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Limits of zeros of orthogonal polynomials on the circle

Barry Simon∗1 and Vilmos Totik∗∗2,3

1 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
2 Bolyai Institute, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary
3 Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA

Received 8 April 2004, accepted 9 August 2004
Published online 8 September 2005

Key words Orthogonal polynomials, unit circle, zeros, density of zeros, universal measure, degree theory
MSC (2000) 42C05

Dedicated to the memory of F. V. Atkinson

We prove that there is a universal measure on the unit circle such that any probability measure on the unit disk
is the limit distribution of some subsequence of the corresponding orthogonal polynomials. This follows from
an extension of a result of Alfaro and Vigil (which answered a question of P. Turán): namely, for n < N , one
can freely prescribe the n-th polynomial and N − n zeros of the N -th one. We shall also describe all possible
limit sets of zeros within the unit disk.
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1 Results

Let D be the open unit disk. We consider Borel measures dµ(t), t ∈ [−π, π), on the unit circle (identified with
R/mod 2π) of infinite support, and for such a measure let

Φn(µ, z) = zn +
n−1∑
k=0

cn,k(µ)zk (1.1)

be the n-th monic orthogonal polynomial.
It is well-known that all zeros of Φn lie in D. The main result of this paper is

Theorem 1 For 1 ≤ n < N , let Φn be a monic polynomial of degree n with zeros in D and let there be given
N − n points a1, . . . , aN−n in D. Then there is a measure µ on the unit circle such that Φn(µ) = Φn and ai,
i = 1, . . . , N − n, are zeros (with multiplicity) of ΦN (µ).

In short, one can freely prescribe Φn(µ), and N − n zeros of ΦN (µ).
We do not know if ΦN (µ) is unique, that is, that the other zeros of ΦN (µ) are uniquely determined by Φn and

a1, . . . , aN−n.

Corollary 2 Let 0 = n0 < n1 < n2 < . . . be a sequence of natural numbers and {aj}∞j=1 a sequence in D.
Then there is a measure µ such that for each j = 1, 2, . . . , all ai, nj−1 < i ≤ nj , are zeros (with multiplicity) of
Φnj (µ).

Indeed, by induction, we get from Theorem 1 measures µj such that

Φnj−1

(
µnj−1

)
= Φnj−1

(
µnj

)
and ai, nj−1 < i ≤ nj , are zeros of Φnj

(
µnj

)
. By a theorem of Geronimus [3], if for an m, the m-th orthogonal

polynomials for two measures coincide, then the same happens for the l-th polynomials with all l ≤ m. Hence
we have Φnk

(µnk
) = Φnk

(
µnj

)
for all k ≤ j. Since Φnk

determines the moments up to order nk, this shows
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that for each fixed m, the m-th moment of the measures µnk
, k = 1, 2, . . . , are eventually constant, so the weak-∗

limit, say µ, of these measures exists and obeys Φnk
(µnk

) = Φnk
(µ) for all k, and the corollary follows.

To formulate the next corollary, recall that the normalized counting measure νn of Φn is defined as the measure
that puts mass 1/n to each zero of Φn (counting multiplicity). We say that a subsequence {Φnk

} has zero
distribution ν if the normalized counting measures νnk

converge to ν in the weak-∗ topology.

Corollary 3 There is a universal measure µ on the unit circle such that if ν is any probability measure on the
closed unit disk D, then some subsequence {Φnk

(µ)} has zero distribution ν.

This is immediate from Corollary 2 if we prescribe appropriately n!− (n− 1)! = n!((n− 1)/n) zeros for Φn!

in the sequence Φ0(µ), Φ1!(µ), Φ2!(µ), . . . . The rest of the proof is standard
(
take a countable dense subset {µj}

in the space of probability measures on D so that each µj occurs infinitely often in this sequence, and select the
nk!((nk − 1)/nk) zeros for Φnk! so that their distribution converges weak-∗ to µj as we let nk tend to infinity in
such a way that µj = µnk

)
.

It is known (see, e.g., [12, Lemma 4]) that zeros of orthogonal polynomials cluster to the support supp(µ) of
the generating measure µ if the interior of supp(µ) is empty and C\ supp(µ) is connected. This is due to the fact
that the n-th orthogonal polynomial minimizes the L2(µ) norm among all monic polynomials of degree n. This
is the case, for example, if µ is a measure on the unit circle, but its support is not the whole circle. The situation
changes if the interior of the support is not empty or if C \ supp(µ) is not connected. Consider, for example,
the closed unit disk or the unit circle and the appropriate (area or arc) Lebesgue measure on it, in which case
Φn(z) = zn, hence all the zeros are at the origin. It was P. Turán who asked if for measures on the unit circle it
is possible that the zeros of the orthogonal polynomials cluster to all points of D. First, Szabados [9] had shown
that for any ε > 0, there exists a measure for which the set of limit points of the zeros had area measure > π − ε,
and then Alfaro and Vigil [1] noticed that a positive answer to Turán’s problem follows almost immediately from
the Szegö recurrence

Φn+1(z) = zΦn(z) − αnΦ∗
n(z) , (1.2)

where Φ∗
n(z) = Φn(1/z̄), more precisely from the fact that µ ↔ {αn}∞n=0 is a one-to-one correspondence

between measures on the circle and D∞ (Verblunsky’s theorem [11]). What Alfaro and Vigil showed was that
given Φn, one can prescribe one zero of Φn+1. Thus, for all n ≥ 1, one can prescribe exactly one zero an of Φn,
and this is another one-to-one correspondence µ ↔ {an}∞n=1 between measures on the circle and D∞. Indeed,
if an+1 is a zero of Φn+1, then (1.2) gives αn = an+1Φn(an+1)/Φ∗

n(an+1), and all one needs to know is that
|Φn(z)/Φ∗

n(z)| < 1 in D
(
which follows from the maximum principle for holomorphic functions since on the

unit circle, |Φn(z)| = |Φ∗
n(z)|, and Φ∗

n has all its zeros outside the unit circle
)
.

Let Lµ be the set of limit points of the zeros of all Φn(µ), n = 1, 2, . . . . This is a subset of D, and Turán’s
problem was if it is possible to have Lµ = D. Our second theorem describes the possible sets for Lµ up to their
part on the boundary of D.

Theorem 4 Let F be a compact subset of D. Then there is a measure µ on the unit circle such that Lµ ∩D =
F ∩ D.

What happens on the boundary is less clear. The proof shows that if F contains the unit circle, then there is a
µ with Lµ = F . But not every closed subset F ⊆ D is an Lµ; for example, F =

[
1
2 , 1
]

cannot be the set of limit
points. Indeed, suppose to the contrary that

[
1
2 , 1
]

= Lµ. Then for large n, all zeros of Φn(µ) lie in the sector
arg
(
z − 1

4

)
< 1

4 , which gives that |Φn(z)| >
(

9
8

)n
for z in a neighborhood V of the point −1. Therefore, if

µ(V ) �= 0, then∫
|Φn(µ)|2dµ > c(9/8)2n ,

which contradicts the fact that the orthogonal polynomials minimize the L2(µ)-norm among all monic polyno-
mials of degree at most n

(
note that for zn, the L2(µ)-norm is at most the total mass of µ

)
. Thus, we must have

V ∩ supp(µ) = ∅, which means that the complement of the support of µ is connected. But then all points in the
support of µ are limit points of the zeros (see, e.g., [6]), hence the support could only consist of the single point 1.

We also note that [7] has an alternate way of organizing our proof of Theorem 1.
Derick Atkinson had an important impact on orthogonal polynomials through his book [2]; we are pleased to

dedicate this paper to his memory.
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2 Proof of Theorem 1

Let A=(a1, . . . , aN−n) ∈ DN−n, and for Z = (z1, . . . , zn) ∈ Dn, define

dµZ,A(t) = dZ,A

(
n∏

j=1

|eit − zj|2
N−n∏
j=1

|eit − aj |2
)−1

dt , (2.1)

where dZ,A is a normalizing constant for µZ,A to have total mass 1. By Geronimus’ theorem [3], ΦN (µZ,A) is
the monic polynomial with zeros

z1 , . . . , zn , a1 , . . . , aN−n .

Hence it is enough to show that for some Z ∈ Dn, the coefficients cn,k(µZ,A), k = 0, . . . , n− 1, from (1.1) are
the same as ck = cn,k(µ0), where

Φn(z) = zn +
n−1∑
k=0

ckzk

and

dµ0(t) =
d

|Φn(eit)|2 dt ,

with d a normalizing constant. In other words, we want to show that if

M(µ) =
(	c0(µ),
c0(µ),	c1(µ),
c1(µ), . . . ,	cn−1(µ),
cn−1(µ)

)
,

then M(µZ,A) = M(µ0).
Set m0 = M(µ0) and FA(Z) = M(µZ,A). We write zj = xj + iyj and we shall also consider FA as a

mapping from (x1, y1, . . . , xn, yn) ∈ Dn ⊂ R2n into R2n, which gives us a continuously differentiable mapping
from an open subset R2n into R2n. With these we want to show that the equation FA(Z) = m0 has a solution in
Dn. We shall do that by showing that the topological degree d(FA, rDn, m0) of m0 with respect to FA on rDn

is not zero for r < 1 sufficiently close to 1, since then FA(Z) = m0 has a solution in rDn (see [4, Theorem
2.1.1]).

The case A = 0 is instructive, so let us first consider it. Let us also recall (see [4]) that d(F0, rDn, m0) is the
sum of the sign of the Jacobian JF0 of F0

(
considered as a mapping from R2n into R2n

)
at all points Z which

satisfies the equation F0(Z) = m0:

d(F0, rDn, m0) =
∑

F0(Z)=m0

sign
(JF0

)
,

provided none of these Z is a critical point of F0.
From Szegö’s recurrence (1.2), it is immediate that Φn+1(µ, z) = zΦn(µ, z) if and only if z = 0 is a zero of

Φn+1(µ, z), and a repeated application of this gives that z = 0 is an N − n order zero of ΦN (µ, z) if and only if
ΦN (µ, z) = zN−nΦn(µ, z). In this case, the two associated measures are the same, that is, if

dµZ(t) = dZ

(
n∏

j=1

|eit − zj|2
)−1

dt ,

then F0(Z) = M(µZ,0) = M(µZ). Since by Geronimus’ theorem,

Φn(µZ) =
∏
k

(z − zk) , Z = (z1, . . . , zn) , (2.2)

the coefficient cn,k(µZ) equals
(
(−1)n−k times

)
the (n − k)-th elementary symmetric polynomial of the co-

ordinates zj , j = 1, . . . , n, of Z . These are n analytic functions gk(z1, . . . , zn), 1 ≤ k ≤ n, of the variables
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z1, . . . , zn, and in this case, the Jacobian JF0 of F0 is the square of the absolute value of the complex Jacobian
|∂gk/∂zj|nj,k=1 (see, e.g., [5, Lemma 2.1]). Thus, the Jacobian JF0 is everywhere nonnegative.

Let Q ⊂ R2n be the range of F0. By Geronimus’ theorem, Q is the set consisting of (the real and imaginary
parts of ) the coefficient sequences of all monic polynomials of degree n with zeros in D, hence Q is a nonempty
open subset of R2n. F0 is the map from the zeros of a polynomial to its coefficients, hence it is invariant
with respect to permutation of the zeros. Since a polynomial determines its zeros, this map is an n! cover for
those polynomials with distinct zeros. Furthermore, it is a diffeomorphism in a neighborhood of a point of
distinct zeros. The set of polynomials with distinct zeros is dense in Q, and if we select such a q ∈ Q, then
it follows that the topological degree d(F0, rDn, q) of q with respect to F0 on rDn is n! for all r sufficiently
close to 1

(
so close that F−1

0 ({q}) ⊂ rDn
)
. This is true for a dense set of the q’s in Q. Therefore, we actually

have d(F0, rDn, q) = n! for every q ∈ Q for all r < 1 sufficiently close to 1. Since m0 is in the range of
this mapping (m0 = F0(Z0) with Z0 equal to the zero sequence of Φn in some order), we have in particular
d(F0, rDn, m0) = n! for all r sufficiently close to 1 (so close that Z0 ∈ rDn).

This has been the case A = 0, and now we turn to general A. Clearly, FA is homotopic to F0 under the family
FtA, t ∈ [0, 1], and since the degree is invariant under homotopy if m0 is not on the images of the boundary, all
that is left is to prove there is an r sufficiently close to 1 such that m0 /∈ FtA(∂(rDn)) for all t ∈ [0, 1]. In fact,
then d(FA, rDn, m0) = n!, and hence FA(Z) = m0 has a solution in rDn (see [4, Theorem 2.1.1]).

Suppose to the contrary, that for all k, there is an rk with rk → 1, Zk ∈ ∂(rkDn), and tk ∈ [0, 1] such
that m0 = FtkA(Zk). By selecting a subsequence, we may assume that Zk → Z∗ ∈ D

n
, tk → t∗, and

µZk,tkA → µ∗, the latter one in the weak-∗ topology. Then at least one component, say z∗1 , of Z∗ is of absolute
value 1 and each component zk,j of Zk converges to the appropriate component z∗j of Z∗ as k → ∞. Hence for
the normalizing constants from (2.1), we get

1
dZk,tkAk

≥
∫ π

−π

1
2N−1 |eit − zk,1|2 dt =

2π

2N−1
(
1 − |zk,1|2

) −→ ∞

as k → ∞. As a consequence, µ∗ is supported on
{
θ ∈ [−π, π) eiθ ∈ Z∗ ∩ ∂D

}
, that is, its support consists of

at most n points, and we may assume that z∗1 ∈ supp(µ∗). If Hn−1 is any polynomial of degree at most n − 1,
we have ∫

ΦnHn−1 dµZk,tkA = 0

for all k (recall that Φn is the n-th orthogonal polynomial with respect to each µZk,tkA by the choice of Zk).
Hence it follows, by weak-∗ convergence, that∫

ΦnHn−1 dµ∗ = 0

for any Hn−1. Now choose Hn−1 so that it vanishes at all points of the support of µ∗ except for z∗1 . Then the
previous equality gives

0 �= Φn(z∗1)Hn−1(z∗1)µ∗({z∗1}) =
∫

ΦnHn−1 dµ∗ = 0 ,

and this contradiction shows that, in fact, m0 �= FtA(∂rDn) for all t ∈ [0, 1], provided r < 1 is sufficiently close
to 1. �

3 Proof of Theorem 4

Let Dr(z) denote the disk of radius r about the point z.
We shall use a reasoning similar to the one in [8, Example 2.1.2]. The proof is based on the observation

that if µ is a measure consisting of m mass points and a very small part somewhere else, then Φm(µ) will have
precisely one zero close to each mass point (and, of course, no other zero), and Φm+1(µ) will have precisely one
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zero close to each mass point, plus an additional zero, and this additional zero will be what will move around in
the construction to describe the assumed limit set.

Let F ⊆ D be the given closed set, and select a countable set {Sn}∞n=0 in D such that F is precisely the set
of limit points of {Sn}∞n=0. Choose also pairwise different points P1, P2, P3, . . . on the unit circle such that Sn

lies on the segment joining P2n+1 and P2n+2. It is sufficient to show a measure µ such that for each n, the zeros
of Φ2n lie very close to {P1, P2, . . . , P2n}, while the zeros of Φ2n+1 lie very close to {P1, P2, . . . , P2n}∪{Sn}.
In fact, then the set of limit points of the zeros is the closure of the set {Pj}∞j=1 ∪ {Sn}∞n=1, the intersection of
which with D is precisely F ∩ D. The measure µ will be of the form

µ =
∞∑

n=0

εn

(
βnδP2n+1 + (1 − βn)δP2n+2

)
, (3.1)

where δP denotes the Dirac mass at the point P and βn ∈ (0, 1), εn > 0 will be chosen below.
First of all, we require εn+1 < εn/2 for all n. Start with ε0 = 1, β0 = 1

2 . Suppose that we have already
selected ε0, . . . , εn−1 and β0, . . . , βn−1 for some n > 0. Set

πn =
2n∏

j=1

|P2n+1 − Pj | ,

κn =
2n∏

j=1

|P2n+2 − Pj | ,

and for a β ∈ [0, 1], minimize the expression

βπ2
n |P2n+1 − s|2 + (1 − β)κ2

n |P2n+2 − s|2

for s ∈ C. It is clear that the minimum is taken at some point of the segment connecting P2n+1 and P2n+2, and
if β = 0, then it is taken at P2n+2, while if β = 1, then it is taken at P2n+1. As β moves from 0 to 1, there will
be a value, which we call βn, for which the minimum is taken at the point s = Sn. Now by continuity, there is a
γn > 0 such that if |zj − Pj | < γn for j = 1, 2, . . . , 2n and T2n(z) =

∏2n
j=1(z − zj), then the minimum of

βn+1 |Tn(P2n+1)|2 |P2n+1 − s|2 + (1 − βn+1) |T2n(P2n+2)|2 |P2n+2 − s|2

is taken somewhere in D1/n(Sn). We may assume that γn is smaller than 1/n and that it is also smaller than half
of the minimal distance in the set

{P1, P2, . . . , P2n+1, P2n+2}.

Thus,

(A) If µ is a measure such that Φ2n+1(µ) has a zero in each Dγn(Pj), j = 1, . . . , 2n, then the remaining
zero of Φ2n+1(µ) will be in D1/n(Sn).

Next, we claim that

(B) There is an ηn > 0 such that if µ is of the form

µ =
n−1∑
j=0

εj

(
βjδP2j+1 + (1 − βj)δP2j+2

)
+ ν , (3.2)

where ν is any measure supported in D with total mass ‖ν‖ < ηn, then Φ2n+1(µ) has a zero in each
Dγn(Pj), j = 1, . . . , 2n.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1620 Simon and Totik: Limits of zeros of OP on the circle

In fact, we have

∫ ∣∣∣∣∣z
2n∏

j=1

(
z − Pj

)∣∣∣∣∣
2

dµ ≤ 22n ‖ν‖ ≤ 22nηn .

Furthermore, there is a ρn > 0 such that for all polynomials R2n+1(z) = z2n+1 + . . . , the zeros of which omit
at least one of Dγn

(
Pj

)
, j = 1, . . . , 2n, we have

max
j=1,...,2n

∣∣R2n+1

(
Pj

)∣∣ > ρn .

Thus, if

ηn < 2−2nρ2
n min

0≤j≤n−1
εj min{βj , 1 − βj} ,

then no such polynomial can minimize the L2(µ)-norm
(
recall that µ has a mass ≥ εj min{βj , 1 − βj} at each

P2j , P2j+1, j = 1, . . . , n
)
, and since Φ2n+1(µ) minimizes the L2(µ)-norm, the claim follows.

A perfectly similar argument gives that

(C) There is an η′
n > 0 such that if µ is of the form (3.2) where ν is any measure supported in D with total

mass ‖ν‖ < η′
n, then Φ2n(µ) has a zero in each Dγn

(
Pj

)
, j = 1, . . . , 2n (and, of course, no other zero).

Now set εn < min(ηn, η′
n, εn−1)/2. With this choice, the measure from (3.1) satisfies (B) and (C), and

hence we obtain from (A) that we can number the zeros z
(2n+1)
1 , . . . , z

(2n+1)
2n+1 of Φ2n+1(µ) in such a way that

for j = 1, 2, . . . , 2n, we have
∣∣z(2n+1)

j − Pj

∣∣ < 1/n, and
∣∣z(2n+1)

2n+1 − Sn+1

∣∣ < 1/n, and similarly, it follows

from (C) that we can number the zeros z
(2n)
1 , . . . , z

(2n)
2n of Φ2n(µ) in such a way that for j = 1, . . . , 2n, we have∣∣z(2n)

j − Pj

∣∣ < 1/n, and this is what we wanted to achieve. �
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