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Abstract

We consider probability measuresy = w(@)% + dug, on the unit circlegD, with Verblunsky
coefficients o j}?io- We prove forf)1 # 0> in [0, 2r) that

/[1 — cog0 — 01)][1 — cog0 — 02)]logw(0) g—z > — 00

if and only if
> “(5 —e 12y - e_’”l)ot] ‘ + o |4 < 00,
‘ J
j=0

whered is the left shift operato(df) ; = ;1. We also prove that

/(1 — cos(i)2 logw(6) d—g > — 00
2n
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if and only if

o

2 6
Z |OCj+2—20(j+1—|—O(j| + |OC]| < 00.
Jj=0

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is a contribution to the theory of orthogonal polynomials on the unit circle
(OPUC); se¢6,15,16,18] for background. Throughoufy will be a non-trivial probability
measure on the unit circléD, in C, which we suppose has the form

do
du=w(0) — +duys, (1.1)
2n

whered i is singular with respect to Lebesgue measiffen dD.
The Carathéodory and Schur functiosand f, associated tdu are given forz € D

by

¢! +2z
Fo) = [ S duo) (12)
e’ —Z
1+2zf(2)
= = 1.3
1-zf(2) (1.3)
The Verblunsky coefficient{a:;cj}f/?‘;o can be defined inductively by the Schur algorithm
oo + 2f1(2)
= 1.4
f(@ Tt 0h() (1.4)
which defines;p € D andf. Iterating gives, oz, ... andf2, f3, ... . Thate; e D (rather

than justD) follows from the assumption thafu is non-trivial, that is, has infinite support
so f is not a finite Blaschke product. Actuallyi.@4) defines what are usually called Schur
parameters; the Verblunsky coefficients are defined by a recursion relation on the orthogonal
polynomials. The equality of these recursion coefficients and the Schur parameters of (1.4)
is a theorem of Geronimus [5]; see [15]. We will use the definition in (1.4).

The most famous result in OPUC is Seégtheorem which, in Verblunsky's format [19],
says

= do
|og<]‘[ (1- |ocj|2>) = / log(w(0)) 5. (1.5)

j=0
In this expression, both sides are non-positive (siage< 1, and Jensen’s inequality im-
plies [ log(w(0)) % < log(f w(H)”Zl—z) < log(u(éD))). Moreover, {.5) includes the state-

ment that both sides are finite (resp.go) simultaneously. Thus (1.5) implies a spectral
theory result.
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Theorem 1.1.

/Iog(w(@)) g > —00 & Y |ujl? < oc. (1.6)
j=0

This form of the theorem has caused considerable recent interest due to work of Deift—
Killip [1] and Killip—Simon [7] which motivated a raft of papers [2,8-11,14,17,20].

In [15, Section 2.8], Simon found a higher-order analog to (1.6) that allowsl@t)) to
be singular at a single point;

Theorem 1.2.

do >
/(1— cost) log(w(6)) 5 7 "0 D lojpa — 0P + o |? < oo 1.7)
j=0

Remark. This result allows a single singular point of order 1 in(eg0)) at0 = 0. By a
simple rotation argumeifit5], if cos(0) is replaced by ca® — 01), o1 —o; 12 is replaced
by [otj 41 — e~ o2,

Our goal in this paper is to analyze two singularities or a single double singularity. We
will prove that

Theorem 1.3. For 01 # 05,

do
f(l —cog0 — 01))(1 — cog0 — 02)) log(w(0)) o > —00

o8]

>

j=0

2
+ |ocj|4 < 00. (1.8)

{(5 — emil2y(5 — e—""l)a}

J
In this theoremy is the operator on sequences
(00); = otjy1. (1.9)
We will also prove a result fofl; = 65.
Theorem 1.4.

/(1— cost)? log(w(6)) a0 > —00
2n

o0
<:>Z |ocj+2—2aj+l+ocj|2+|ocj|6<oo. (1.120)
j=0

Again, one can replace o@® by cog0 — 01) if oj1o — 2011 + o is replaced by
{0 — e 1)%a);.
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Given the form of these theorems, it is natural to conjecture the situation for arbitrarily
many singularities:

Conjecture 1.5. For {6;}{_, distinctin[0, 2n),

‘ do
/ ]_[ (1 — cog6 — 0;))™ log(w(0)) o >~
k=1

00 4
& Z {H [0 — e_lok]mkoc}
k=0" “k=1

Independently of our work, Denisov—Kup[i8] have found conditions on thes equiv-
alent to the left-hand side of (1.11) being finite. However, their conditions are complicated
and even for the casgﬁzl my = 2, itis not clear they are equivalent to the ones we have
in Theorems 1.3 and 1.4 (although they must be!).

In Section 2, we review the features we need of the relativedSpegtion which will play
a critical role in our proofs, and we compute its first two Taylor coefficients. In Section 3,
we prove Theorem 1.3 in the special cake= 0, 6> = =, and in Section 4, we prove
Theorem 1.4. With these two warmups done, we turn to the general result, Theorem 1.3, in
Section 5. The details of this are sufficiently messy that we do not think this direct approach
is likely to yield our conjecture.

2
+ |OCj|2ma)(mk)+2 < 00. (111)

J

2. The relative Szegfunction

In Section 2.9 of Simon [15], introduced the relative Szégiction, defined by
1—a0f(z) 1—2zf1(2)

D)) = 2.1
(00D)(2) o 1@ (2.2)
where
pr = (L— oy HY? 2.2)

and f, f1 are given by 1.3) and (1.4).
The key property 0o D we will need and the reason it was introduced is

Theorem 2.1(Simon[15, Theorem 2.9.3] Letdu, be the measure whose Verblunsky co-
efficients arg(a1, oo, . ..). Letw be given by(1.1)and w1 by

do
dug = wi(0) o T duys. (2.3)

Supposeuv(0) # 0 for a.e.c'? in 0D. Then the same is true far; and

1 i0 4 ; 0
(30D)(2) =exp<Ef Zm: Iog(ulj)l(((;))df)). (2.4)
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As in[7,14,17], this is the basis for step-by-step sum rules, as we will see.

To prove Theorems 1.3 and 1.4, we will need to start with computing the first three Taylor
coefficients of log(doD)(2)).

Theorem 2.2. We have that

log(3oD(2)) = Ao + A1z + A2z + 0(23), (2.5)
where

Ao =log pg (2.6)

A1 =00 — og — Olot1, (2.7)

Az=3 0§ — 3 0f + a1 — o — gl + caloa|* — dlooapd + 5 @G0, (2.8)

Proof. f2(0) = a2, SO

z2fo +oq 2 2
=—_.=OC +fo +OZ .
f 1+ /s 1 201 (z%)
Thus
. zfitoo 2,22, 2 - 9 3
= ———F =00+ 2z +z o —apoy) + O(z7).
f 1+ 2300 0 100 polo2pt — aooy) (z%)

Plugging these intaX 1) yields the required Taylor coefficients]
Remarks. 1. Denisov—Kupin [3] do what is essentially the same calculation using the CMV

matrix.
2. (3.2) and (3.3) below show that (2.4) implies

w(0) \do

w(()) —im0 do _ Ap, m=12,
/Iog<wl(5))e o | A, m=-1 -2 (2.10)

3. Singularities at antipodal points

As a warmup, in this section we prove the following, which is Theole&for 01 = 0,
0> = n. By the remark after Theorem 1.2 this also gives the result for any antifpdald
05.

Theorem 3.1.

do >
/(1— cos(0)) logw(0) o = 00 D loj2 — o P + o |? < oo (3.1)
j=0
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Remark. Let o; be given and Ieﬁj be the sequence, 0, a1, 0, 2, 0, ...). Then (see
[15, Example 1.6.14]w® (0) = 1w®(36) and the RHS of (3.1) fop = the RHS of
(1.7) fora.. Thus (3.1) forg is (1.7) fora. This shows, in particular, that if a result like (3.1)
holds, it must involvea; |4, rather than, sayy;|°.

We begin by noting that i©2(0) is real and

0O) = > by’ (3.2)
then
i04 7
i 2 . .
/e Q(9) =bo+ nzlb & (3.3)

since(e’? +2)/(e!? —z) = 14232, z"¢~ 0. Thus, by 2.9), (2.10), and

1-cod(0) = 12— %0 — 729 (3.4)
we have
/ (1 — co(0)) Iog< w((ee))> = Ao — L Re(42) (3.5)

with Ag given by @.6) andA» by (2.8).

Lemma 3.2. We have that

Ao — 3 R&(A2) = By + Co + Do + Fo — F1+ Go — Go, (3.6)
where

B; = 3 [log(1 — oj1?) + o1 + 3ot 1], 3.7)

Cj=—3A—lojp1le; — ajyal?, (3.8)

Dj == (1651 + o517 + Alajorya]?), (3.9)

Fj=—3Re(50% +aji1 — ajualog?) + 7 11l P — 5oy 1%, (3.10)

Gj=—1%o%

Remark. (3.5)/(3.6) is thus the step-by-step sum rule in the spirit of [7,14,17].

Proof. This is a straightforward but tedious calculation. The first ternBgnis just Ag
(sincelogy; = Llog1 - |oc] 12)). Az is responsible for the Re terms inFo — F; and the

cross-terms i — o 42| andloc g+ 05 212, The|o;|? + |oj 2] term inCg is turned into
2212 by Go— G2, and then cancelled bytﬂmj|2term in Bo. Similarly, theo; |4+ |oj 41|
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in Do (after adding thea;|* terms inFy — F1) cancels theo;|* term in Bo. Finally, the
lotj 112 (ot |24+ 121%) terminCo (after being turned into|2 4112|012 by the|oj 1] |?
term in Fp — F1) cancels the |4cjocj+1|2 terminDg. [

By iterating 8.5)/(3.6) and noting the cancellations from the telescoping F;,1 and
Gj— Gy Yields

/(1— co(0)) Iog( w® )d_()
2n

w2 (0)
2m—1
= Fo— Fan+Go+G1—Gon — Gouy1+ y_, (Bj+Cj+Dj).  (3.11)
j=0

As a final preliminary, we need,

Lemma 3.3. (i) |F;| <% 1G;1< 3,
(i) o] < 3 = c1lo;18< — B; <calo; (8 for somecs > ¢1 > 0,
(i) Jojal® + Jo 14 < — 8D <A(ojal* + o).

Proof. (i) follows from |o;| <1, (ii) from —log(1 — x) = Z;"zl x//j, and (iii) by noting
that 2 Reu?o? ) + 2|o05 ;| >0 and repeated use pfy| < x4+ 1y1?. O

Proof of Theorem 3.1. We follow the strategy of Killip and Simon [7] as modified by Si-
mon and ZlateT17]. Suppose first that the RHS of (3.1) holds. &€t be the weight for the
nth Bernstein—Szegdpproximation with Verblunsky coefficientsgg, o1, ..., %,-1,0, ...,

0, ...), and letw, be the one for the measung with coefficients(«,, o1, . . .). By (3.11
and(w™),,, = 1 for largem,

f (1 - cos'(6)) log(w™ (6)) 40
2n

n—1
=F"+ G+ G+ B + ¢+ D)
j=0
so, by Lemma 3.3;18<|o;|* — 0, and RHS of (3.1),

inf [ / (1 — co(0)) |og(w<”>(9))§} > —00. (3.12)

Up to a constant/ (1 — co(0)) log w(@)g—g is an entropy and so upper semicontinuous
[7]- Thus (3.12) implies

/ (1 — cog(0)) logw () %) > —o0. (3.13)
Conversely, suppos8.13) holds. Sincg (1 — cog(0)) log(wz, (0)) ;’—ﬁ is an entropy up

to a constant, it is bounded above [7], and so the left-hand side of (3.11) is bounded below
asm varies.
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SinceF andG are bounded angt, C, D are negative, we conclude
oo
> —(Bj+Cj+Dj) < 0.
j=0

Since Y (—D;) < oo, Lemma3.3 impliesY_ |a;|* < oo. This impliesaz; — 0, so
Y (—=Cj) < coimplies” |o; — aj42> < 0. O

Notice that the redistribution of the terms in (3.6) insures that all the essential terms on
the RHS of (3.11) (i.e.B;, Cj, D;) are sign definite. This ultimately allows us to recover
(3.1) by passing to the limiz — oo in (3.11). The same strategy will be applied in the
proofs of Theorems 1.3 and 1.4.

4. Singularity of order 2
Our goal here is to prove Theorem 1.4. Since
(1—cos®)? =12 —¢70)?
_ g il _ omi0 4 %621'6 T %6721‘0
we see, by (2.9)/(2.10) that

/ Iog( ((0))>(1 —co 59)2 o _ = 340 — 2Re(A1) + 3 Re(A2) (4.1)

with Ag, A1, A2 given by @.6)—(2.8).
Lemma 4.1. The RHS of4.1)= Ho+ Iop + Jo + Ko — K1 + Lo — L where
H; = 3{log(1 — [21?) + |oj 21,
Ij=—% 042 — 2041 + o5]%,
Ji=73 L (ojojo + 0o 0) |0 4al? + & (OCJ i1t OCJO!,H)
Kj=—2Re0;) + 3 Re(s)
+3 Re(2j41) — 3 Re(oj41]1%) + Refar a1 — Jogj 1%,
Lj=—1a;%
Proof. The non-cross-terms ify are
—3 (lo2f® + 4o + [o0l?) = =3 aol® + (leto|® — [2a]®) + § (0] — |o2|)

which cancel thex|? term in Ho, the final|x;|? term in Ko — K1, and theLo — L term.
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The cross-terms iy are
— 2 Re(@o00) + Re(ap01 + dl1010)
= —3 Re(3200) + 2 Re(@ox1) — Re(@on1) + Re(@10).

The first term comes from a piece%Re(Az) (sincedouzp? = dooa(1—o1|?)), the second
from the last term in-2 Re(A1), and the last two are cancelled by the(RReg1«;) term in
Ko — K.

Theog — o1 term in A1 leads to the first term iKg — K1. The first term inJg comes
from the second half 0100(2/)% = ool — Ecooc2|oc1|2 (the first half in this expression gave a

cross-term inf;). The second term it is the 3 zocoocl terminAs.
The remaining terms i », that is, the first six terms on the RHS @£8), give precisely
the remaining terms iKg — K1. O

Lemma 4.2. The RHS of4.1)= Ho + Io + Jo+ Ko — K1 + Lo — L, where
Hj =3 [log(1 — |aj[?) + loj|? + 3la1].

1 2 2_ 1.2 22 _ 1 2 2,2
=gl — o2l — g oG — afl — 7 (ojgal® — [ 197,

> 31,04 1 21, 12
Kj=Kj—gloj|" — 7 lotjalfoej]

Proof. The non-cross-terms in the last two terms/grgive
—2 (lool* + oa]*) = = F 1ol * + 3(loo|* — oa|*).

The first term cancels thBy — Hp term, and the second, the first term(ikip — Kg) —
(K1 — K).

The cross-term in}l(|oc]+1|2—|ocj 2)2 and the non-cross-termsing o1 /2|0t — o142/
combine to——|ocj+2| |ocj+1| |ozj+1| |oc,|2 and are cancelled by the second term in
(Ko — Ko) — (K1 — K1). The cross-term |r+8|oc — oc?lz is the second term ivp and

finally, the cross-term |r+4|ocj+1| o — ocJ+2| is the firsttermin/y. O

Lemma 4.3. (|) K< ILjI<5,
(i) loj| < 3 = daloj|8< — Hj<doo;|® for somed, > d1 > 0,
(iii) J;<0,
(iv) Y520 (—1)) + loj1® < 00 = 3% loja — o513 < oo,
(V) Ziio (—ij) + |Otj|6 <00 = Z?’;O(—jj) < 00.

Remark. (iv) is essentially a discrete version of the inequality of Gagligdl@nd Niren-
berg [12].
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Proof. (i) follows from | ;| < 1, (ii) is just (ii) of Lemma3.3 (sinceI:Ij = 3B;), and (iii)
is trivial.
To prove (iv), we le® be given by (1.9) and let
0=0-1 (4.2)
so sincey* = 6¢ (6 is unitary on¢?), we have
=0 —1=-0"10=—-5%. (4.3)
As a result, ifx is a finite sequence, then
D 1@} =) (00, (8)a] 0ot

==Y (6)a[0{(0%)|det]} 1. (4.4)

Moreover, we have a discrete Leibnitz rule,
0(f8)=(0/)(08) — fg
=(0f)0g +(0f)g (4.5)
and sincda — b| > |a| — |b| by the triangle inequality,
LI f1, (4.6)

which is a discrete Kato inequality.
By (4.5),

3{(03)|0al} = [5(05)]10|0x| + (0°7)| 0ol

so, by @.6),
|0((0m) 00} < 00| 18(07)| + 0] 0x].

Using Hélder's inequality with + 3 + 1 = 1 and @.4), we get
||50€||§<2||0<||6||520€||2||50<||3

(because{dul|, = [l«ll ), SO
3/4

1/4
> |<aoc)n|3<23/2(2 |an|6) (Z |<62a>n|2) : 4.7)

Having proven 4.7) for «’s of finite support, we get it for any with the right-hand side
finite since) _, lo,|® < oo impliesa, — 0, which allows one to cut off at N and take
N — ooin (4.7). But (4.7) implies (iv).

To prove (v), we control the individual terms 0 (—fj). First,

2,52 2 2 2 2
ol 1070 — a2 < Nl olI3 11070 — o] “[l3/2
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(by Holder's inequality with} + £ = 1)
<4l 105 < oo
(by first using||520c — of|3<2||0n||3 and then (iv)). Next,
lo 4 — o512 < latjral + loejgal)Plogjpa — o
can be controlled as the first term was and the final term is controlled in the same way since
loj411% — ot 2 < IO@H - a?l- U

Proof of Theorem 1.4. Suppose first that the right-hand side of (1.10) holds, thatés¢®

andd®s € ¢2. lteraten times (4.1)/Lemma 4.2 for theth Bernstein—Szeg&pproximation
(with weightw ™) to obtain

inf /(1— cost)? log(w™ (0)) %)} > —00

n

since the left-hand side is just

n—1
e | g0 L fo0 o 700 o, 5
inf | Ko” + Lg” +Li" + > A" + 1V + 7" |
j=0

which is finite by Lemma.3 and the hypothesis. Again, we have thét— cos0)?logw(0)

% is an entropy up to a constant and so upper semicontinuous. Thus RHS o1 119$

of (1.10).
For the opposite direction, as in the last section, we use iterated (4.1)/Lemma 4.2 plus
the fact that/ (1 — cosb)? Iog(wm(ﬂ))% is bounded from above to conclude

o0
D —(Hj+ 1+ J)) < oo.
j=0

Since each is positivij(—l{{/) < 00, which implies)  |u; 18 < oo by (ii) of Lemma4.3,
andY.% o(~1;) < co, which impliesd’s € ¢2. O

5. The general case

Finally, we turn to the general case of Theorem 1.3, and we define
w(0) \d0
wn(0) ) 21

Iy = / [1— cos( — 01)][1— cos0 — 02)] Iog< (5.1)

Using 2.9) and (2.10), we obtain
4 + ¢'(01=02) 4 ,—i(01—02)
= )

+ IR 1402 4], (5.2)

Ao — Re[ (¢!t + 1) A4
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The situation is now somewhat more complicated than in the previous sections and it
will be more convenient to work witf,,, from the start, only keeping track of the essential
components of the sums (analogotB; + C; + D;) andY_(H; + I; + J;) above) and
ignore the ones that are always bounded and hence irrelevant for us (anaF@gs 6f +
Go+G1— G, — Gpy1 andKg — Kny+Lo+L1— L, + Lm+1) Hence substituting
(2.6)—(2.8) in (5.2) and iterating, we obtain

4+ o102 4 o=i(01—02) M1

T = Com + 7 > log(d — ;%)
j=0

m—1
+ Z Re{ (ei(h + ei@z)OC +1OC _ _61(91+92)
=0

= 2 2
x[otjy20j (1= |otjya]?) — 20‘/+1°‘]]

where

Cam = —Re(e" + ¢!2)(ag — )]

1 i(01+02) (1,2 1.2 2 2
+§ Re[el( i+ 2)(20(0 — zam + o1 — OUm+1 — a1|060| + OCm+]_|OCm| )]

We let

B; = ocjei(()l"’_(b)j/z

and

a= 300212 1 o=it0i=02/2) ¢ (_1 1)

We will assume: # 0 since the case wheh andf, are antipodal follows from Theorem

3.1. WithCg ,,, = Cy,,» and all the sums taken from O 4o — 1, the above becomes

Tn=Cpm+(3+4%) ) logd—(B;1>)+a )y [Bjs1B; + Bj11h;]
—3 2 [Brs2Bi L= 1812l + B 2B 1= 18111

33 (BB + BB (5.3)

In the following manipulations with the sums, we will uSg ,, as a general pool/depository

of terms that will be added/left over in order to keep all the sums from#tol. Its value

will therefore change along the argument, but it will always depend on gféswvith |

closeto 0 orn only (i.e., it will gather all the “irrelevant” terms) and will always be bounded
by a universal constant.

Lemma 5.1. With Cg ,,, universally boundedve have
Tn=Cpu+(3+4%) ) [logd— 18,15 +18;1*+ 318;1*]

~3 D= 1BaPBj 2 — 2aB 1 + B
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1 2 2 1 2 2
—2 D IBi1lPlBiso—2aBa|" = 3 ) 1Bjal’B; — 2af 4]
1 2 212 1 2 4
—8 2B BT+ 347 ) 1B (5.4)

with all the sums taken frofto m — 1.

Remarks. 1. This enables us to prove the=" part of (1.8) (even ifa = 0) since

{0 —e702) (0 — g—ff’l)a}j} =B 2—2aB; 1+ B;l. (5.5)

But to prove the other implication, we first need to deal with the last surb.#),(which
has the “wrong” sign.
2. Note that we actually did not need to exclude the ease0 since then the last sum
in (5.4) vanishes and an examination of (5.4) shows that lim, Z,, > —oc if and only if
the RHS of (1.8) holds. An argument from the proofs of Theorems 1.3 and 1.4 then gives
the “=" part of (1.8).

Proof. Multiplying out the terms in the second, third, and fourth sums of (5.4) and after
obvious cancellations, we are left with

> 5 2
—3 2 [1811P(4aP1B 12 = BjsaB; — BiaaB)) + Bz — 20811 + B, ]
But this is just
— 5T 1B 0l + 4B a2 + 1851 + 4?1 4[] (5.6)
plus the second and third sums $13), the latter written as
3a Z [ﬁj—O—ZBj—H + Bj+2ﬁj+l + ﬁj+1ﬁj + Bj+lﬁj]

(with Cg,, keeping the change). Adding the fifth and sixth sums5m) to (5.6) and
subtracting the last sum in (5.3), we obtain

—3) @+4a®)IB; 17— 5D 2+ 4”1t

(again replacing all; 1| and|f; | by |;| and adding the difference 13 ,,). But this
together with the first sum irb(4) gives exactly the first sum in (5.3)[

If we define

Vi =Bjy2—2aB; 1+ B
then the second, third, and fourth sums %#) involve|y;|, [y; — B;| and|y; — f;.5l.
Using|x — y|?>> x| + [y|? — 2|x||y| for the last two, we obtain (with a ne@ ,,)

(=8Tn = Cpm+ Y OUB; 10 + D 2+ 2B, 1My, 17
43 1B alPIB P = 4D 1B P (182l + 18,117,
+) 51— ﬁﬂz —4a®y 1Bl (5.7)
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since
2 2 1 4 6
log(1— 8,15 + IB;1* + 31B;1* = 0B, 1°).

Next, we use-4xy > — 8x? — 3y? with x = |B;,1[2(18;,2| + |B;]) andy = |7;| to
estimate the fourth sum by, 0(18,1%) — 3 " I7,12. Also,

—4a® Z |ﬁj+1|4 = - Z |ﬁj+1|2|ﬁj+2 + B - “/j|2
Z - Z 1Bj 1B 2+ Bi1 ~ Z 1B 1ally; 12
=23 1B 41lP1Bj 12 + Bill; ]
> Cpm — 4D _IBjalPIB; 1P =D 1B a1
=Y 0UB;IH =3 I
again using-2xy > — 4x2 — 1y2. Plugging these intd5(7), we have
(=8> Cpm+ 3 OB + D0 (3 + 18112+ 3 B2 — B

The last sum is just. %(Iﬂﬁz - ﬂ?HIZ + |ﬂ§+l - /3§|2) plus a piece that goes int@ ,,.
Lettinge = 3 min{2lal, 2 — 2|al} > 0, we obtain

2 2 2 2
1B 41172 + 518512 = Baal® + 518541 — B517> 56%1B 40"

Indeed, if the third term is smaller thafe*|8, 4|%, then|B; — B, 4| or |B; + B4l

is less thare|f; 4|, and similarly for the second term. But thefy, ., + f;1/18;11 €

[0, 26) U (2—2¢, 2+ 2¢) and say; |/ 11 = min{2|a| — 2, 2 — 2¢ — 2|a|} > &, meaning
that the first term is at leas?|;4|*. So finally,

(—8Tn=Cpm+ > OUB;1% + D Iy, P+36* > 18,1
that is (by 6.5) and the definition of;, 7;),
T < Com+ Y 001219 — 3 D" [{0 — %) (0 — e} |
—15e® Yot (5.8)

Proof of Theorem 1.3. If the RHS of (1.8) holds, then the RHS of (5.4) for théh
Bernstein—Szegapproximation (withn >n) is bounded (imz), and so

inf [/ [1 - cos0 — 01)][1 - cos0 — 0)] Iog(w('”(()))g} > —00.
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By upper semicontinuity of the above integral (which is again an entropy up to a constant),
we obtain the LHS of1.8).

Conversely, assume the LHS of (1.8) holds. Then the essential suppoit @il of 0D,
and so by Rakhmanov’s theorem [18},| — 0. Hence, starting from sonjewe have

0(|0j|®) < 25640 |* and so
—i —i 2
Ty <Dam— gy {6 —e")@E —e ™o} |7 = g6 Y oyl (5.9)

for largem and some bounded (im) D ,,. As in the previous section;{,[l — cog0 —

01)][1—cos0—02)] Iog(wm(ﬁ))g—g is bounded above, and gg is bounded below by the
hypothesis.§.9) then shows that the RHS of (1.8) hold$.]
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