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Aizenman’s Theorem for Orthogonal
Polynomials on the Unit Circle

Barry Simon

Abstract. For suitable classes of random Verblunsky coefficients, including indepen-
dent, identically distributed, rotationally invariant ones, we prove that if

E

(∫
dθ

2π

∣∣∣∣
(
C + eiθ

C − eiθ

)
k�

∣∣∣∣
p)
≤ C1e−κ1|k−�|

for some κ1 > 0 and p < 1, then for suitable C2 and κ2 > 0,

E

(
sup

n
|(Cn)k�|

)
≤ C2e−κ2|k−�|.

Here C is the CMV matrix.

1. Introduction

This paper is a contribution to the theory of orthogonal polynomials on the unit circle
(OPUC); for background on OPUC, see Szegő [19], Geronimus [7], and Simon [15],
[16]. Our goal here is to prove an analog of a result of Aizenman [1] for random discrete
Schrödinger operators. Aizenman considers operators on �2(Zν) of the form hω = h0+
Vω where ([1] allows more general h0 than this!)

(h0u)(n) =
∑
| j |=1

u(n + j)

and Vω is the diagonal matrix whose matrix elements are independent, identically dis-
tributed (i.i.d.) random variables. Aizenman’s theorem states

Theorem (Aizenman [1]). Under suitable hypotheses on the distribution of V if, for
some [a, b] ⊂ R,∫ b

a
E(|[(hω − E − i0)−1 P[a,b](hω)]k�|p) d E ≤ C1e−κ1|k−�|(1.1)
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for some 0 < p < 1 and κ1 > 0, then, for some κ2 > 0 and C2,

E

(
sup

t
|[e−i thω P[a,b](hω)]k�|

)
≤ C2e−κ2|k−�|.(1.2)

Aizenman’s motivation was that Aizenman and Molchanov [2] had proven bounds of
the form (1.1) (generally called Aizenman–Molchanov or fractional moment bounds)
realizing that the key was to restrict p to be less than 1. From their bounds, they easily
obtained spectral localization (i.e., pure point spectrum) by using the Simon–Wolff crite-
rion [17]. Aizenman was interested in (1.2) because it is a form of physical localization.
It was used by del Rio et al. [5] to obtain what is now the standard strong form of eigen-
function localization (SUDL), and by Minami [12] to prove the Poisson distribution of
the eigenvalues of hω restricted to a large box. del Rio et al. also simplified Aizenman’s
proof and slightly extended the result (so that the theorem we stated above is their form
with some extra hypotheses dropped).

To describe precisely the result we want to prove here, we need some preliminaries.
Given a set of Verblunsky coefficients, {αj }∞j=0 (see [15, Sec. 1.5]), one forms the CMV
matrix, C (see Cantero, Moral, and Velázquez [4] or [15, Chap. 4]). We define, for z ∈ D,
the unit disk

Fk�(z) =
[C + z

C − z

]
k�

.(1.3)

By Kolmogorov’s theorem (see [11] or Duren [6, Sec. 4.2]), Fk� lies in the Hardy spaces
H p(D) for 0 < p < 1, so

Fk�(e
iθ ) ≡ lim

r↑1
Fk�(reiθ )(1.4)

exists for dθ/2π a.e. θ and has an integrable pth power over ∂D for p ∈ (0, 1).
Now let the α’s be random variables which define a measure d� on ×∞j=0D ≡ D∞.

For each n = 0, 1, 2, . . . and λ ∈ ∂D, define Tn,λ : D∞ → D
∞ by

(Tn,λ(α))j = αj , j = 0, 1, . . . , n − 1,

= λαj , j = n, n + 1, . . . ,

(1.5)

and let d�n,λ(α) = d�(Tn,λ(α)). We say d� is strongly quasi-invariant if each d�n,λ

is d�-absolutely continuous and supn,λ ‖d�n,λ/d�‖∞ <∞. Clearly, if d� is a product
of rotation invariant measures (invariant i.i.d.’s), d� is strongly quasi-invariant. We will
discuss other examples in Section 7. Here is our main result:

Theorem 1.1. Suppose {αj }∞j=0 are random Verblunsky coefficients which are strongly
quasi-invariant, and for some p < 1 and κ1 > 0,

E

(∫ 2π

0
|Fk�(e

iθ )|p dθ

2π

)
≤ C1e−κ1|k−�|.(1.6)

Then, for suitable κ2 > 0 and C2,

E

(
sup

n
|(Cn)k�|

)
≤ C2e−κ2|k−�|.(1.7)
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Remarks. 1. This result is interesting only because one can prove (1.6). For certain
cases of rotation invariant i.i.d. α’s, Stoiciu [18] has proven (1.6). Indeed, we proved
Theorem 1.1 precisely to fill in a missing step in Stoiciu’s program to prove Poisson
distribution for the zeros of paraorthogonal polynomials with random Verblunsky coef-
ficients.

2. Kolmogorov’s argument proves for any OPUC, any k, �, and 0 < p < 1,∫ 2π

0
|Fk�(e

iθ )|p dθ

2π
≤ 2 cos

(
pπ

2

)
.(1.8)

This means that if (1.6) holds for one p ∈ (0, 1), it holds for all such p (with κ1 dependent
on p).

3. The supn is over n = 0,±1,±2, . . ..
4. Equation (1.7) is a strong statement about the structure of eigenfunctions of C and

of OPUC to be compared with the case α ≡ 0 where supn |(Cn)k�| = 1.
5. If (1.6) holds for p = 1 (it cannot, as we will see in Remark 6!), (1.7) would

be immediate since 2(Cn)k� are the Taylor coefficients of Fk�. Thus, (1.6) ⇒ (1.7)
without recourse to the expectations. But, in general, for p < 1, H p functions have
Taylor coefficients that can grow as o(n1/p−1) and no better (see Duren [6, Chap. 6]),
so (1.6)⇒ (1.7) only holds because the sup |(Cn)k�| is averaged over a set of rank one
perturbations. This is Aizenman’s key discovery in [1].

6. Equation (1.6) cannot hold for p = 1. Indeed, if
∑

�(
∫ 2π

0 |Fk�(eiθ )|dθ/2π)2 <∞
for fixed k, then

∑
� |Cn

k�|2 → 0 by appealing to the dominated convergence theo-
rem for sums and to the Riemann–Lebesgue lemma which implies (Cn)k� → 0 if∫ |Fk�(eiθ )|dθ/2π <∞. But since Cn is unitary,

∑
� |Cn

k�|2 = 1.

While part of our proof of Theorem 1.1 follows the arguments in del Rio et al. [5],
there are two novel aspects that prompted the writing of this separate note. The first
involves the theory of rank one perturbations. This theory is well developed for self-
adjoint operators (see [3], [14]), but I could not find any extensive theory for the unitary
case when I wrote [15], [16], so I developed the theory there (see [15, Subsecs. 1.3.9,
1.4.16, and Sec. 4.5]). It turns out that a key formula needed here (see (2.14) below) is
not in that presentation.

Second, OPUC has a subtlety missing from the Schrödinger case. Namely, the relevant
rank one perturbations of the Schrödinger operators are also Schrödinger operators, but
the rank one perturbations of CMV matrices are not CMV matrices. Of course, as unitary
matrices with a cyclic vector, these are unitarily equivalent to CMV matrices and, as we
will see, a formula of Khrushchev [10] even implies what the Verblunsky coefficients
are for the new matrices. But we will need to know the form of the unitary, and this will
require an illuminating calculation that should be useful in other contexts.

In Section 2 we discuss some aspects of the theory of rank one perturbations of
unitaries, which we use in Section 3, following [1], [5], to compute explicit spectral
representations. In Section 4 we use this to obtain a deterministic form of Aizenman’s
theorem that involves averaging under rank one perturbations, and in Section 5 we
write these rank one perturbations in terms of CMV matrices. Section 6 puts everything
together to get Theorem 1.1, and Section 7 has some additional comments.
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2. Rank One Perturbations of Unitaries Revisited

Rank one perturbations of unitaries are best understood multiplicatively. Let U be a
unitary operator on a Hilbert space,H, and ϕ ∈ H a unit vector. Let P = 〈ϕ, · 〉ϕ be the
projection onto the multiples of ϕ. One defines, for λ ∈ ∂D,

Uλ = U (1− P)+ λUP = U [(1− P)+ λP](2.1)

(if ϕ is part of an orthonormal basis, (1 − P) + λP is the diagonal matrix with λ in ϕ
position and 1 in all others). Thus

Uλϕ = λUϕ,(2.2)

Uλψ = Uψ, if ψ ⊥ ϕ,(2.3)

which also defines Uλ. Note also that

Uλ −U = (λ− 1)UP.(2.4)

For z ∈ D and ‖ϕ‖ = 1, define

Fϕ(z) =
〈
ϕ,

U + z

U − z
ϕ

〉
,(2.5)

which is a Carathéodory function (i.e., F(0) = 1 and ReF > 0 on D). Since〈
ϕ,

U − z

U − z
ϕ

〉
= 1(2.6)

we can solve for

〈ϕ,U (U − z)−1ϕ〉 = 1
2 [Fϕ(z)+ 1],(2.7)

〈ϕ, (U − z)−1ϕ〉 = 1

2z
[Fϕ(z)− 1].(2.8)

Notice (2.7) and (2.8) hold if U is replaced by Uλ and Fϕ by Fλ
ϕ (z) given by (2.5)

with U replaced by Uλ. By the second resolvent equation,

(z −Uλ)
−1Uϕ = (z −U )−1Uϕ + (z −U )−1(Uλ −U )(z −Uλ)

−1Uϕ

= [1+ (λ− 1)(ϕ, (z −Uλ)
−1Uϕ)](z −U )−1Uϕ(2.9)

on account of (2.4).
Taking an inner product of (2.9) with ϕ and using (2.7), (2.8) for U and Uλ let us

solve for Fλ
ϕ (z) in terms of Fϕ(z). The result (see [15, Subsec. 1.4.16]) is expressed most

succinctly via the function f defined by

Fϕ(z) = 1+ z f (z)

1− z f (z)
,(2.10)

for then the inner product of ϕ with (2.9) implies

Fλ
ϕ (z) =

1+ λ−1z f (z)

1− λ−1z f (z)
.(2.11)
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Notice, by (2.7), (2.8), that

〈ϕ,Uλ(Uλ − z)−1ϕ〉 = 1

1− λ−1z f (z)
,(2.12)

〈ϕ, (Uλ − z)−1ϕ〉 = λ−1 f (z)

1− λ−1z f (z)
.(2.13)

Thus far, the formulas are identical to what is in [15]. What is new here is to note that
(2.9) says that as a vector inH, for each z ∈ D, λ ∈ ∂D, (Uλ − z)−1Uλϕ is a multiple of
(U − z)−1Uϕ so, for any ψ ∈ H,

〈ψ, (Uλ − z)−1Uλϕ〉
〈ϕ, (Uλ − z)−1Uλϕ〉 =

〈ψ, (U − z)−1Uϕ〉
〈ϕ, (U − z)−1Uϕ〉 .(2.14)

In particular, by (2.12) and 〈ψ, (Uλ − z)(Uλ − z)−1ϕ〉 = 〈ψ, ϕ〉, we see

Proposition 2.1. If ψ ⊥ ϕ, then〈
ψ,

Uλ + z

Uλ − z
ϕ

〉
= 1− z f (z)

1− λ−1z f (z)

〈
ψ,

U + z

U − z
ϕ

〉
.(2.15)

Remark. Equation (2.14) is an analog of (3.2) of Aizenman [1].

3. The Spectral Representation

We add two extra assumptions to our analysis of rank one perturbations of unitaries.
First, we suppose ϕ is cyclic for U , that is, {U kϕ}∞k=−∞ spans H, in which case it is
easy to see that ϕ is cyclic for Uλ. The spectral theorem then implies there are spectral
measures, dµλ, on ∂D defined by

∫
eiθ + z

eiθ − z
dµλ(θ) = Fλ

ϕ (z)(3.1)

for z ∈ D and unique unitary maps Fλ : H→ L2(∂D, dµλ), so that

(FλUλψ)(z) = z(Fλψ)(z), Fλϕ ≡ 1.(3.2)

In particular, if Uληz0 = z0ηz0 for some z0 ∈ ∂D and 0 �= η ∈ H, then, by (3.2),

(Fλψ)(z0) = 〈ηz0 , ψ〉
〈ηz0 , ϕ〉

.(3.3)

Our second assumption, following [3], [17], is that for a.e. eiθ0 ∈ ∂D,

G(eiθ0) ≡
∫

dµ(θ)

|eiθ0 − eiθ |2 <∞.(3.4)
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By arguments in [17], it is easy to see that if {ψj }∞j=0 is a basis for H, then (3.4) at θ0 is
equivalent to

∞∑
j=0

lim
r↑1

∣∣∣∣
〈
ψj ,

(
U + reiθ0

U − reiθ0

)
ϕ

〉∣∣∣∣2

<∞.(3.5)

Moreover, if (3.4) holds, then

lim
r↑1

eiθ0 f (reiθ0) = λ0 ∈ ∂D(3.6)

and z0 is an eigenvalue of Uλ0 . Since (spectral averaging, due to Golinskii and Nevai [8]
in this setting) ∫ 2π

0
(dµeiϕ (θ))

dϕ

2π
= dθ

2π
,(3.7)

(3.4) for a.e. eiθ0 implies Uλ has pure point spectrum for a.e. λ. (These facts are all
explained in [16, Secs. 10.1 and 10.2].)

Proposition 3.1. If ϕ is cyclic and (3.4) holds at θ0, let λ0 be given by (3.6). Then, for
any ψ ⊥ ϕ,

(Fλ0ψ)(z0) = (1− λ0)z0 〈ψ, (U − z0)−1ϕ〉,(3.8)

where z0 = eiθ0 and (3.8) is shorthand for limr↑1 〈ψ, (U − r z0)−1ϕ〉, which it is asserted
exists.

Proof. We use (2.14) for z = r z0 and λ = λ0. By the spectral theorem, since z0 is an
eigenvalue of Uλ0 ,

lim
r↑1
(1− r)(Uλ0 − r z0)

−1Uλ0ϕ ≡ ηz0

is an eigenvector for Uλ0 with eigenvalue z0 or it is zero. Since (3.6) holds, we have that

〈ϕ, ηz0〉 = lim
r↑1

1− r

2
[Fλ0
ϕ (r z0)+ 1]

= λ0

[
1− r

λ0 − [z f (z)]|z=r z0

]
by (2.11)

= λ0z0

(1− λ0z0)2
(−G(z0))

−1

by (10.1.7) of [16]. This is nonzero by the assumption G(z0) < ∞. One can also use
cyclicity of ϕ to conclude that ηz0 �= 0. Thus ηz0 �= 0 and so, by (3.3) and (2.14),

(Fλψ)(z0) = lim
r↑1

〈ψ, (U − r z0)−1Uϕ〉
〈ϕ, (U − r z0)−1Uϕ〉

.(3.9)

By (2.12) and r z0 f (r z0)→ λ0,

lim
r↑1
〈ϕ, (U − r z0)

−1Uϕ〉 = (1− λ0)
−1,(3.10)
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and since (ψ, (U − z)−1(U − z)ϕ) = 0, we have

〈ψ, (U − r z0)
−1Uϕ〉 = r z0〈ψ, (U − r z0)

−1ϕ〉.(3.11)

Thus, we see that (3.9)–(3.11) implies (3.8).

Remark. In fact, (3.8) holds whenever dµ is purely singular and for all λ0 �= 1. This
is because dµ purely singular implies dµλ is purely singular and (3.9) can be replaced
by Poltoratskii’s theorem [13], [9], which says that for any complex Borel measure η on
∂D and any g ∈ L1(∂D, dη) we have, for almost any eiθ0 with respect to dηs (but not
for dηac), that

lim
r↑1

[∫
eiθ + reiθ0

eiθ − reiθ0
f (θ) dη(θ)

]
[∫

eiθ + reiθ0

eiθ − reiθ0
dη(θ)

] = f (θ0).

4. Deterministic Form of Aizenman’s Theorem

We now follow Aizenman [1] and del Rio et al. [5]. Under the assumption that ϕ is cyclic
and G(z0) <∞ for a.e. z0 in ∂D, we have for ψ ⊥ ϕ that for a.e. λ0 that

|(Fλ0ψ)(z0)| ≤
∣∣∣∣limr↑1
〈ϕ, (U + r z0)(U − r z0)

−1ψ〉
∣∣∣∣(4.1)

since ψ ⊥ ϕ implies 〈ϕ, (U + z)(U − z)−1ψ〉 = 2z〈ϕ, (U − z)−1ψ〉. Equation (4.1)
holds for all eigenvalues of Uλ0 and so, for a.e. z0 with respect to dµλ0 if Uλ0 is pure
point.

Since Fλ is a unitary operator, we have∫
|(Fλ0ψ)(z)|2 dµλ0(z) = ‖ψ‖2.(4.2)

Moreover, since Fλ0UF−1
λ0
= z and Fλ0ϕ ≡ 1,

|〈ϕ,U n
λ0
ψ〉| =

∣∣∣∣
∫

znFλ0ψ(z) dµλ0(z)

∣∣∣∣
≤

∫
|Fλ0ψ(z0)| dµλ0(z).(4.3)

We conclude, using Hölder’s inequality and (4.2):

Proposition 4.1. If ϕ is cyclic and G(z0) < ∞ for a.e. z0, then, for a.e. λ0 and any
0 < p < 1, we have

sup
n
|〈ϕ,U n

λ0
ψ〉| ≤

[∫
lim
r↑1
|〈ϕ, (U + r z)(U − r z)−1ψ〉|p dµλ0(z)

]1/(2−p)

.(4.4)



236 B. Simon

Proof. We have∫
|g| dµλ ≤

(∫
|g|2 dµλ

)(1−p)/(2−p)(∫
|g|p dµλ

)1/(2−p)

,

since (1− p)/(2− p)+ 1/(2− p) = 1 and 2(1− p)/(2− p)+ p/(2− p) = 1, and
Hölder’s inequality says q → log(

∫ |g|q dµ)1/q is convex. Equation (4.4) follows by
taking g = Fλ0ψ and using (4.1), (4.2), and (4.3).

Since 2− p > 1, for any probability measure dν,
∫

h1/(2−p) dν ≤ (∫ h dν)1/(2−p) by
Hölder’s inequality. Thus, writing λ0 = eiη0 and integrating (4.4) with dη0/2π , we find,
using (3.7), that

Theorem 4.2 (Deterministic Aizenman’s Theorem). If ϕ is cyclic,ψ ⊥ ϕ, and G(z0) <

∞ for a.e. z0 ∈ ∂D, then, for any 0 < p < 1,∫
dη

2π
sup

n
|〈ϕ,U n

eiηψ〉|≤
(∫

lim
r↑1
|〈ϕ, (U+reiθ )(U−reiθ )−1ψ〉|p dθ

2π

)1/(2−p)

.(4.5)

5. Rank One Perturbations of CMV Matrices

We now specialize to U = C({αj }∞j=0), a CMV matrix (see [4] or [15, Chap. 4]), and
ϕ = δn , the vector with 1 in the nth position (n = 0, 1, 2, . . .). We need a notation for
diagonal matrices with diagonal matrix elements λ, λ−1, or 1. D(λk(λ−1)�(1λ)∞) will
denote the diagonal matrix with k λ’s, �(λ−1)’s, and then alternating 1 and λ. We will
also use the maps Tn,λ of (1.5). Here is the main result:

Theorem 5.1. Define Un for n = 0, 1, 2, . . . by

U2k−1 = D(12k(1λ)∞),(5.1)

U2k = D(λ2k(1λ)∞).(5.2)

Then

UnC(Tn,λ−1(α))U−1
n = C(α)�n(λ),(5.3)

where

�n(λ) = D(1nλ1∞).(5.4)

Remarks. 1. Since C(α)�n(λ) is unitary with δ0 cyclic, it is unitarily equivalent to
some C(α̃). Since C(α) � {δj }n−1

j=0 = C(α̃) � {δj }n−1
j=0 , it is easy to see that α̃k = αk for

k = 0, 1, . . . , n−1. By Khrushchev’s formula [16, Theorem 9.2.4], the spectral measure
for C(α) and vector δn has Schur function �n(z;α0, . . . , αn−1)�

∗
n(z;α0, . . . , αn−1)

−1

f (z;αn, αn+1, . . .). By (2.11), C̃(α) thus has Schur function which is this times λ−1,
so by Khrushchev’s formula again, f (z; α̃n, α̃n+1, . . .) = λ−1 f (z;αn, αn+1, . . .) =
f (z; λ−1αn, λ

−1αn+1, . . .). We conclude α̃j = λ−1αj for j ≥ n. Equation (5.3) goes
beyond this by making the unitary equivalence explicit.

2. The case n = 0 is essentially Theorem 4.2.4 of [15].
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Proof. First, some preliminaries. We use⊕ for direct sum, normally of 2× 2 matrices
but sometimes of a 1 × 1 followed by 2 × 2, in which case we write 11 or λ11 so that,
for example, if

v(λ) =
(

1 0
0 λ

)
, ṽ(λ) =

(
λ 0
0 1

)
,(5.5)

then

U2k−1 = 12 ⊕ 12 ⊕ · · · ⊕ 12︸ ︷︷ ︸
k times

⊕ v(λ)⊕ v(λ)⊕ · · ·(5.6)

= 11 ⊕ 12 ⊕ · · · ⊕ 12︸ ︷︷ ︸
k times

⊕ ṽ(λ)⊕ ṽ(λ)⊕ · · · .(5.7)

If

�(α) =
(
ᾱ ρ

ρ −α
)

with ρ = (1− |α|2)1/2, then (see [15, Theorem 4.2.5])

C(α) = L(α)M(α),(5.8)

L(α) = �(α0)⊕�(α2)⊕�(α4)⊕ · · · ,(5.9)

M(α) = 11 ⊕�(α1)⊕�(α2)⊕ · · · .(5.10)

Notice next that (note v(λ) not v(λ)−1 in both places!)

v(λ)�(λ−1α)v(λ) = λ�(α),(5.11)

ṽ(λ)−1�(λ−1α)ṽ(λ)−1 = λ−1�(α).(5.12)

We now turn to the proof of (5.3) for n = 2k − 1. By (5.6), (5.9), and (5.11),

U2k−1L(T2k−1,λ−1(α))U2k−1 = λL(α)W,(5.13)

where

W = D((λ−1)2k1∞).(5.14)

Now

WU−1
2k−1 = D((λ−1)2k(1λ−1)∞)

= λ−111 ⊕ λ−112 ⊕ · · · ⊕ λ−112︸ ︷︷ ︸
(k−1) times

⊕ ṽ(λ)−1 ⊕ ṽ(λ)−1 ⊕ · · · ,(5.15)

since λ−1(1λ−1)∞ = (λ−11)∞. Thus, by (5.12) and (5.10),

WU−1
2k−1M(T2k−1,λ−1(α))U−1

2k−1W = λ−1M(α)D((λ−1)2k−11∞).(5.16)
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We conclude

U2k−1C(T2k−1,λ−1(α))U−1
2k−1

= U2k−1L(T2k−1,λ−1(α))U2k−1U−1
2k−1M(T2k−1,λ−1(α))U−1

2k−1

= λL(α)WU−1
2k−1M(T2k−1,λ−1(α))U−1

2k−1W W−1 (by (5.13))

= L(α)M(α)D((λ−1)2k−11∞)D((λ)2k1∞) (by (5.16))

= C(α)�n(λ),

since �n(λ) = (1nλ1∞). This proves (5.3) for n = 2k − 1.
Now suppose n = 2k. Then, by (5.11),

U2kL(T2k,λ−1(α))U2k = λL(α)W̃ ,(5.17)

where

W̃ = D((λ)2k1∞).(5.18)

Thus

W̃U−1
2k = D(12k(1λ−1)∞)(5.19)

= 11 ⊕ 12 ⊕ · · · ⊕ 12︸ ︷︷ ︸
k times

⊕ ṽ(λ)−1 ⊕ ṽ(λ)−1 ⊕ · · · .

This is the reason odd and even n differ. Equation (5.15) has k − 1 12’s and (5.20) has k
of them. By (5.12) and (5.10),

W̃U−1
2k M(T2k,λ−1(α))U−1

2k W̃ = λ−1M(α)D(λ2k−11∞).(5.20)

It follows that

U2kC(T2k,λ−1(α))U2k = U2kL(T2k,λ−1(α))U2kU−1
2k M(T2k,λ−1(α))U−1

2k

= λL(α)W̃U−1
2k M(T2k,λ−1(α))U−1

2k W̃ W̃−1

= L(α)M(α)D(λ2k+11∞)D((λ−1)2k1∞)
= C(α)�n(λ).

6. Proof of Theorem 1.1

We are now ready to put it all together:

Proof of Theorem 1.1. By (3.5) and the exponential decay in (1.6), G(z0) < ∞ for
a.e.α, so Theorem 4.2 applies for a.e.α. By (4.5) withϕ = δk andψ = δm and U = C(α),

∫
dϕ

2π
sup

n
|[(C(α)�k(e

iϕ))n]km | ≤
(∫
|Fkm(e

iθ )|p dθ

2π

)1/2

.(6.1)
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Now use Theorem 5.1 and the fact that U is diagonal and unitary to see

|[(C(α)�k(λ))
n]km | = |[C(Tk,λ−1(α))n]km |,

so that ∫
dϕ

2π
sup

n
|[C(Tk,e−iϕ (α))n]km | ≤

(∫
|Fkm(e

iθ )|p dθ

2π

)1/2

.(6.2)

Take expectations of both sides. Use the quasi-invariance to write

E

(
sup

n
|[C(Tk,e−iϕ (α))n]k�|

)
≥ C−1

E

(
sup

n
|[C(α)n]k�|

)

for a constant C independent of k, �, ϕ. Use Hölder’s inequality to bring E inside
(·)1/(2−p). The result is

E

(
sup

n
|(Cn)k�|

)
≤ C

(∫
E(|Fk�(e

iθ )|p) dθ

2π

)1/2

which shows (1.6) implies (1.7).

7. Remarks

Some closing remarks:

1. It is not hard to prove a local version of this theorem where
∫ 2π

0 in (1.6) is replaced

by
∫ b

a and an extra P(a,b)(C) is added in (1.7). This might be useful in the quasi-invariant
case, but in the i.i.d. rotation invariant case, E(|Fk�(eiθ )|p) is θ -invariant and so the
integral has exponential decay for (a, b) if and only if it does for (0, 2π).

2. If dρ is a rotation quasi-invariant measure onD and dγ one on ∂D, and if α0, ᾱ0α1,

ᾱ1α2, . . . are independent random variables with α0 dρ-distributed and each ᾱjαj+1, dρ-
distributed, then this measure is quasi-invariant. It would be interesting to do localization
theory (both spectral and dynamic) for this model.

3. It would be interesting to know if (1.7) implies (1.6).
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