xnþ2j; xn and xnþ1 have opposite signs for all n4N;

that is, for n4N; either ð�1Þn
xn40 or ð�1Þnþ1

xn40: Since 7a are the only allowed

limit points if ð�1Þn
xn40; x2n-a; x2nþ1-b ¼ �a; and if ð�1Þnþ1

xn40; x2n-b;
x2nþ1-a: &

ARTICLE IN PRESS
B. Simon / Journal of Approximation Theory 126 (2004) 198–217 209



4. Ratio asymptotics for pnþ1=pn

In this section and the next, we discuss two further issues related to our results:
what about lim pnþ1=pn (pn rather than Pn) and we calculate the measures drb;a;c of

(3.2) (already well known if a ¼ c).
Let

RnðzÞ ¼
Pnþ1ðzÞ
PnðzÞ

; rnðzÞ ¼
pnþ1ðzÞ
pnðzÞ

: ð4:1Þ

Since pn ¼ ða1yanÞ�1
Pn;

rnðzÞ ¼ a�1
nþ1RnðzÞ; ð4:2Þ

so we immediately see with Theorem 2.1 that if an-aa0 and bn-b;

lim
n-N

rnðzÞ ¼
ðz � bÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � bÞ2 � 4a2

q
2a

: ð4:3Þ

We want to address a converse. One problem we find is that while jRnðzÞj4Im jzj;
without an a priori upper bound on an; we do not have a bound for jrnðzÞj; so it is not
obvious that existence of the limit implies an is bounded.

Example 4.1. Let an ¼ en!; bn ¼ arbitrary bounded sequence, especially one without
a limit. Then, by (1.3) and

rnðzÞ ¼
z � bnþ1

anþ1
� an

anþ1
½rn�1ðzÞ��1

¼ z � bnþ1

anþ1
� a2

n

anþ1
½Rn�1ðzÞ��1 ð4:4Þ

by (4.2). By (2.7),

jrnðzÞjp
jz � bnþ1j

anþ1
þ a2

n

anþ1
jIm zj�1-0 ð4:5Þ

since an is chosen so a2
n=anþ1-0: Thus for this example, rnðzÞ-0:

Because of this example, we will need to suppose that if lim rnðzÞ exists, it has
nonzero imaginary part. Here is a result that requires two points rather than one,
with some extra conditions:

Theorem 4.2. Suppose supn anoN: Suppose z1; z2 are in fz j Im z40g and let

lim
n-N

rnðzjÞ ¼ lj ð4:6Þ

with

ðaÞ Im lj40;
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and either

ðb1Þ Im l1
Im z1

a
Im l2
Im z2

or

ðb2Þ Imðl�1
1 Þ

Im z1
a

Imðl�1
2 Þ

Im z2
:

Then an-aa0 and bn-b:

Proof. By (1.3),

anþ1rnðzÞ ¼ ðz � bnþ1Þ � an½rn�1ðzÞ��1: ð4:7Þ

Since Imð�rn�1ðzÞÞ�140; (4.7) implies

anþ1 Im rnðzjÞXIm zj;

which implies

lim inf anX
Im zj

Im lj

40;

so the a’s are bounded above and below.
Let ða; cÞ be a limit point of ðanþ1; anÞ: By (4.7),

a Im lj ¼ Im zj þ cðImð�ljÞ�1Þ: ð4:8Þ

If Im l1=Im z1aIm l2=Im z2; (4.8) implies

a
Im l1
Im z1

� Im l2
Im z2

� �
¼ c

Imð�l1Þ�1

Im z1
� Imð�l2Þ�1

Im z2

" #
;

so we can solve for a as a multiple of c; and then for c in (4.8) for j ¼ 1: If

Imðl1Þ�1=Im z1aImðl2Þ�1=Im z2; we solve for c as a multiple of a: Either way, we
see (4.8) has a unique solution for ða; cÞ so ðanþ1; anÞ-ða; cÞ: But then
ðanþ2; anþ1Þ-ða; cÞ so a ¼ c and an-aa0: This implies lim Rnðz1Þ ¼ lim ancnðzÞ
exists. So, by Theorem 4.2, bn-b: &

We have a second remark about the existence of limn-N rnðzÞ: In the OPUC case,
existence of j�

nþ1ðzÞ=j�
nðzÞ for all zAD implies the same of F�

nþ1ðzÞ=F�
nðzÞ (and, by

taking aj ¼ 0 if jan2; an2 ¼ 1
2
; not conversely) for j�

nþ1ð0Þ=j�
nð0Þ ¼ r�1

n ; so existence

of the j ratio limit at z ¼ 0 implies rn-r
N

and then, since F�
nþ1ðzÞ=F�

nðzÞ ¼
rnj

�
nþ1ð0Þ=j�

nð0Þ; we get the F�
n ratio limits.

The same is true here, but alas, the analog of z ¼ 0 for OPUC is z ¼ N here. The
following captures the idea, without the need for hypotheses (b) of Theorem 4.2.

Theorem 4.3. Suppose an and jbnj are bounded and rnðzÞ converges to a nonzero limit

as n-N for all z in a small neighborhood of z0AC\R: Then an-a and bn-b for some

aa0; bAR:
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Proof. By (4.4),

rnðzÞ ¼
z

anþ1
� bnþ1

anþ1
þ O

1

z�1

� �
: ð4:9Þ

Thus

rnðzÞ�1 ¼ anþ1

z
þ bnþ1

z2
þ O

1

z3

� �
: ð4:10Þ

If suppðdmÞC½�c; c� (take c ¼ supn jbnj þ 2 sup janj), then for r4c; by the Cauchy

formula for every cAZ and the fact that rn has its zeros in ½�c; c�; 1
2pi

H
jzj¼r rnðzÞ�1

zc dz

is r independent for r4c: Taking r to infinity, we get, by Eq. (4.9),

1

anþ1
¼ 1

2pi

I
jzj¼cþ1

rnðzÞ�1
dz; ð4:11Þ

� bnþ1

anþ1
¼ 1

2pi

I
jzj¼cþ1

rnðzÞ�1
z dz: ð4:12Þ

Thus uniform convergence of rnðzÞ to a limit on jzj ¼ c þ 1 implies convergence of

an and bn: Therefore, we are reduced to showing convergence of r�1
n on a single

compact subset of C\R implies convergence on all compact subsets of C\½�c; c�:
By (2.4) and (2.4) and xi;nA½�c; c�; we have

jRnðzÞ�1jp sup
xA½�c;c�

jz � xj�1

and thus, by (4.2),

jrnðzÞ�1jp sup
n

janj
� �

sup
xA½�c;c�

jz � xj�1: ð4:13Þ

Thus convergence of rnðzÞ on a compact implies, by Vitali’s theorem and (4.13),

uniform convergence of rnðzÞ�1 on compact sets in C\½�c; c�: &

5. Calculation of dqb;a;cðxÞ

In this section, we compute the weak limit rb;a;c of p2
n dm for m; the measure

corresponding to the Jacobi matrix a2n ¼ c; a2nþ1 ¼ a; bn ¼ b: We will also find
dmb;a;c; the measure associated to the Jacobi matrix

J ¼

b a

a b c

c b a

a b c

& & &

0
BBBBBB@

1
CCCCCCA
: ð5:1Þ
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We begin by computing

f ðz; b; a; cÞ ¼
Z

dmb;a;cðxÞ
z � x

ð5:2Þ

and

Gðz; b; a; cÞ ¼
Z

drb;a;cðxÞ
z � x

: ð5:3Þ

This calculation is not unrelated to calculations in Khrushchev [8] for the measure
associated to a period 2 Verblunsky coefficient. As he does, we could ask for the
Jacobi coefficients for the measure dr and show they converge exponentially fast to
those for dm (with a need to interchange a and c depending on the sign of a � c).

We begin with a result about a finite Jacobi matrix

J ½1;n� ¼

b1 a1

a1 b2 a2

& & &

& & &

& & an�1

an�1 bn

0
BBBBBBBB@

1
CCCCCCCCA
: ð5:4Þ

We let J ½ j;k� for 1pjpkpn denote the ðk � j þ 1Þ � ðk � j þ 1Þ matrix we get by
keeping rows and columns between j and k (inclusive). We refer to the row number

of J ½ j;k� as j; j þ 1;y so, for example, ðJ ½ j;k�Þjj ¼ bj:

Here is a key lemma that appears in [6] although closely related formulae have
appeared elsewhere; in particular, the k ¼ 1; n results go back to Jacobi:

Proposition 5.1. For 2pkpn � 1;

½ðz � J ½1;n�Þ�1�kk

¼ 1=fz � bk � a2
k�1½ðz � J ½1;k�1�Þ�1�k�1;k�1 � a2

k½ðz � J ½kþ1;n�Þ�1�kþ1;kþ1g:
ð5:5Þ

For k ¼ 1;

½ðz � J ½1;n�Þ�1�11 ¼ 1=fz � b1 � a2
1½ðz � J ½2;n�Þ�1�22g: ð5:6Þ

Proof. Let 2pkpn � 1: Here is a proof that is more direct than that in [6], although
the essence is the same. If row and column k are removed, the resulting matrix is

J ½1;k�1�"J ½kþ1;n� so, by Cramer’s rule,

½ðz � J ½1;n�Þ�1�kk ¼ detðz � J ½1;k�1�Þdetðz � J ½kþ1;n�Þ
detðz � J ½1;n�Þ : ð5:7Þ
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Expanding detðz � J ½1;n�Þ in minors in row k;

detðz � J ½1;n�Þ ¼ ðz � bkÞd1 � a2
k�1d2 � a2

kd3; ð5:8Þ

where

d1 ¼ detðz � J ½1;k�1�Þdetðz � J ½kþ1;n�Þ; ð5:9Þ

d2 ¼ detðz � J ½1;k�2�Þdetðz � J ½kþ1;n�Þ; ð5:10Þ

d3 ¼ detðz � J ½1;k�1�Þdetðz � J ½kþ2;n�Þ ð5:11Þ

(where detðz � J ½1;0�Þ and detðz � J ½nþ1;n�Þ; which occur if k ¼ 2 or k ¼ n � 1; are
interpreted as 1).

Finally, note that, by Cramer’s rule again,

½ðz � J ½1;k�1�Þ�1�k�1;k�1 ¼
d2

d1
; ð5:12Þ

½ðz � J ½kþ1;n�Þ�1�kþ1;kþ1 ¼
d3

d1
: ð5:13Þ

Eqs. (5.7)–(5.13) imply (5.5). Eq. (5.6) is proven in a similar way (but, e.g., the analog
of (5.8) has only two terms). &

Corollary 5.2. For the functions f and G of ð5:2Þ=ð5:3Þ; we have that for zAC\R;

½Gðz; b; a; cÞ��1 ¼ z � b � c2f ðz; b; a; cÞ � a2f ðz; b; c; aÞ: ð5:14Þ

Remark. This formula makes it evident once again that G is symmetric in a and c:

Proof. Let J be given by (5.1). On c2ðZþÞ; J ½1;n�"0 converges strongly to J: Thus

f ðz; b; a; cÞ ¼ ½ðz � JÞ�1�11 ¼ lim
n-N

½ðz � J ½1;n�Þ�1�11: ð5:15Þ

Moreover,Z
pkðxÞ2 dmb;a;cðxÞ

z � x
¼ ½ðz � JÞ�1�kk ¼ lim

n-N

½ðz � J ½1;n�Þ�1�kk; ð5:16Þ

so

Gðz; b; a; cÞ ¼ lim
k-N

lim
n-N

½ðz � J ½1;n�Þ�1�kk

h i
: ð5:17Þ

Eq. (5.14) follows by using (5.5), (5.15), and (5.17) together with the structure of J

(e.g., J ½1þ2c;nþ2c� ¼ J ½1;n� and J ½1þ2cþ1;nþ2cþ1� is J̃½1;n� for J̃; the matrix with a and c

reversed). &

Remark. The limit of (5.5) as n-N is a precise analog of Khrushchev’s formula [7]

that for the unit circle case, the Schur function of jjnj
2

dm is bn fn: It would be
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interesting to see if one could translate our proof here to a proof of Khrushchev’s
formula using the CMV matrix [3,14] in place of the Jacobi matrix.

Corollary 5.3.

½ f ðz; b; a; cÞ��1 ¼ z � b � a2f ðz; b; c; aÞ: ð5:18Þ

Proof. This is identical to the last proof using (5.6) in place of (5.5). Of course, this is
a special case of the well-known Stieltjes continued fraction expansion for the
Stieltjes transform of the measure associated to a Jacobi matrix. &

Henceforth, for simplicity, we take b ¼ 0: Since Gðz; b; a; cÞ ¼ Gðz � b; 0; a; cÞ; and
similarly for f ; it is easy to go from this case to the case of general b:

As a warmup, consider the case a ¼ c: Then (5.18) becomes

1 ¼ f ðz � a2f Þ; ð5:19Þ

which is solved by

f ðz; 0; a; aÞ ¼ z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4a2

p

2a2
; ð5:20Þ

where the branch of the square root is taken (with
ffiffiffiffiffiffi
?

p ¼ z þ Oð1=zÞ as jzj-N

consistent with f ðzÞB1=z þ Oðz�2Þ). By (5.14), we get

Gðz; 0; a; aÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4a2

p : ð5:21Þ

limek0 Im Gðx þ ie; 0; a; aÞ is only nonzero for zA½�2a; 2a� so

drb;a;aðxÞ ¼
1

p
lim
ek0

Im Gðx þ ie; b; a; cÞ dx ð5:22Þ

implies the well-known

drb;a;a ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � ðx � bÞ2

q w½b�2a;bþ2a�ðxÞ dx; ð5:23Þ

consistent with Nevai’s conjecture.
Here is the main result of this section:

Theorem 5.4. Define

Iðz; a; cÞ ¼ ðc2 � a2 þ z2Þ2 � 4z2c2: ð5:24Þ

Then

ðiÞ f ðz; 0; a; cÞ ¼ c2 � a2 þ z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðz; a; cÞ

p
2c2z

; ð5:25Þ

ðiiÞ Gðz; 0; a; cÞ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðz; a; cÞ

p ; ð5:26Þ
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ðiiiÞ drb;a;c;ðxÞ ¼ ½wJ2
ðxÞ þ wJ2

ðxÞ�wðxÞ dx; ð5:27Þ

where

J1 ¼ ½b þ jc � aj; b þ a þ c� J2 ¼ �J1 ð5:28Þ

and for xAJ1,J2;

wðxÞ ¼ xp�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Iðx � b; a; cÞ

ph i�1

: ð5:29Þ

Proof. (i) Iterating (5.15) once, we get a quadratic equation for f ðz; 0; a; cÞ whose

solution (the one with f ¼ 1=z þ Oð1=z2Þ at infinity) is (5.25).

(ii) Follows from (5.14) and (5.25) if we note that Iðz; a; cÞ ¼ z4 � 2ða2 þ c2Þz2 þ
ða2 � c2Þ2 is symmetric under interchange of a and c:

(iii) Iðz; a; cÞ ¼ 0 if and only if c2 � a2 þ z2 ¼ 72zc if and only if ðz7cÞ2 ¼ a2 if

and only if z ¼ 7a7c (independent 7) which say
ffiffiffi
I

p
has a branch cut on J1,J2

and G is purely imaginary there. (5.22) completes the proof. &

We note there is another proof of the theorem using Floquet theory and the theory
of periodic whole-line Jacobi matrices.
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