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Abstract

We study ratio asymptotics, that is, existence of the limit of P,(z)/P,(z) (P, = monic
orthogonal polynomial) and the existence of weak limits of p2 du (p, = P,/||P,||) as n— o
for orthogonal polynomials on the real line. We show existence of ratio asymptotics at a single
zo with Im(z) #0 implies dy is in a Nevai class (i.e., a, —a and b, > b where a,, b, are the off-
diagonal and diagonal Jacobi parameters). For u’s with bounded support, we prove pﬁ du has
a weak limit if and only if lim b,,, lim ay,, and lim ay,,; all exist. In both cases, we write down
the limits explicitly.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In [8], Khrushchev asked two questions about orthogonal polynomials on the unit
circle [5,14,15] and found the following remarkable theorems in terms of the monic
orthogonal polynomials, ®,; the orthonormal polynomials, ¢, = @,/||®,||;.; and

the Verblunsky coefficients, o, = —®,41(0).
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Theorem A. @, ,(z)/®;(z) has a limit uniformly in z over compact subsets of D if and
only if either

(1) For /£ =1,2,....lim,_, o o0, =0, or

(ii) There is ac(0,1] and A€ dD so that lim,,_, . |o,| = a, lim,_, o, G,y10, = @A

Theorem B. |(pn|2 du has a weak limit if and only if either

(1) For ¢ =1,2,...,lim,_, o, o, s, =0, or
(ii) There exist a,a’ €(0,1], A€ ID, and integers k=1 and /€{0,1, ...,k — 1} so that

a if j=0,
Mmooyl = 9 dif =k,
0 ifj=1,. k—1k+1, .. 21,

nlinclﬂ Donk+t Xonkerhr = aAd' L.

Khrushchev [8] also describes explicitly the limits in both cases. Our goal in this
paper is to find the analogs of these theorems for orthogonal polynomials on the real
line. The answers and proofs are much simpler—the methods of Khrushchev which
depend heavily on Schur functions do not seem to extend, nor does mapping
bounded intervals on R to 9D (as in [15, Section 11.5]) seem to allow direct transfer.

Before stating our results, let us set up notation. Given a measure du on R with
[x*du<oo for all n, we let P,(x) be the monic orthogonal and p,(x) the
orthonormal polynomials. To define them, we suppose henceforth that du is
nontrivial, that is, not supported on a finite set, and we will also assume throughout
that u(R)=1. Thus P, is determined by P,(x)=x"+ lower order and
[x7Py(x)du(x) =0 for j=0,1,....n—1. p,=P,/||Py]| where ||-|| is the
L*(R,dy) norm.

It is well known [15] that the P,’s obey a three-term recursion relation. There are
bjeR and g;€(0, ) so that

XPy(X) = Poi1(x) + by 1 Po(x) + 2Py (). (1.1)

Our indexing of by, b, ... and a;, ay, ... is not common—often the labelling starts at
by and ay. We take this convention from [9] for reasons explained there. Eq. (1.1)
implies inductively that

||PnH:an~~~al (12)

and then that the p, obey the recursion relation

xpn(X) = ani1Pn1 (X) + by1pu(x) + @npp-i(x). (1.3)
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In turn, (1.3) suggests we study the Jacobi matrix
b] aj 0 0
a) b2 ar 0

J= Tl (1.4)
0 ay b3 as .

Since {p}, ., is an orthonormal set,

N Ui
U: E vipi— | v2
Jj=0 :

is a unitary map of the closed span, S, of the p’s to /*(Z,) (Z, = {1,2,...}) and for
veSy = span of p’s, we have U~'JUv = (multiplication by x) v.

In case the moment problem is determinant [1,13], J is self-adjoint, and du is just
the spectral measure for J and vector 6 = (1,0, ...).

We can now state our main results.

Theorem 1 (= Theorems 2.1 and 2.2). Suppose that at a single zye C\R, we have

. Pn+1(z) .
1 = 1.
B N EIRAR (1.5)
for z = zy. Then, for some a€|0, ) and beR,
lim a,=a, lim b,=b. (1.6)

Conversely, if (1.6) holds and spectrum(J) is the spectrum of the operator J, then (1.5)
holds for all ze C\spectrum(J) and

z—b z—b) —4a?
fioy = EPEVESI AT (1)

where the branch of the square root is taken with \/-~—- =z + O(1/z) near z = .

Theorem 2 (= Theorems 3.1 and 3.2). Let

i, = pR(x) (). (1.8)
Suppose that for ¢/ = 1,2, and 4, lim,_, ., [x’ du, exists. Then for a,ce[0, 00) and
beR, we have

lim b,=5b, lim ay,=a, lim a4 =c. (1.9)
n— oo n— oo n— oo

Conversely, if (1.9) holds, the du, have supports lying in a fixed bounded interval and
there is a measure dpy,, . so that for any continuous f on R (including f(x) = x), we
have

/ (%) dpty(x) > / F(x) dp(x). (1.10)
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dp is a function of a,b, ¢ only, and if dpy,, . = dpjy .., we have b = b and either a = d',

c=cdora=d,c=d.

Remark. We will show that the existence of the limit [ x” dp, for / =2 implies du
has bounded support.

Theorem 1 is proven in Section 2 and Theorem 2 in Section 3. dp is calculated in
Section 5. Theorems 1 and 2 seem to be optimal in that the two pieces of real data
(1.6) (i.e., a and b) correspond to one complex number f(zy) while the three moments
in Theorem 2 correspond to the real numbers, a, b, and c.

There is previous work of Nevai [10] on the subjects of Theorems 1 and 2. He
proved that (1.6) implies (1.5) with f* given by (1.7), and conversely proved that if
(1.5) holds for all ze C\R and f(z) given by (1.7), then (1.6) holds. He did not get a
result depending on a single zy nor, more importantly, did he show that (1.7) are the
only possible limits in (1.5).

Nevai [10] also proved that if a,—a and b, — b, then dy, has a weak limit (he
wrote down the explicit form of dpy,, , for a = ¢, as we will in Section 5).

Barrios et al. [2] proved that if (1.5) holds at two points with f given by (1.7), then
(1.6) holds. But, like Nevai, they did not address the fact that (1.7) are the only
possible limits.

In [11], Nevai made a conjecture closely related to a special case of Theorem 2.
Namely,

Nevai Conjecture 2.16 (Nevai [11]). If (1.10) holds for all bounded uniformly
continuous functions on R with dp(x) = n’lx[,lyl](x)(l - xz)*l/2 dx, then a,—% and
b,—0.

Corollary to Theorem 2. If one supposes supp(dp) is bounded, then Nevai's conjecture
holds.

Proof. x’[supp(du) is bounded, so [x’ dy, converges for / =1,2,4 to the same

limit as for a, E% and b = 0. Uniqueness of the limit (and the fact that a = ¢)

completes the proof. [
Related to this is

Nevai Conjecture 2.17 (Nevai [11]). If for some A, we have | AOC du, — 0, then for every
>0, [A + ¢, 00)nsupp(dy) is finite.

We mention

Weaker Nevai Conjecture 2.17. If for some A>0, u,({x | |x|>A}) =0, then supp(dpu)
is bounded.
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Clearly, Nevai Conjecture 2.17 implies the weaker version. The point of this is that
a positive solution of the Weaker Nevai Conjecture 2.17 plus the results of this paper
would imply Nevai Conjecture 2.16.

It is a pleasure to thank Rowan Killip and Paul Nevai for cogent comments.
2. Ratio asymptotics

The two main theorems on limits of P, (x)/P,(x) are as follows:

Theorem 2.1. Suppose a,—ac|0, o) and b, —>beR. Then for all ze C\spectrum(J),
we have that

lim Puii(2) (z=b)+1/(z—b) —4a?

n— oo Pn(z) B 2 (2'1)

Remark. 1.1In (2.1), we take the branch of the square root with /-~~~ z for |z| large,
that is, as z— 0.

2. For z¢ R, P, is nonzero for all n. (2.1) for zy e R\spectrum(J) includes the fact
that for z fixed, P,(z) #0 for all large n.

3. One can also show that for zespectrum(J)\[b — 2a,b + 2a] so that z is an
eigenvalue of J,

2
tim = 22

Theorem 2.2. Suppose for one zy with Im zo#0, lim,_, . Pyi1(2)/Pu(z) exists (and is
finite). Then there exists a€|0, co) with be R so that a,, — a and b, — b so that (2.1) holds.
In particular, the only functions that can occur as ratio asymptotics are the ones in (2.1).

Theorem 2.1 is not new. In this generality, it is due to Nevai [10], who also proved
a converse; namely, he showed that if (2.1) holds for all ze C\R, then a,—a and
b, —b. But we will sketch two proofs of Theorem 2.1 for the reader’s convenience.
One uses transfer matrices and the other, operator theory.

As a preliminary, we need:

Proposition 2.3. Let {x;,};_, be the zeros of Pu(x) with

xl.n<x2,n< e <Xpp- (23)
Then
O ey 24
P,(2) Xjp—2 ’
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where o;,>0 and

> =1 (2.5)
j=1

(i) If Imz>0,

0< —Im <P;HES)> sﬁ (2.6)
and
PI';”ES) ﬁ (2.7)
(iii) 1f Tm z>0,
Im (P;:1> >Im:. (2.8)

Proof. (i) Since P, is monic, P,(z) = [[_; (z — x;,). Since P,1/P, has simple poles
and goes to zero at infinity, (2.4) holds for some «;,. Multiplying by x;, — z and
taking z to x;,, we find

n—1

R 29)
H/:l; (4] (Z./‘,n — X/n)
For j = n, all factors in the right are positive. Since zeros of P,_; and P, interlace as
we decrease j by one, both numerator and denominator each pick up a minus sign
which cancel to prove o;,>0.
The left side of (2.4) is —z~! + O(z7%) as z— oo since P, is monic. The right side is

! (z;;o a,,n) +0(z2), 50 (2.5) holds.

(i1) This follows from (2.4) and (2.5) if one notes that for any xeR and z with
Imz>0,

0<Im ! < ! < ! .
x—z) |x—z| Imz
(iii) This follows immediately from
Puii(2) 2 Pui(2)

P z—byy1 —a, Pz
Since Im P,_1/P, <0, (2.10) implies (2.8). O

(2.10)

Proof of Theorem 2.2. By replacing x by (x— Rezp)/Imz, (i.e., translating
and scaling the measure), we can suppose for notational simplicity that zy = i.
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Let

IRt Pn+1(i)
o= nlirg Poi)

(2.11)

By (2.8), Ima>1so —Im(x!) = Im ar/|o* > 0.
Taking imaginary parts of (2.10), we see that

Im(P,/P,) — 1 Imo—1
aiz[m( +1/ ) ]_)(ma — )ECIZZO (212)
Im(—P,_1/P,) Im(—a1)
proving a, has a limit.
Taking real parts of (2.10) shows

buy1 = —a, Re (P;1> —Re (%) » —d*Re(x") —Re(x) =b. O

n n

(2.13)
Our first proof of Theorem 2.1 is a simple consequence on the following theorem
of Poincaré (see [4,12,14] for proofs):
Theorem of Poincaré. Let u;eC solve the nth order difference equation
Untj = @jiUntj—1 + @jpUnij— + - + ajaltj, (2.14)
j=1,2,.... Suppose
(i) ajn#0 for all j.

(i) limj- o aj, = Ay exists for £ =1, ..., n.
Let Ay, ..., A, be the solutions of
Ay 4 Ay 1 d+ 4+ A =00 (2.15)

Suppose {ij};:l are distinct, and for j#k, |A;|#|Ac|. Then, if u is not identically zero,
we have for some k that

lim =, (2.16)

First Proof of Theorem 2.1. Eq. (1.1) is exactly of the form (2.14). Eq. (2.15) becomes
P=Gz-bi-d (2.17)

whose solutions are

(z = b)+4/(z — b)* — 4a?
5 :

To prove (2.1), we must show that if z¢ [b — 2a,b + 24], then |4, |#]|A_| and then
identify which root is taken by the ratio.

If o and f are complex numbers, |+ | = |o — | if and only if o and f are
orthogonal as vectors in C = R?, if and only if f = ica for ceR, if and only if

(2.18)

)\.i =
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B> = —2a?. Taking o = (z — b) and f = /(z — b)* — 4a?, we see |A,| = |A_]| if and
only if
—A(z—b)? = (z—b)* —4d’
or
2a
1+¢

for ceR. Eq. (2.19) holds if and only if ze[b — 2a,b + 24].
Since |Ai|#]|A-|, A+(z) are analytic in C\[b — 2a,b + 2a] (as is obvious from

z—b=+ (2.19)

(2.18)). Since A A_ = a*, |Ay||A_| =@, and 1y =z + O(1/z) as |z| > o0, |Ay|>a for
|z| large, and so since |A,||A_| = @* and |4, |#|/_| implies |14 |#a, we see
|[Ai]>a |i-|<a all zeC\[b—2a,b+ 2a]. (2.20)

Thus for all ze C\[b — 2a,b + 24|, Poincaré’s theorem applies and P,.;/P, has a
limit /(z) where for each z, /(z) = A4 or £(z) = A_.

By (2.6), P,/P,+1 is a normal family on C\R, so Z(z) is analytic on C\R. By (2.8),
|(z)| > |Im z|, so for |z| large, /(z) = /. (z) and thus, by analyticity, /(z) = 1. (z) for
ze C\R. This establishes (2.1) there.

For ze R\[b — 2a,b + 24],

i Pt o TPen@) 222

n=x pu(z) Cnmwa Py(z)  a

If the limit is A_(z), lim |p,+1/pn| <1, 80 p,€/> and zespectrum(J). Conversely, if it
is Ay, lim [p,11/pn] >1, so p,¢<>. Thus (2.1) holds for ze R\spectrum(J) and (2.2)
holds for zespectrum(J)\[b — 2a,b + 2a]. O

Second Proof of Theorem 2.1. Let J™ be the n x n matrix obtained from the first n
rows and columns of J. As is well known,

det(z — J™) = P,(z).

Thus, by Cramer’s rule,

Pl gy = = I ea1)
where f;;” =", . that is,
b, a,_1 0
a1 b1 an— ... ..
JV=1 0 a s bps ... .| (2.22)
ay bl

If J1*) is the constant Jacobi matrix a, = a, b, = b, it is clear as operators on /2(Z ),
J - Ji=) strongly. It follows that as operators on /2(Z), (J") — z)~' - (J10) — z)7!



206 B. Simon | Journal of Approximation Theory 126 (2004) 198-217

strongly for Im z#0. Thus
Pn—l (Z)

Py(z) = (- j(m)l_ll - (z - j(m))l_ll' (223)
Let w solve
aw+w Y +b=: (2.24)

with |w|<1. Let u, = w". Thus u, e/, and

(z = JNu = (aw™1)dy,
o)

(z=JN ) =aw™. (2.25)
Solving (2.24), we see that aw~' = RHS of (2.1). This proves (2.1) on C\R.

On R\spectrum(J), one shows the eigenvalues of J”) (equals zeros of P,(z))
outside [b — 2a,b + 2a] converge to the eigenvalues of J so for ze R\spectrum(J),

(JW — )75 (J) — 2)7! strongly also. [

3. Weak asymptotic limits
Let du, = p> dp. In this section, the main theorems are

Theorem 3.1. Suppose
by—b, ay—a, api1—c (3.1)

for beR, a,cel0, o). Then as n— o, du, has a weak limit dp,,, .(x), and for every ¢,

[ du [+ dpy () (32)

Remark. 1. The hypotheses imply that dup is supported in [infb, —
2 sup(ay,),sup b, + 2 sup(a,)] which is bounded, so weak convergence is equivalent
to convergence of the moments.

2. We will see below that dpy ., » = dpy,, . implies b’ = b and either @’ = a, ¢’ = ¢,
ord =c¢, ¢ =a.

3. We will discuss the form of dp,,, . in Section 5.

Theorem 3.2. Suppose for £ = 1,2, and 4,

lim [ x"du,=A,. (3.3)

n— oo

Then for some a,b, c, (3.1) holds. Moreover, Ay, A2, Ay determine b, a + ¢, |a — ¢| (i.e.,
they determine b and the unordered pair (a,c)).

Remark. 1. We will see 4> < co implies sup(|b,| + |an|) < o0.
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2. The final assertion proves the second remark after Theorem 3.1.

Our proofs will depend on a graphical representation of [ x’ du,. Consider the
lattice Z, = {0, 1, ...}. We will consider a random walk on Z, where at each step,
one either stays at the site one is at or one jumps by a single site. Paths have
unnormalized weights, products over the steps: by if one stays at site k, ax. is one
move from k to k+ 1 or k41 to k. To be more precise, a path is a sequence
00, P15 -5 PrEZ so that |p,, — p,,_1| <1 and

/—1
w(p) =TT wloyp51) (3.4)
=

and
by if Piy1 = P; = k,
w(p;, pj1) = § k1 i py=p;+1=k+1, (3.5)
ax itp,=p—l=k-1

Here is the key tool:

Proposition 3.3.
[+ du =3 wo. (3.6)
PGQn_/

where Q,, is the set of all paths of length ¢ with p, = p, = n.

Proof. Since
XPn = Qpy1Pnr1 + bn+1pn + appn-1,

we see immediately that, by induction in j,

ijn = ZC/,m,npm; (3.7)
where
Gon =Y Wi(p)
PEQum, j

and Oy ; is all paths of length j with py =n and p, =m. (3.6) follows since
fx/ d:un = <Pn7x/]7n> =C/nn- U

Proof of Theorem 3.1. Under hypothesis (3.1), J is bounded, so du has a bounded
support, so weak convergence is equivalent to (3.2). By Proposition 3.3, [ x"du,
is a finite sum over paths. This representation shows that if a,, b,, and dn,b~n
are two sets of Jacobi parameters and lim,., o |a, — dy| + |by — 15,1| =0,
then |[x’ du, — [x" dfi,|—0. Thus we need only prove (3.2) for b, = b, a», = a,

Ayl = C.
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Fix /. So long as / <2n, there is a one-one correspondence between paths pe O,/
and peQ, 1, by U =TS,

T(P)j =p;+1,
S(p);=n—(p;—n).

S reflects the path in n, T translates by 1. /<2n is needed to assure paths do not get
mapped into ones that have p; <0, which is forbidden (and that the inverse does not
do this), showing U is a bijection of O, , and O, .. The key point is that W (Up) =
W(p), for if p; = p; , the weight is always b and both S and T interchange links
with weight a and those with weight ¢. It follows that if b = b, ay, = a, az,r1 = ¢,
then [x’ dp, is independent of n once £ <2n, so the limit exists. Once the moments
exist, they provide a measure since the nonnegative Hankel matrices converge to
nonnegative Hankel matrices. [J

Proof of Theorem 3.2. [ xp2du = by, so (3.4) for / = 1 implies b, —> A4 = b. Let
dfi(x) = du(x + b). The Jacobi parameters of J are given by

a,=a, b,=bh,—b. (3.8)
Moreover,
‘L /YL » .
[ an =3 (7)o [xram, (39)
=0 \J

and

/x/ dfi, = i:() (—b)f*f/x/ du,. (3.10)

=0 N

Since b, —0 and every odd / random walk has a by factor in it, fxf dfi, — 0 for all
odd /. Thus, (3.9) implies [ x*du, exists and then (3.10) that [x*dji, converges.
Thus, without loss, we suppose 4, = 0 and b, — 0.

If b, —0, any path with p; = p;., contributes zero in the limit; so we can restrict to
paths with |p;; — p;| = 1. Thus, looking at the two such paths with p, = p, = n,

Jim ai, +a, = 4. (3.11)

In looking at paths with py = p4 = n, all those with p, = n contribute ([ x? d,un)z, S0

nlirrgo @i, +ayan | = Ag — A3. (3.12)

Thus, using (x —y)* = (x + y)* — 4xp,
- > 22 22 N2
lln}o (an+2 an+l) + (an anfl) 6A2 4A4 (313)

n—
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Suppose a, has a limit point, a, that is, a, ;) —a as j— oo for a subsequence. Define
¢c=+/A>—a* By (3.11), forany / =0, +1, +2, ...,

a [ even,
Ap( j\+¢ =
D7 e £ odd.

In particular, by (3.13),

@* — | = /345 — 24,. (3.14)

Since also
@+t =4, (3.15)

there are at most two solutions of (3.14), (3.15):

aZ:%[A2+\/3A§—2A4}, (3.16)
%[Az — /343 —2A4} (3.17)

and the one with a, ¢, reversed. Thus the right sides of (3.16) and (3.17) are the only
limit points of 2.
The lemma below completes the proof. [

c2

Lemma 3.4. Let x,, be a sequence so that for some o, feR,

lim x, + x,.1 = o+ p, (3.18)
n— oo
lim |x, — xp1| = |0 — B (3.19)
n— oo

Then either

lim Xy = O lim Xoptrl = ﬁ
n n

or

lim X = ﬁ lim Xopr1 = A.
n n

Proof. By replacing x, by x, — 1 («+ f8), we can suppose « = —f>0. If o« = f =0,
the result is trivial, so suppose o = —f>0. Pick N so that for n> N,

|xn + Xn+1 ‘ <a,
|xXn — Xpp1| >0

Thus, since |x, — Xp+1|> |xXy + Xu42], X, and x,4; have opposite signs for all n> N,

that is, for n> N, either (—1)"x,>0 or (—1)"+1xn >0. Since 4o are the only allowed

n+1

limit points if (—1)"x,>0, xp, >, X2y 1~ f = —a, and if (—=1)"""x,>0, xp,— B,

Xopgp1—o. O
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4. Ratio asymptotics for p,.1/p,
In this section and the next, we discuss two further issues related to our results:

what about lim p,,.1/p, (p, rather than P,) and we calculate the measures dppy. of
(3.2) (already well known if a = ¢).

Let
o Pn+1(z) r(z :PnJrl(Z)
R(2) = Tp (o) =), (@)
Since p, = (a ...a,,)fan,
r(z) = a;llR,,(z), (4.2)

so we immediately see with Theorem 2.1 that if a,—»a##0 and b, — b,

i ) (z—=b)+ (2—17)2—4a2
m r,(z) = .
n— oo 261

(4.3)

We want to address a converse. One problem we find is that while |R,(z)|>Im |z|,
without an a priori upper bound on a,, we do not have a bound for |r,(z)|, so it is not
obvious that existence of the limit implies a, is bounded.

Example 4.1. Let a, = ¢", b, = arbitrary bounded sequence, especially one without
a limit. Then, by (1.3) and

_Z_bn+1 _

-1
ru(z rn_1(z
( ) ap+1 dp+1 [ 1( )]
Z—byy Cl% -1
_ITOmt % p 44
[2/7E8] an+l[ i I(Z)} ( )
by (4.2). By (2.7),
Y 2 B
|r,7(z)|<u+i|lmz| 150 (4.5)
ap+1 27|

since a,, is chosen so a,%/anﬂ —0. Thus for this example, r,(z)— 0.

Because of this example, we will need to suppose that if lim r,(z) exists, it has
nonzero imaginary part. Here is a result that requires two points rather than one,
with some extra conditions:

Theorem 4.2. Suppose sup, a, < co. Suppose z1,z; are in {z|Im z>0} and let
lim I’n(Zj) = ij (46)
n— oo

with
(a) ImZ4;>0,



B. Simon | Journal of Approximation Theory 126 (2004) 198-217 211

and either
ImA;, ImAi,
bl
( ) Im A Im Zy
or
(b2) Im(4, ") Im(4,")

Il’IlZ] Im22 '
Then a,—a+#0 and b, —b.

Proof. By (1.3),

ni11n(z) = (2 = bps1) — an[Vn—l(Z)rl~ (4.7)
Since Im(—r,_;(z))"' >0, (4.7) implies

ap1 Imr,(z;) >1Im z;,
which implies

mz;
>0,

4

liminf a, >
so the a’s are bounded above and below.
Let (a,c) be a limit point of (a,1,a,). By (4.7),
alm j; = Imz; + c(Im(=2) ). (4.8)
If Im A, /Tm z; #Im 1, /Tm z;, (4.8) implies

Im/z; Im/i| Im(—)vl)_] Im(—iz)_l
Im21 Il’nZz ¢ II’I’IZ] Imzz

so we can solve for @ as a multiple of ¢, and then for ¢ in (4.8) for j=1. If
Im(A) " /Im zy #£Im(J2) "' /Im z3, we solve for ¢ as a multiple of a. Either way, we
see (4.8) has a unique solution for (a,¢) so (aui1,a,)—(a,c). But then
(ant2,any1)— (a,c¢) so a=c and a,—a##0. This implies lim R,(z;) = lim a,c,(z)
exists. So, by Theorem 4.2, b,—b. O

We have a second remark about the existence of lim,_, o, 7,(z). In the OPUC case,
existence of ¢ ,(z)/¢;(z) for all ze D implies the same of @, ,(z)/®,(z) (and, by
taking o; = 0 if j#n?, 0,2 = 1, not conversely) for ¢;_,(0)/¢;(0) = p, ', so existence
of the ¢ ratio limit at z =0 implies p,—p, and then, since @,  (2)/®;(z) =
Pu®ii1(0)/0;(0), we get the @; ratio limits.

The same is true here, but alas, the analog of z = 0 for OPUC is z = oo here. The
following captures the idea, without the need for hypotheses (b) of Theorem 4.2.

Theorem 4.3. Suppose a, and |b,| are bounded and r,(z) converges to a nonzero limit
as n— oo for all z in a small neighborhood of zo € C\R. Then a, — a and b, — b for some
a#0, beR.
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Proof. By (4.4),

z byt 1
= _— — . 4
() Ani1 an+1+0(zl) (49)
Thus
_ " b, 1
o) =2y Z;1+o(;). (4.10)

If supp(du) = [—c, c] (take ¢ = sup,, |b,| + 2 sup |a,|), then for p>¢, by the Cauchy
formula for every /€ Z and the fact that r, has its zeros in [—c¢, ¢], 7 ﬁzl:p ra(z)"'2! dz
is p independent for p>c¢. Taking p to infinity, we get, by Eq. (4.9),

1
An+1 " 2nmi |z|=c+1

r(z) " dz, (4.11)

bn+l o 1
Ap+1 2mi |z[=c+1

ra(z) "z d. (4.12)

Thus uniform convergence of r,(z) to a limit on |z| = ¢ + | implies convergence of
a, and b,. Therefore, we are reduced to showing convergence of r;! on a single

compact subset of C\R implies convergence on all compact subsets of C\[—c, ¢].
By (2.4) and (2.4) and x;,€[—c, ], we have

[Ru(2)7'[< sup |z — x|
xe[—c, (]

and thus, by (4.2),
ra(2) 7t < {sup |an] sup |z — x|\ (4.13)
n xe[—c,]

Thus convergence of r,(z) on a compact implies, by Vitali’s theorem and (4.13),
uniform convergence of r,,(z)f1 on compact sets in C\[—¢,c]. O

5. Calculation of dp,,, .(x)

In this section, we compute the weak limit p;, . of p2dy for u, the measure
corresponding to the Jacobi matrix ay, = ¢, a1 = a, b, = b. We will also find
duy,, ., the measure associated to the Jacobi matrix

b a
a b ¢
J = c b a . (5.1)
a b 1
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We begin by computing

St = [Peet) (52)
and
G(z; by a, ¢) :/dpz%ix) (5.3)

This calculation is not unrelated to calculations in Khrushchev [8] for the measure
associated to a period 2 Verblunsky coefficient. As he does, we could ask for the
Jacobi coefficients for the measure dp and show they converge exponentially fast to
those for du (with a need to interchange a and ¢ depending on the sign of a — ¢).

We begin with a result about a finite Jacobi matrix

by a
a by a

gl | . (54)

ap—1 bn

We let JUK for 1<j<k<n denote the (k —j+ 1) x (k —j + 1) matrix we get by
keeping rows and columns between j and k (inclusive). We refer to the row number
of JUH as j,j+1, ... so, for example, (JI/4)), = b;.

Here is a key lemma that appears in [6] although closely related formulae have
appeared elsewhere; in particular, the k = 1,n results go back to Jacobi:

Proposition 5.1. For 2<k<n—1,

[z = D)
=1/{z—bi—ap (= I N — @l =T T e
(5.5)
Fork =1,
[z =T = 1/{z = by —aj[(z = T 7} (5.6)

Proof. Let 2<k<n — 1. Here is a proof that is more direct than that in [6], although
the essence is the same. If row and column k are removed, the resulting matrix is
JIk=1 g jlk+11 5o by Cramer’s rule,

Ly det(z — JMEdet(z — S
_ [l,ﬂ] 1 =
[(Z J ) ]kk det(z — J[lvn])

(5.7)
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Expanding det(z — JI') in minors in row k,

det(z — JWN = (z = bp)dy — d}_,d> — d2ds, (5.8)
where

d;, = det(z — JI 1 det(z — JH1A, (5.9)

dy = det(z — JIA)det(z — JH11, (5.10)

ds = det(z — JIF)det(z — JH+2) (5.11)

(where det(z — J'%) and det(z — JI"*'), which occur if k =2 or k =n— 1, are
interpreted as 1).
Finally, note that, by Cramer’s rule again,

d»

[z =), A (512)
nN\— d
R (5.13)

Eqgs. (5.7)-(5.13) imply (5.5). Eq. (5.6) is proven in a similar way (but, e.g., the analog
of (5.8) has only two terms). [

Corollary 5.2. For the functions f and G of (5.2)/(5.3), we have that for ze C\R,
(G(z;bya,¢)] ! =z —b— f(z:b;a,¢) — d*f (z;b; ¢, a). (5.14)
Remark. This formula makes it evident once again that G is symmetric in « and c.

Proof. Let J be given by (5.1). On /%(Z*), J!'"I @0 converges strongly to J. Thus

f(zbiae)=[(z=0)7]y = lim [z =707, (5.15)
Moreover,
pk(x)2 d:u :a,c(x) — . 7\ —
/Zfi: [(z=J) l]kk:nlffolo [(z =) s (5.16)
SO
Glzibia,e) = lim [ lim [z = 1)1, ]. (5.17)

Eq. (5.14) follows by using (5.5), (5.15), and (5.17) together with the structure of J
(e.g., JU+¥m+2/] — jglinl gnd JU+2+Lnt2/41] 4 jllnl for J, the matrix with a and ¢
reversed). [

Remark. The limit of (5.5) as n— oo is a precise analog of Khrushchev’s formula [7]
that for the unit circle case, the Schur function of |qon|2 du is by f,. It would be
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interesting to see if one could translate our proof here to a proof of Khrushchev’s
formula using the CMV matrix [3,14] in place of the Jacobi matrix.

Corollary 5.3.
[f(zba,0)] 7" =z —b—d’f (5:b; ¢, a). (5.18)

Proof. This is identical to the last proof using (5.6) in place of (5.5). Of course, this is
a special case of the well-known Stieltjes continued fraction expansion for the
Stieltjes transform of the measure associated to a Jacobi matrix. [

Henceforth, for simplicity, we take b = 0. Since G(z;b;a,c¢) = G(z — b;0;a,c), and
similarly for f it is easy to go from this case to the case of general b.
As a warmup, consider the case a = ¢. Then (5.18) becomes

1 =f(z—da), (5.19)
which is solved by
—Vz2 — 442
f(Z;O;Cl, a) = %a (520)

where the branch of the square root is taken (with /-~~~ =z + O(1/z) as |z| > o0
consistent with f(z)~1/z + O(z72)). By (5.14), we get

1
G(z;0;a,a) = —. 5.21
@000 = ey (5.21)
lim; o Im G(x + ie; 0; @, a) is only nonzero for ze[—2a, 2a] so
1
dppga(x) = . 1%1 Im G(x + ig; by a, ¢) dx (5.22)
implies the well-known
1
dppaa = = Xlp-2ab+2d (x) dx, (5.23)
ny/4a? — (x — b)
consistent with Nevai’s conjecture.
Here is the main result of this section:
Theorem 5.4. Define
I(za,¢) = (¢ —d® + 22)* — 4222, (5.24)
Then
. A —a?+22—\/I(z;a,c)
(i) f(z0;a,c)= 502 : (5.25)
(i) G(z;0;a,¢) = ——2 (5.26)

VI(za,c)
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(i) dppa, () = (1, (5) + 2 (D() d. (5.27)
where
Ji=b+|c—al,b+a+c] Jo=-J (5.28)

and for xeJ; U J,

w(x) = xn! [ —I(x — b;a, c)} 71. (5.29)

Proof. (i) Iterating (5.15) once, we get a quadratic equation for f(z;0;a, c) whose
solution (the one with f = 1/z + O(1/z?) at infinity) is (5.25).

(ii) Follows from (5.14) and (5.25) if we note that I(z;a,c) = z* — 2(a® + ¢?)z* +
(a* — ®)* is symmetric under interchange of « and c.

(i) 7(z;a,¢) = 0 if and only if ¢ — a® + 2> = +2zc if and only if (z+¢)* = a? if
and only if z = +a+c¢ (independent +) which say v/ has a branch cut on J;UJ,
and G is purely imaginary there. (5.22) completes the proof. [

We note there is another proof of the theorem using Floquet theory and the theory
of periodic whole-line Jacobi matrices.
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