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Abstract

We present a complete theory of the asymptotics of the zeros of OPUC with Verblunsky coefficients
o = k1 Cyb + O((bA)") whereA < 1 and|by| = b < 1.
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1. Introduction

This paper is the second in a series [7,8] that discusses detailed asymptotics of the zeros
of orthogonal polynomials with special emphasis on distances between nearby zeros. We
will focus here on OPUC, orthogonal polynomials on the unit circle; see [9,2,5,6] for
background. The polynomials are described by the recursion coefficiep}s: . called
Verblunsky coefficients, that give the monic OPUL;,(z), by

Dy y1(2) = 2@, (2) — 2, D (2), (1.1)
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Fig. 1. Zeros when,, = (2) for N = 22.

where
D (z) = " D, (1/2). (1.2)
One of the examples discussed in the first pdpkis where O< » < 1 and
a, = Ch' + O((bA)") (1.3)
for 0 < A < 1. A typical example is shown in Fig. 1 where
o = (3" (1.4)

and zeros ofb,, are shown. Figures and numeric zeros, which appdéarThand here, are
computed using Mathematica and code written by M. Stoiciu.
Critical aspects of the zeros in this case are:

(a) Finitely many zeros outsid&| = b + O(log n/n) at the Nevai—Totik points,
that is, solutions ofD(1/z7)~! = 0 whereD is the Szeg function; this is due to
Nevai—Totik[4].

(b) No zerosinz| < b — O(log n/n). This is due to Barrios—L0pez—S4ff].

(c) Zeros nealz| = b are asymptotically a distancet2/n + o(1/n) from each other
except for a single gap at= b, where the nearby zeros a5e"2"/" + 0(1/n?), and
the distance between these neighboring zero$asi n) + O(1/n?). This is proven
in [7].
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Fig. 2. Zeros when, = (?) (1+2cos(5(n + 1)) for N = 22.

In this paper, | will analyze the case of Verblunsky coefficients of the form

L
Uy = Z Ceb} 4+ O((bAYM), (1.5)
=1

where theb,’s are distinctC, #~ 0 for all ¢, and
|be| = b ¢=1,...,L. (1.6)

If the b,’s obeyb? = bP for somep, thena,, 1/, is periodic of periogh, and this overlaps
examples of BLY1] discussed later.
A typical example is shown in Fig. 2 where

o = (3)"THL+2cogE(n + 1)) (1.7)

and again, zeros @b, are shown. This hag, = 1/2,b2 = i/2,b3 = —i /2.
Here is what happens to (a)—(c) above:
(a) The Nevai-Totik theory still applies. There are three NT zeros in the example in Fig. 2.
(b') There are at most — 1 zeros injz] < b — O(log n/n) and they can be described
explicitly. In the case of periodig, 11 /,, the interior zeros fo®,, withn = mp+¢ and
m — oo have explicitly computable limits (limits, not merely accumulation points).
For the example in Fig. 2b,,, n = 2 (mod 4), have a zero approachia}ig\/i -1 =
0.20710678118.. . The actual zero in Fig. 2 is at®0710678374. . .
(¢) There are gaps at eadh.
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The method used if¥Y] to prove (a)—(c) exploits a second-order difference equation that
@, obeys, relatingd, 1 to ®,, and®,_1. That method may extend to the periodic case,
by = b, but will have small divisor problems i, /5" is only almost periodic. Instead, this
paper will use a different and potentially more powerful and illuminating method that views
(1.1) with @} (z) fixed as an inhomogeneous first-order difference equatio® f¢r).

In Section 2, we discuss asymptoticslgf for |z| < b. In Section 3, we discuss asymp-
totics of @, in the critical regionbA1 < |z| < bAIl. In Section 4, we study zeros in
|z| < b, and in Section 5, the zeros néafr = b. Given Section 2, Section 4 is straightfor-
ward. Section 5 will use the ideas in [7]. Finally, Section 6 makes various remarks about
the connection to [1].

Figs. 1 and 2 suggest that there might be a connection between the gaps in the clock and
the Nevai—Totik zeros since in these two cases the number of NT zeros equals the number
of gaps, and the zeros are near the gaps. There is certainly something to this notion. If a
coefficientC, in (1.5) is changed from zero to nonzero, for larg¢he zero that was in the
gap at zero value @, must stop being on the critical circle, and so presumably turns into an
NT zero (this is an expectation, not a proof, since a proof involves controlling an interchange
of limits). But the connection is not always there. Fig. 8.3 in [5] shows an example where
there is a gap but no associated NT zero. Moreover, the discussion in Section 13 of [7]
makes it clear that the number of NT zeros can be arbitrary and is not, in general, the same
as the number of gaps in the clock.

2. Asymptotics in|z] < b —¢

Our main goal here is to give asymptotics@f(z) in the region|z| < b in case (1.5)
holds. Our methods will also allow us to say something when weaker asymptotics (ratio
asymptotics) holds and, in particular, to improve a result of BLS [1].

We begin with an analysis of some bounds and rate of convergendg. dstimates
similar to these appear in [4,3,1,7]. We upmther tharb since sometimeg = b + ¢.

Proposition 2.1. Suppose that
lota | < Cf' (2.1)
for someg € (0, 1). Then
(i) WithC1 =[]0 1 + Cq/) < oo, we have

Iz <1= | (2)| < Cy, (2.2)
2|2 1= @y (2)| < Calz]". (2.3)

(i) Fori1<z| <q7 1,

|05 (2)| <1+ C1Clz|(1— gz~ (2.4)
(i) Foranyq’ > g,thereisC, with

D, (2)| < Cyr(Max(|z]. ¢'))" (2.5)

for |z] < 1.
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(iv) Forlz|<q’,
|®}(2) = D) DO < Cy ()" (2.6)

(v) D(z)~! has an analytic continuation tf, | |z| < ¢~1}, and in that region

®*(z) - DO)D(z) L. (2.7)
(vi) For |z] > ¢,
lim 27", (z) = D(0) DD - (2.8)

Proof. (i) For|z| = 1, |®,(z)| = |®}(z)], SO R.2) holds by induction from (1.1). (2.2) for
|z] < 1 follows from the maximum principle. (2.3) then follows from (1.2).
(i) By (2.3) and the* of (1.1),

D;11(2) = §p(2) — 2P (2), (2.9)

n
01D < 1+C1 Y o] [z
j=0

o)
<1+CCulzl ) ¢"fzl"
j=0

proving @2.4).

(iii) By (1.2) and (2.4), we have (2.5) for' <|z| <1. The result fofz| < ¢’ then follows
from the maximum principle.

(iv) By (2.9) and (2.5),

o0 o0
D101 — P < Y CuCq™ Izl(g)"
< éq’(qd)n~

Since®? (z) — D(0)D(z)~%, (2.6) holds.

(v) Following [4], we note that (2.9) implies that ff| < ¢~1, then}", |} ;(z) —
@ (z)| < oo, soD;(z) has a limit. Since Szexg theorem holds ifz| < 1, we conclude
that D(z)~* has a continuation and (2.7) holds.

(vi) is immediate from (v) and (1.2).

By iterating (1.1), we obtain

n
Dy(2) =2" = Y ol HO;(2). (2.10)
j=1
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We conclude that

Theorem 2.2. Supposé€l.5)holds. Thepuniformly in each diskz| < b — ¢, we have that
L

@n(2) — [ Cebll(z — Ee)l}mz)l
=1

= 0(n(bA") + 0(nb?") + O(nU’ (1 — %) ) (2.11)
In particular, uniformly on the disk
im 6™, — Ou(2)| =0,
n— oo

where
~ L —_ —_
On(2) = [Z Cowrf (by — z)_l}D(z)_l (2.12)
(=1

and

wp = Z;l. (2.13)

Remarks. 1. In (2.11), theb? is actuallyp®=" for any s > O.

2. D(2)0n(2) ]_[4L=1 (b — z) is a polynomial of degred. — 1 with almost periodic
coefficients (periodic ib? = 1 for somep and all¢).

Proof. We begin by noting that
o0 .
doby Tt =h - H !
j=1
— B (b —2) 7 (2.14)

and by an identical calculation,

o0
DB = -7 (2.15)
j=n+1

It follows by (2.10) that if|z] < b — ¢, then

L
®,(z) = D(2)"'D(0) Y Cebf(z —bp) ™
=1
n ) L o )
SCelel" + > |2l Haw— ;@) — Y Cub, DO)D(2) Y. (2.16)
j=1 =1
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The [z|" term is O(b"(1 — 7)"). By (1.5) and (2.5), the term i - | in (2.16) is
bounded by

C[b2"=D 4 (bA) ], (2.17)

where the first term comes froji®’ — D(0) D(z) 1], | and the second frofD (z) =1 D(0)
(0 — Y f_q CebD)|. Sincelz| < b, the sum in 2.16) is thus bounded byC'[b?" +
max(bA, z)"]. It follows that

L
DO)1d,(z) — [Z Ceb(z — Bg)_l}D(z)_l = RHS (right-hand side) of(11)
(=1

Eq. (2.11) then follows from
n—1

[Ta— 1Y - D(@')

j=1
=, +00*). O

DO, (2) = ¢, (2) + O (b"

From (2.10), we also get a result that only depends on ratio asymptotics:

Theorem 2.3. Suppose that, is a sequence of Verblunsky coefficients anda subse-
quence so that

0]
lim sup |o,|Y" = b € (0, 1), (2.18)
n—oQ

(i)
liminf |o,, Y7 = b. (2.19)
j—o00

(i) Forall k=0,1,2,...andsuitables, € C,

B
lim g (2.20)

j—o00 Oan_]_

exists
(iv) For everye, there isC, so that for alljandk =1, 2, .. ., we have

|0 —k—11(b — &)F < Ce ot -1, (2.21)

Thenfor|z| < b, Z?io ﬁj-zf converges absolutely and uniformly on each ¢tisk b —¢
and

D, o
lim — @ _ -D@)t Y Bt (2.22)
k=0

j—o00 Oan_l
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Proof. By (2.21), we have
1Bl < Celb—e)7F (2.23)

proving thatZ?io ﬁjzj has radius of convergence at lebst
In (2.10) divided by, ; 1, the summand is bounded by

Iz b — &)™) sup @ (2)]

m, |z] <b

which is summable fofz| < b — ¢, so by the dominated convergence theore222)
holds. [

Corollary 2.4. Leta, be a sequence of Verblunsky coefficients so that

lim

n—o0 1)’[*1

=be(0,1). (2.24)

Then uniformly foljz| < b — &,

-1
jim 2@ _ —D(z)1<1— 5) . (2.25)

n—0oo 0 _1 b

Remarks. 1. By rotational covariance, if(24) holds for somé € D, we can find a rotated
problem with the ratio in0, 1), so this implies a result whenever ratio asymptotics holds.
2. This is related to results of BLS [1]; see the discussion in Section 6.

Proof. Clearly, (2.20) holds witl, = b= so we need only prove (2.21). For adywe
have
Un—1b

<CO(1+ ),

m

whereC,Sf) =1 form > Mg for someM;. It follows that

OCm—kbk o ) k
S| [T e ja+o

Om

m=1

which implies .21). O
Similarly, we obtain

Corollary 2.5. Letu, be a sequence of Verblunsky coefficiehts (0, 1), andci, c2, . . .,
cp asequence so that

cj=1 (2.26)

P
=1

J
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and

. Omp+-¢
lim Pt
m—00 OCmpH—l

=bc, €=12....p. (2.27)

Then uniformly folz| < b — &,

. D Z
im _mmz( ) _
m—00 Gmpte—1

-D(2) " G(2),

where
l

Gy(2) <1 - ;7) =1+ (bco_1) "tz + (be_1) L(bo_2) 7122

p—1
+o+ ] oozt (2.28)
j=1

One can also say something whiee- 1 if we also have

lim o, = 0. (2.29)

n— oo
A key issue is that it may not be true that - ; oy |? < 00, S0 D(z) may not exist.

Theorem 2.6. Let o, be a sequence of Verblunsky coefficients andy, ..., ¢, is a se-
quence so tha2.26)holds and

lim MR _ . g—12... p. (2.30)
m—00 Olmpt¢—1

Then uniformly in|z| < 1 — ¢,

. ()
lim PP+ — _Gy(2), (2.31)
m—00 OCmp.;.g_lq)mp_'_e(Z)

where G is given b{2.28)with b = 1.

Proof. Egs. (2.29) and (2.9), together wiil, (z)| < |® (z)| on D, implies that orD,

. o
lim *”(Z) =
n—00 (I)n+l(z)

Dividing (2.10) by&mpﬁ,ld)ﬁqmg, we obtain the result by the same argument that led to
Corollary 2.5. O

3. Asymptotics in the critical region

In this section, we will determine asymptotics®f(z) in an annulus about| = » when
(1.5) holds. The idea will be to view (1.1) as an inhomogeneous equation, so we first look
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at some solutions with particular inhomogeneities. Define fgrb, andn = 0,1, 2, .. .,

u® = bz — b))t
Proposition 3.1. u“) obeys
(4) 4
n+1 - ZL’fl )

forallze@,Z#Bg,andallnzo,l,z,....

Proof. uffil —z4) = by — uy) =-bp. O
Next, define
L
Ru(2) = 3, ®}(2) — Y Ceby D(2)"*D(0)
=1

and also define
oo .
sn(@ =) 2 T R (@)
We have

Proposition 3.2. Let o, obey(1.5).Then there i\; < 1,
0]

sup [R,(2)| <C(bA1)".
lzI<1

(i) The sum in(3.4)converges uniformly in
={z 11> |z| > bA4}

ands;, (z) is analytic there
(i) We have inA that

Isn(2)| < C(bAD" (Iz| — bAY) ™!
(iv) s, obeys
Sp+1(2) = 2%,(2) — Ry (2).

Proof. (i) follows from (1.5) and (2.6).
(i), (i) Since

12/ R4 j () <12l LAY (121 Tb AL

we have a geometric series which yields (ii) and (iii).

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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(iv) Since the sum converges absolutely,

o0 o
n41(2) =282 =Y 2 Ruy (@) = Y 2 Ruy
j=1 j=0
=—R;(2). U

The main result of this section is

Theorem 3.3. Let o, obey(1.5). Then for someé\; < 1 andz € A given by(3.7), we
have that

L
D, (2) = $,(2) + [Z Ceby(z — 56)_1}D(O)D(Z)_1 +2'DODA/D . (3.9)
(=1

Remarks. 1. Sincep, = x,®,(z) andx, = D(0)~X(1 + O(b")), this also gives us
asymptotics fowp,,.

2. Since®, is analytic in A, the poles ab, in the second and third terms ¢3.9)
must cancel.

3.In A, (3.7) impliess, is small compared to bottf and?”, so the asymptotics @b,
comes from the competition between the second and third terms in (3.9).

Proof. Let

L
0n(2) = O (2) = $4(2) — [Z Coblf(z — Eerl]D(ow(z)—l.

=1
By (1.1), (2.2), and (3.8), we have

Ont1(2) = 2Q,(2)
SO

0.(x) = f(2)".

SinceQ,, is analytic inA\{Eg}eLzo, f(z) is analytic there.
By (3.7),

lim |z|™"|s,(2)| =0
n—oo
in A, and if|z] > b, |z] ™" Yf_y Cebl(z —be)~* — 0, so for|z| > b,
f(Z) = lim 7 On(z) = lim Zinq)n(z)
n—oo n—oo
—DO)DI/D)
by (2.8). [
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4. Zerosin|z| <b—¢

In this section, we use the asymptotic result from Secitmanalyze zeros a@f,, in the
region wherdz| < b. We initially focus on the case where (1.5) holds. A key role is played
by the polynomials

L
P =) Coof []@—b) (4.2)
=1 kL

of degree at most — 1. Herew, = by /b.

The P, are almost periodic in and, in particular, for any sequeneg, there is a subse-
quence: ) S0Py = lim Pujgy exists and is anonzero polynomial (sineg/ [ [, (b —2)
has poles at eadh).

Theorem 4.1. Let (1.5) hold. Then for any > 0, there is an N so that fon > N, ¢,,(2)
hasatmosL — 1zerosin{z | |z]| <b—¢} =S.

Proof. If not, we can find a sequene& ;) — oo so thatP,;)(z) has at leask zeros in
S. By passing to a further subsequence, we can suppasg— Poo and that the zeros

have limitsz1, ..., zz in S (maybe not distinct). By Theorem 2.2,
L
Jim ¢y D@ [ ] @ =b0) = Po(@) (4.2)
=1

in a neighborhood af, so by Hurwitz's theoremP,, hasL zeros (counting multiplicity).
Since Py, has degreé. — 1 and is not identically zero, we have a contradictionl

Using Hurwitz's theorem and}(2), we also have an existence result for zeros:
Theorem 4.2. Let (1.5) hold and letw, = be/b. Suppose:(j) is a subsequence so that
lim w’g(’) exists call it a)g”). Let

L - -
Pa(2) =Y Coo’™® [] =) (4.3)
=1 ke

and Iet{w,-}jz1 be its zeros iz | |z| < b}. Then for all sufficiently smabl and j > N,
®y(j)(2) has one zero withia of eachw; and no other zero iz | |z| < b — d}.

Remark. By “one zero withiné of w;," we actually mean exactlg zeros if somew;
occursk times in the list of zeros counting multiplicity.

Since the right side of(25) is nonvanishing ofx | |z| < b}, we recover aresult of BLS
[1] from Corollary 2.4, Theorem 2.6, and Hurwitz’'s theorem:
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Theorem 4.3. Leta, be a sequence of Verblunsky coefficients so that

lim -~ —be (0 1]

n—>00 0, 1

Then for any > 0, there is anN, S0, (z) has no zeros ifz | |z| < b — e} if n > N;.
Finally, Corollary2.5 and Hurwitz’s theorem imply

Theorem 4.4. Letw, be asequence of Verblunsky coefficights (0, 1),andcy, ¢z, ..., ¢p

a sequence so th¢R.26)and (2.27) hold. LetG, be given by(2.28),let W, = G,(1 —

zt/b%) = RHS 0f(2.28),and Iet{w}g)}j.vil be the zeros oW, in {z | |z| < b}. Then for any

sufficiently smalb, there is an N so for mp- £ > N, we have that the only zeros @f,,,
0

in{z | |z| < b — ¢} are one each withi of eachwj .

Remark. As we will explain in Section 6, that the only possible limit points of zeros are
the wﬁ.’z) is a result of BLS [1], but they do not prove there actually are zeros there.
Example 4.5. Let o, be given by 1.7). We haveh = % p=4,andcy = —1,c0 = —1,
c3 = 3,C4 = % Thus

Wa(z) = 1 — 27 — 1272 — 85,

which has zeros at 3 and at3(—1+ v/2). Only (v2 - 1)/2isin{z | |z| < 3}. The
comparison of the limit and the zeros®$, appears in Sectioh just after Fig. 2. It is not

coincidental thatW, has a zero at = —%. In this case, the second term in (3.9) is, for
n = 2 (mod4),C(3)"Wa(z)/(z* — 75) with poles only at}, £3i. The potential pole at
z = —1 has to be cancelled by a zeroWp. [

Asin [7], one can analyze how close the zerogphre to the pointw;e). In general, they
are exponentially close. If theﬁ.e) are in the annulus where (3.9) holds, one can write down

the leading asymptotic exactly. For examplewﬁf) is ak-fold zero andD(1/w;(z)) # 0,
then the zeros have a clock structure as in Theorem 4.5 of [7].

By using Theorem 2.6, we see that Theorem 4.4 extends to thé eadef lim o, = 0.
In particular, if ima, = 0 and lim,_, « “;:1 =1(e.g.0, =+ 2)‘5), then there are
no zeros ofp, in {z | |z| < 1— ¢} for nlarge.

5. Zeros in the critical region

Given Theorem 3.3 and the estimate (3.7), the analysis of zergs @f the region
{z | bA1 < |z] < bAIl} is identical to the analysis in [7] of the zeros in cdse- 1. The
gap in that case f = » comes from the analysis @¥(1/z) ¢, (z) which has zeros with no
gap. The gap in zeros aof, (z) comes from the fact thad(1/z) has zeros at = b. In our
case, when (1.5) hold®)(1/z) has a zero at eadh, so there are gaps at all those points.
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The following extends Theorem 4.3 pf] and has the same proof:

Theorem 5.1. Leta, be a sequence of Verblunsky coefficients obeliry). Then for some
3, all the zeros(z\"} " of g, (2) with ||z] — b| < & obey

(1)

log n
sqp||z§.”)|—b|=0< 3 > (5.1)
J

(2) Fornlarge thez&”) can be ordered in increasing arguments and

(n)
1z 4l 1

A 0( ) (5.2)
|Z§_”)| n logn

(3) Let {ZF/")_}jYQJlFL be the sequence Q@")'s with L points added aftb,}-_; still listed in
increasing order

Then

. 2n 1
arg z;’fﬁl —arg zﬁ.” =—+ 0<n i0g n) (5.3)

forj =1,2,...,N, + L with arg zf,\’,‘jJrLH = 21 + arg z(l”). Moreover if D(z) "1 is
nonvanishing oriz | |z| = b1}, thenO(1/n log n) in (5.2)and(5.3) can be replaced by
0(1/n?), and O(log n/n) in (5.1) can be replaced by (1/n).

Remark. In particular, the zeros neardstarebye*2"/" + 0(1/n?) with the difference
in the args equal tod/n + O (1/n?).

6. Connection to the results of Barrios—Lépez—Saff

In this final section, we want to relate the results of [1] to ours. In their work, determinants
of the following form enter:

Z4+x1 zx2 0
1 z4x2 zx3

An(z) = 0 1 z4x3 - . ’ (6.1)

S—
1 z24xn,

where we also definAp(z) = 1. We need the following:

Proposition 6.1. (i) Form = 2,3, ...
An(2) = (2 + xm)Am-1 — 2% A —2(2). (6.2)
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(i) Form=1,2,...

A (2) = z2Am-1+ x1X2. . . X (6.3)
(i) Form =1,2, ...

An(2) = 2" +x12" Vb x1x02" P X1 X (6.4)

Proof. (i) Eq. (6.2) comes from expandiny,, in minors along the last row.
(i) Eq. (6.2) reads

Am(z) = ZAm—l(Z) + X [Am—l(z) —zAn-2],

which implies 6.3) inductively once one notes that (6.3) holds#oe= 1 sinceA1(z) =
7+ x1.
(iii) This follows by induction from (6.3). [J

In[1], they consider sequences of Verblunsky coefficients where (2.26) and (2.27) hold to
prove that the only accumulation points of zeroggyf,, , are given by zeros of a polynomial
that has the form of (6.1). Using (6.4) and

(X1 xm) A =14 x, 2 + x,;lx,;flzz Fo b (X1 X))

one sees their polynomials are up to a constant, our polyndtialhus our results extend
theirs (in that we prove there are, in fact, always limit points).
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