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For a wide class of potentials, it is shown that N(), the number of bound states (including multiplicity)

of —A + AV, obeys the conditions

A1 < N < B2

for 4 sufficiently large. 4 and B are positive finite numbers. In the centrally symmetric cases, a related
growth condition on /max(4), the largest / channel with bound states, is also obtained, namely,

art < Imax(A) < bAY,

Finally, we discuss analogous results for a larger class of central potentials and for the many-body case.

I. INTRODUCTION

There are a fairly large number of results giving both
lower and upper bounds on the number of bound
states in a given / channel for a central potential.}—8
From these, limits can be developed on the growth of
the number of states in a fixed channel as the strength
of the potential increases. The strongest general result
of this nature has been obtained by Calogero.* If
n,(AV) is the number of bound states (not counting
multiplicity) of angular momentum / for the operator
—A + AV, then Calogero shows that

CM < n(AV) < DA}

for A sufficiently large (4 will always be positive in this
paper) and for a large class of potentials. C and D are,
of course, V- and l-dependent (actually, D can be
chosen independently of /).

For a restricted class of potentials (negative non-
increasing as r — 0), Chadan® has shown that

limn,(AV)/2¥

A=

exists and has a simple form in terms of V.
For some reason, there seem to be almost no
results on the growth of the total number of bound
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states (counting multiplicity)
NWV) =3 Q2 + Dn(V).
1=0

In this paper we show that, for a large class of not
necessarily central potentials, there are nonzero
constants 4 and B such that, for sufficiently large
A (Theorems 2, 3, and 6),

A < N(AV) < BA. t))

We also show (Theorems 1 and 5) that the number
of angular-momentum channels with bound states
goes as A%,

The conditions we impose on centrally symmetric
¥V are the following:

(A) For all 4, —A + AV has no eigenvalues of
positive energy and the negative-energy spectrum is
purely discrete of finite multiplicity.

B)IV)=Jg dr r|V({F)| < .

©) inf [P*V(n)] = —L > — 0.

(D) For some a > 0, {r| ¥(r) < —a«} has a non-
empty interior.

The characterization of the negative spectrum in
(A) can be assured by very weak conditions.® The
absence of positive-energy bound states is assured by
fairly mild conditions.2?

(B) is the standard condition of Jost and Pais.!! It
can be replaced by the alternate condition:

(B) V is minorized by a monotonically increasing
potential ¥ with

o(7) = f a7 < co.
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We prove our results initially in the centrally sym-
metric case and discuss the easy extensions to the
noncentral case in Sec. V.

II. THE UPPER BOUND

First we remark that there is an upper bound
weaker than ours implicit in Bargmann’s result! that

n (W) <I(W)[2l + 1 2

for any potential . For then n,(W) = 0,if 2] + 1 >
I(W), so that

[(I-1)/2)
NOW) < S @1+ DnW)
1=0
<H1+[BU =D} <HI+ 1.
For W = AV, W) = M(V), so we see that
NOV) < 3T+ 1) < 1?22, for A > (I)™.

Our stronger result is obtained by a better estimate of
the maximum /-channel with a bound state in it; we
designate this l-value [, (4).

Theorem 1: If (A) and (C) hold, then for all 4,

Proof2: Since —d?[dr® is a positive operator and
—A + AV has no positive eigenvalues, there are no
bound states in the / channel, if

Id + Dfr* + AV(r) > 0, forallr.
But
I+ D+ 2V > 2l + 1) — AL),
son(AV) = 0,if I(l + 1) > AL; ie., if
I> (AL):, then n(AV) =0, ie., I (3) < (AL)
Q.E.D.
Theorem 2: 1f (A), (B), and (C) hold, then, for all
A> L,
NOV) < [2L31)238.
Proof: By Bargmann’s condition (2),
Q@1+ Dn, (V) < A,

SO
lmax
N@AV)Y < 3 Q1+ DnfAV) < (AD)(lpax + D
1=0
<@anait + 1y <22
if AL > 1. Q.E.D.

If (B’) holds instead of (B), we replace Bargmann’s
bound (2) with that of Calogero? (see also Ref. 7):

n,(V) < 2/m)Q(¥), for all L 3

12 An alternate proof can be based on the bound given in F.
Calogero and G. Cosenza, Nuovo Cimento 45, 867 (1966).
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Theorem 3: If (A), (B"), and (C) hold, then for all
A> L, _
NGY) < (8/m)LQ(V)A%.

Proof: From Calogero’s condition,

(V) < 2Q/mE(N],

so that
NGY) < A*F Q(V)] Ser+
= Af[a/w)gx P lmax + 1
_ < AH@/mLY(M)],
it AL > 1.

III. A STRONG RAYLEIGH-RITZ PRINCIPLE

The nub of the proofs of the lower bounds is a form
of the Rayleigh-Ritz principle which is more explicit
than is usually found. While Theorem 4 is no doubt
well known, its value for proving the existence of
bound states does not seem to have been fully appre-
ciated. It is essentially the principle used by Kato in
his proof that the helium Hamiltonian has at least
25 585 bound states.’

Theorem 4: Let H be a self-adjoint operator on a
domain D and let

Bp =
where

U(q)la”'

inf (¥, qu)},

|
@1, .o ‘,d’n—l \PEU(QI,' . ,On—l)

’(Dn—l)
={¥|¥eD,||¥| =1and(@,6¥) =0}

Then for each fixed n, either

(a) u, is the nth eigenvalue counting multiplicity
or

(b) p,, is the bottom of the essential spectrum and
MBn = Ppy1 = Upio = """

Moreover, there are at most n — 1 eigenvalues less
than g, . (The essential spectrum is the set of points in
the spectrum which are not isolated points of finite
multiplicity.) The theorem holds if we replace D in the
definition of U, by D, the domain of H as a bilinear
form, i.e., the domain of |H|? as an operator.

We do not write out a proof of this theorem, as it is
completely straightforward if one is willing to use a
little spectral theory. The power of Theorem 4 comes
when it is combined with condition (A); for if u,, is
negative and (A) holds, then (b) cannot be true and so
(a) must hold. We remark that in application, H is
either —A 4 ¥ or —A 4 V restricted to an angular-
momentum subspace.

13T, Kato, Trans. Am. Math. Soc. 70, 212 (1951).
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BOUND STATES WITH INCREASE IN POTENTIAL STRENGTH

We first prove some corollaries which we need.

Corollary 1: If (D) holds, then —A 4+ AV has a
bound p-state for 4 sufficiently large.

Proof: Pick a smooth function ¢ of r of compact
support, so that support of ¢ is contained in the set
with V(r) < 0. Let ¥(r, 0, ¢) = r¢(r) Y?(0, $). Then
(F,V¥)<0 and so, for A sufficiently large,
—(¥,AY) + MY, VY) <0, ie, ~A+ AV has a
bound p-state.

Corollary 2: n(AV) is a monotonically increasing
function of 4.

Proof:
—A + W = A(—A + W) + (1 — L) (—AD).

For 4, > 1, (1 — A)(—A) is a negative operator, so
that by Theorem 4 applied to the operators on the
space of functions of angular momentum /, n,(4,W) >
n,(W), for all W. Letting W = AV and 4,4 = 4, we
see that n,(4,V) > n(AV)if 4, > 4.

Corollary 3: For any central potential ¥, and for
1>1,

n[3 + DV] = m(V).

Proof:
d W+ I+
- + |4
ar® + re 2
2
SUESTIRE N Y
2 dart  r®
2 -0+ 1)( dz)
+ - 5 4
2 dr? @
where

=)

is negative, so that the left-hand side of (4) has at
least as many bound states as the right-hand side, i.e.,

n (3l + DV] > ny(V).

Corollary 4: Let V1 obey condition (A) and let ¥, by
any potential with Vy(r) > Vi(r) for all r. If all the
negative-energy eigenfunctions of —A + ¥, are in the
domain of —A + V; as a bilinear form, then N(AV;)
is at least as large as the number of negative-energy
eigenvalues of AV,.

The proof is trivial; however, we remark that care-
ful applications should not ignore the domain con-
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dition. We do not have a pathological ¥, in mind
when we distinguish the negative-energy eigenvalues;
rather we will not require ¥, to go to .0 at ¢ and, in
fact, will take ¥, — o0 as r — oo,

IV. THE LOWER BOUNDS
Theorem 5: Let V obey (A) and (D) and suppose
n:(AV) > 1. Then, for 1 > 4,
Inax(®) 2= (325828,
[Note: By Corollary 1, (D) implies that some A, exists.]
Proof: By Corollary 3,

n 34l + DV > 1.

Thus, if 2 > 34,/({ + 1), n,(A¥) > 1 (by Corollary 2).
Thus, if I < (A/A)* and I > 1, n,(AV) > 1; ie.,

N1y
1 () > — >-t=], if A>4,.
m”()—[(zoﬂ—z(zo) bohsh

Corollary 5: If V obeys conditions (A) and (D),
then, for all A > 4, (4, as in Theorem 5),

NQV) > 22,
Proof:

1

NG > 3 @+ 1) = (g + 12

> {[(A/A)4] + 132 > /3. QED.

To get an improvement on the growth rate of
Corollary 5, a comparison with specific potentials
seems necessary. A comparison proof is also possible
for obtaining the upper bounds.

Lemma 1: Let D be the region of R3 with

[x — x|l <L, ly—pol <L, |Z=7Zy| <L,
and let
—P, xeD,

Voi(r) =
o) w0, xeD,

with P > 0.

Let N(4¥,) be the number of bound states of negative
energy for —A + AV,. Then for 4 sufficiently large,

NV, > Aib,
Proof: The eigenvalues of —A + AV, are
Ea(2) = (m[2L)*(n} + n} + n3) — AP,

where n,, n,, ny are positive integers. Thus, N(A¥,)
asymptotically approaches the volume of an octant
of a sphere of radius C2:. As a result, N(AV,)/A
actually approaches a limit which is positive.
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Theorem 6: Let V obey (C) and (D) and suppose
D(H, + AV) > D(Hy) N D(V), where D(X) is the
domain of X as a bilinear form. Then, for A sufficiently
large:

N(V) > A28,

Proof: Pick a ball B in R3 so that V(r) < —Pin B.
Inside B, find a region D as in Lemma 1 and let V,
be as in that lemma. The eigenfunctions for the square
well are in D(V) by (C) and they are in D(H,) [they are
not in the domain of H, as an operator; to be in
D(H,), they need only possess L? first derivatives];
thus, from the domain condition, Corollary 4, and
Lemma 1, the theorem follows. Q.E.D.

We remark first that condition (C) is much stronger
than what we need. It is sufficient that ¥ be negative in
some ball B for which

f [V(r)|?d®r < co.
B

We also remark that it is almost inconceivable that
one can make sense out of H, + V without having the
domain condition hold. Examples of classes of V' for
which it must hold are:

(1) Ve L? + L* (Kato potentials);

(2) V bounded below, H, + AV defined by the
Friedrichs’ extension method;

(3) Ve L™ + L%, in which case one can show that
H, + AV is bounded below and so Friedrichs’ ex-
tension can be used.

SIMON

V. EXTENSIONS TO MORE GENERAL CASES

To N dimensions. It is a little enlightening to note
that in N dimensions A} is replaced by AM2; for
example, our comparison potential, the harmonic
oscillator, has N(AV,) ~ 2¥2, Thus, we can under-
stand the fact n(AV)~ A} by realizing that the
single-channel Schrédinger equation is essentially
I-dimensional.

To noncentral potentials: The proof of Theorem 6
carries over without change to the noncentral case.
To obtain an upper bound, we need only a simple
comparison potential. Let

Vain(r) = Imin V(r).
rl=r

Then, since V,, < V, we have N(AV,;) > N(iV).
If Vi obeys (A), (B), and (C), the upper bound
given by Theorem 2 yields an upper bound for N(AV).

To the many-body case: As with most problems in
nonrelativistic potential theory, things really get
interesting in the many-body case. Also as with most
problems, the two-body methods are not capable of
extension. In this case, there are negative-energy
continua (due to relative motion of bound clusters)
which complicate the analysis and invalidate all the
arguments we have used in the two-body case.
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