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Abstract. We provide necessary and sufficient conditions for a Jacobi ma-
trix to produce orthogonal polynomials with Szegő asymptotics off the real
axis. A key idea is to prove the equivalence of Szegő asymptotics and of
Jost asymptotics for the Weyl solution. We also prove L2 convergence of
Szegő asymptotics on the spectrum.

1. Introduction

In 1922, Szegő [50] proved one of the most celebrated results in classical
analysis: his asymptotic theorem for orthogonal polynomials. In modern
language, he considered measures, dρ, on [−2, 2] of the form

dρ(x) = f(x) dx + dρs(x) (1.1)

with orthonormal polynomials

pn(x) = γnxn + lower order (1.2)

obeying γn > 0 and

∫
pn(x)pm(x) dρ(x) = δnm . (1.3)
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What Szegő proved is that for z ∈ D = {z ∈ C | |z| < 1}, one has Szegő
asymptotics as n → ∞

zn pn

(
z + 1

z

)
→ D(z)−1

√
2

(1.4)

so long as the following, known as the Szegő condition, holds
∫ 2

−2
log f(x)(4 − x2)−1/2 dx > −∞. (1.5)

(Actually, Szegő, using the still standard convention of the orthogonal poly-
nomial community, took dρ on [−1, 1] and he did not allow a singular
component – that is a later refinement. Also, instead of z �→ z + z−1 which
maps D → C\[−2, 2], he used the inverse map and stated his results in
terms of limits of (

x

2
+

√
4 − x2

2

)n

pn(x) (1.6)

rather than (1.4).
Szegő also found an explicit formula for D(z), namely,

D(z) = exp

[∫
eiθ + z

eiθ − z
log( f(cos θ))

dθ

4π

]
. (1.7)

Moreover, if (1.5) fails, so does (1.4).
From the point of view of measures, the restriction to supp(dρ) ⊂

[−2, 2] is natural, but this is less so with respect to the recursion coefficients
(aka Jacobi parameters) for the orthonormal polynomials, pn(x), defined by

x pn(x) = an+1 pn+1(x) + bn+1 pn(x) + an pn−1(x) (1.8)

for {an, bn}∞
n=1. From this point of view, the natural condition is

an → 1 bn → 0. (1.9)

This is associated to, indeed implies that, ess supp(dρ) = [−2, 2], that is,
supp(dρ) = [−2, 2] ∪ P, where P is a bounded set whose only possible
limit points are ±2. Our main goal in this paper is to answer the question of
for which {an, bn}∞

n=1 does one have Szegő asymptotics; we will find (see
Theorem 5.1)

Theorem 1.1. Let pn(x) be orthonormal polynomials associated to Jacobi
parameters {an, bn}∞

n=1 obeying (1.9). Then lim zn pn(z + 1
z ) exists for all

z ∈ D, is nonzero for z ∈ D\R with convergence uniform on compacts if
and only if

(α)

∞∑
n=1

|an − 1|2 + |bn|2 < ∞ (1.10)
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(β) lim
n→∞ anan−1 . . . a1 exists and is nonzero

(γ) lim
n→∞

n∑
j=1

bj exists

– thereby closing a chapter opened 83 years ago.
There has, of course, been prior literature on these issues, although with

considerably stronger hypotheses than (α)–(γ). The initial results relating
Jacobi parameters to Szegő asymptotics illustrated how strong supp(dρ) ⊂
[−2, 2] is and include

Theorem 1.2. Let supp(dρ) ⊂ [−2, 2]. Then the following are equivalent:

(a) (β) holds.
(b) (α), (β), and (γ) hold.
(c) The Szegő condition (1.5) holds.

This theorem combines results of Shohat [39] and Nevai [32]; see also
[26] and [46]. Of course, once one drops the restriction on supp(dρ), the
a’s and b’s become almost independent, and any subset of (α)–(γ) can
hold.

To continue our discussion of earlier results on extending Szegő asymp-
totics, we need some notation. Since P can only have ±2 as limit points,

P ∩ (−∞,−2) = {E−
j

}N−
j=1 (1.11)

where N− = 0 (i.e., the set is empty), 1, 2, . . . or ∞, and E−
1 < E−

2 < · · · .
Similarly,

P ∩ (2,∞) = {E+
j

}N+
j=1 (1.12)

with E+
1 > E+

2 > · · · . The earliest results extending Szegő asymptotics
beyond supp(dρ) ⊂ [−2, 2] are due to Gonchar [18], Nevai [32], and Nik-
ishin [33], who noted that the result still holds if N+ + N− < ∞. More
recently,

Theorem 1.3 (Peherstorfer-Yuditskii [34]). Suppose an → 1, bn → 0, and
∑
j,±

(∣∣E±
j

∣∣− 2
)1/2

< ∞ (1.13)

and that (1.5) holds. Then (1.4) holds where the function D(z)−1 vanishes
if and only if z + z−1 is some E±

j .

Remark. The D(z)−1 we use here is not the same as the D−1 used in [34],
but is a Blaschke product times their D−1.
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Related to this is

Theorem 1.4 (Killip-Simon [26]). If
∞∑

n=1

|an − 1| + |bn| < ∞ (1.14)

then (1.13) and (1.5) hold.

From one point of view, (1.13) is quite natural. If z±
j is defined by

z±
j ∈ (−1, 1) z±

j + (z±
j

)−1 = E±
j (1.15)

then (1.13) is equivalent to∑
j,±

(
1 − ∣∣z±

j

∣∣) < ∞ (1.16)

which is exactly what is needed to define a Blaschke product of zeros and
obtain D(z)−1 as a Nevanlinna function (see [34,26,44]). Theorems 1.3 and
1.4 are the strongest prior results on when Szegő asymptotics holds.

Both as input and motivation, the next element of background for our
work concerns sum rules. Szegő proved his results for orthogonal polyno-
mials on the real line (OPRL) by mapping the problem to one on orthogonal
polynomials on the unit circle (OPUC). For OPUC, he earlier [48] proved
asymptotic formulae. He began at z = 0 where the limit formula was equiva-
lent to his leading limit theorem for Toeplitz determinants (see [47]) and
deduced the general formula from that.

Verblunsky [51] rewrote the z = 0 limit theorem as a sum rule, namely,
if

dµ(θ) = w(θ)
dθ

2π
+ dµs (1.17)

is a probability measure on ∂D and αn are its Verblunsky coefficients (see
[43,44] for definition), then

∞∏
j=0

(
1 − |α j |2

) = exp

(∫
log(w(θ))

dθ

2π

)
(1.18)

(which includes the fact that both sides are 0 simultaneously, i.e.,
∑∞

j=0|α j |2
= ∞ ⇔ ∫

log(w(θ)) dθ
2π

= −∞). Without knowing of Verblunsky’s work,
Case [3,4], motivated by KdV sum rules, wrote some sum rules for Jacobi
matrices with sufficiently nice a’s and b’s – he was not explicit about the
needed conditions, but his arguments at least require

∞∑
n=1

n(|an − 1| + |bn|) < ∞. (1.19)

It was Killip-Simon [26] who realized the right combination of sum rules
and proved
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Theorem 1.5 (Killip-Simon [26]). Let an → 1 and bn → 0. Then

∞∑
n=1

|an − 1|2 + |bn|2 < ∞ (1.20)

holds if and only if
∑
j,±

(∣∣E±
j

∣∣− 2
)3/2

< ∞ (1.21)

and
∫ 2

−2
log( f(x))(4 − x2)1/2 dx < ∞. (1.22)

Note that (1.22), which [26] calls the quasi-Szegő condition, is distinct
from (1.5) ((4 − x2)1/2 rather than (4 − x2)−1/2). Further developments of
sum rules include [27–29,31,42,46]. In particular, one has

Theorem 1.6 (Simon-Zlatoš [46]). Consider the three assertions:
(β) limn→∞ an . . . a1 exists and is nonzero.
(σ ) (1.13) holds.
(τ) (1.5) holds.
If (β) holds, then (σ) ⇔ (τ), and if (σ) and (τ) hold, then (β) holds.

The next element in our analysis is to link Szegő asymptotics to a differ-
ent asymptotic result associated with work of Jost [22]. Jost studied certain
solutions of −u′′ + Vu = Eu, which is the analog of

an fn+1 + (bn − (z + z−1)
)

fn + an−1 fn−1 = 0 n = 2, 3, . . . (1.23)

one of whose solutions is

fn(z) = pn−1

(
z + 1

z

)
. (1.24)

As realized by Case [3,4,16], the analog of the Jost solution is a solution of
(1.23), which is asymptotic to zn in the sense that

z−nun(z) → 1. (1.25)

Case showed such solutions exist if |z| < 1 and (1.19) holds. In distinction,
Szegő asymptotics says pn−1(z + 1

z ) ∼ Cz−n.
There may or may not be a solution of (1.23) which obeys (1.25) if one

only knows an → 1, bn → 0, but from either the discrete version of Weyl’s
analysis (see, e.g., [35,40]) or by the Poincaré-Perron theorem (see, e.g.,
[44, Sect. 9.6]), there is a solution for z ∈ D obeying fn → 0 – indeed,
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obeying fn+1/ fn → z. From Weyl’s point of view, this is given by the
Green’s function, that is, we can take it to be, for z ∈ D\{z±

j }N±
j=1,

wn(z) = 〈δn, (z + z−1 − J)δ1
〉

(1.26)

where J is the infinite Jacobi matrix

J =

⎛
⎜⎜⎜⎝

b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

⎞
⎟⎟⎟⎠ (1.27)

viewed as a bounded selfadjoint operator on �2(Z+).
We will say that Jost asymptotics occurs if for z ∈ D\{z±

j }N±
j=1, z−nwn(z)

has a nonzero finite limit as n → ∞. A key to our understanding of when
Szegő asymptotics holds for general a’s and b’s (i.e., to Theorem 1.1) is the
following result we prove in Sect. 2:

Theorem 1.7. Fix z0 ∈ D so that z0 + z−1
0 is not an eigenvalue of J. Then

Szegő asymptotics (i.e., zn pn(z + 1
z ) has a nonzero limit) holds at z0 if and

only if Jost asymptotics holds at z0.

We can now turn more closely to our proof of Theorem 1.1. That Szegő
asymptotics implies (α)–(γ) will be easy (and done in Sect. 5) once we have
Theorem 1.7. Basically, w̃n(z) ≡ z−nwn(z) are analytic near z = 0 and Jost
asymptotics (uniformly on |z| = ε) implies convergence of derivatives
at z = 0. The first two Taylor terms at 0 yield (β)–(γ), and as in [26],
a suitable combination of the first and third Taylor coefficients is positive
and yields (α).

The hard direction is that (α)–(γ) implies Szegő or Jost asymptotics. We
will provide three distinct proofs. The first, in Sect. 5, is a relative of Szegő’s
original proof and of the Peherstorfer-Yuditskii arguments relying on the
study of analytic functions on the disk. Szegő just used (1.7) to define D,
and Peherstorfer-Yuditskii multiplied D−1 by a Blaschke product. We do
not have either luxury here. For (1.7) to work, one needs∫

log( f(cos θ))
dθ

2π
> −∞ (1.28)

which is equivalent to (1.5), while all we have is∫
log( f(cos θ)) sin2(θ)

dθ

2π
> −∞ (1.29)

which is equivalent to (1.22). Moreover, in place of (1.16), we only have
∑
j,±

(1 − |z j |)3 < ∞ (1.30)
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so we cannot define a Blaschke product. The solution will be to define
renormalized Blaschke products when (1.30) holds, which we do in Sect. 3,
and a renormalized Poisson integral when (1.29) holds, which we do in
Sect. 4. This will allow us to define a candidate for the Jost function and
prove Jost asymptotics in Sect. 5 and so provide our first proof that (α)–(γ)
imply Jost asymptotics. This proof provides bounds we will need in Sect. 8
to handle L2 convergence on ∂D.

Our second proof in Sect. 6 relies on an idea going back to Jost-Pais [23]
that the Jost function is a Fredholm determinant. For OPRL, this is discussed
in Killip-Simon [26]. We will use the theory of renormalized determinants
for Hilbert-Schmidt operators to construct a candidate Jost function and use
it to prove Jost asymptotics.

Our final proof, in Sect. 7, is connected to classical results on the con-
struction of asymptotic solutions of ODE’s associated with work of Levinson
[30] and Hartman-Wintner [20]; see the book of Eastham [14]. We will use
results of Coffman [6] on the difference equation analogs to construct Jost
solutions when (α)–(γ) hold. This construction shows that the “hard” part
of Theorem 1.1 is related to known results on ODE’s with L2 perturba-
tions. From this point of view, our contribution here is the realization that
Jost solutions imply Szegő asymptotics and that the conditions are not only
sufficient but necessary.

In Sect. 8, we discuss L2 convergence on ∂D, following the original
scheme of Szegő [48] but with some severe technical complications because
the Jost function is not Nevanlinna. This is the hardest argument in the paper.
We will show the following result (see Theorem 8.1).

Theorem 1.8. Let dρ have the form (1.1) and suppose {an, bn}∞
n=1 obey

(α)–(γ). Then

lim
n→∞

∫ 2

−2

∣∣pn(x) − (sin θ)−1Im(ū(eiθ )ei(n+1)θ )
∣∣2 f(x) dx = 0

with θ = arccos( x
2 ), and

lim
n→∞

∫
|pn(x)|2 dρs(x) = 0.

In Sect. 9, we provide examples for each p < 3
2 of Jacobi matrices with

Szegő asymptotics, but with
∑

j,±(|E±
j | − 2)p = ∞. In Sect. 10, we make

some remarks about Schrödinger operators with L2 potentials.
We announced our results in [8] written in September of 2003 and men-

tioned our L2 results but not their proof to Serguei Denisov. In May of 2004,
Denisov-Kupin [12] released a preprint discussing modified Szegő asymp-
totics for certain OPUC when the Szegő condition fails but a condition like
(1.29) holds. Their results are quite distinct from ours although, via (1.29),
there is some overlap. Many of the methods are similar – in particular, like
we do in Sect. 4, they use renormalized Poisson representations. There is
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also some overlap in the L2 control of the boundary values which we con-
sider in Sect. 8. In particular, by using some of their ideas, it is likely we
could streamline the proof of and slightly strengthen our estimate, Propo-
sition 8.2. We have kept our original proof. We would emphasize that our
work on these methods is independent and roughly simultaneous.

It is a pleasure to thank M. Moszyński and R. Romanov for useful
discussions. B. S. completed this work during his stay as a Lady Davis
Visiting Professor at Hebrew University, Jerusalem. He would like to thank
H. Farkas and Y. Last for the hospitality of the Mathematics Institute at
Hebrew University.

2. Szegő asymptotics and Jost asymptotics

As explained in the introduction, for any Jacobi matrix with an → 1,
bn → 0, and z ∈ D, and not such that z + z−1 is an eigenvalue of J , there
are two natural solutions of

anun+1 + (bn − (z + z−1)
)
un + an−1un−1 = 0 n = 2, 3, . . . . (2.1)

One is the orthogonal polynomial solution, un = pn−1(z + 1
z ), and the other

is the Weyl solution,

wn(z) = 〈δn, (z + z−1 − J)−1δ1
〉
. (2.2)

In this section, our purpose is to show that for each such z, one has Jost
asymptotics at that z, that is

w̃n(z) ≡ z−nwn(z) → w̃∞(z) (2.3)

for w̃∞ 
= 0 if and only if one has Szegő asymptotics for that z, that is,

cn(z) ≡ zn pn

(
z + 1

z

)
→ c∞(z) (2.4)

for c∞ 
= 0, and moreover,

(1 − z2)c∞(z)w̃∞(z) = 1 (2.5)

(as we will see, w̃∞(z) = 1/u(z), where u is the Jost function, so (2.5) is
usually written c∞(z) = u(z)/(1 − z2)).

Of course, p· −1 obeys (2.1) also at n = 1 if we define p−1 ≡ u0 = 0
and a0 = 1. Since

(J − z − z−1)(z + z−1 − J)δ1 = −δ1

wn also obeys (2.1) if we set a0 = 1 and

w0(z) = 1. (2.6)
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The constancy of the Wronskian thus implies

an

(
pn

(
z + 1

z

)
wn(z) − wn+1(z)pn−1

(
z + 1

z

))
= 1 (2.7)

where we get 1 since

a0(p0w0 − w1 p−1) = 1.

Using the definitions (2.3)/(2.4) of c and w̃, (2.7) becomes

an
(
cn(z)w̃n(z) − z2w̃n+1(z)cn−1(z)

) = 1. (2.8)

Thus, the following lemma is of relevance:

Lemma 2.1. Let xn, yn be sequences of nonzero complex numbers and let
λn be nonzero positive numbers with

λn → 1 (2.9)

and so, for some z ∈ D,

xn+1 yn − z2xn yn+1 = λn. (2.10)

Then

(i) If yn → y∞ 
= 0, then xn → 1/y∞(1 − z2).
(ii) If xn → x∞ 
= 0 and z2n yn → 0, then yn → 1/x∞(1 − z2).

Proof. (i) Rewrite (2.10) as

xn+1 = λn y−1
n + z2 yn+1

yn
xn

and iterate � + 1 times to get

xn+1 =
�∑

j=0

λn− j
yn+1

yn+1− j yn− j
z2 j + z2�+2 yn+1

yn−�

xn−�. (2.11)

Set � = n − 1 and see that since
∑n−1

j=0 z2 j = (1 − z2n)/(1 − z2),

∣∣xn+1 − y−1
∞ (1 − z2n)(1 − z2)−1

∣∣ ≤
n−1∑
j=0

en, j z
2 j + en,nz2n (2.12)

where

en, j = λn− j
yn+1

yn+1− j yn− j
− 1

y∞
j = 0, . . . , n − 1

en,n = yn+1x1 y−1
1 .
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Since y� → y∞ 
= 0, supn, j en, j < ∞ and moreover, limn→∞ en, j = 0 for
all fixed j. Thus, since en, j → 0 for j fixed, we have for � fixed,

lim sup
n→∞

∣∣∣∣
n∑

j=0

en, j z
2 j

∣∣∣∣ ≤ lim sup

∣∣∣∣
n∑

j=�

en, j z
2 j

∣∣∣∣
≤ |z|2�(1 − |z|2)−1 sup

n, j
|en, j |

→ 0 as � → ∞. Thus (2.12) implies

xn+1 → y−1
∞ (1 − z2)−1. (2.13)

(ii) Rewrite (2.10) as

yn = λnx−1
n+1 + z2xnx−1

n−1 yn+1

and iterate upwards. Since z2n yn → 0, the remainder after � iterations goes
to zero as � → ∞, so

yn =
∞∑
j=0

λn+ j z
2 j xnx−1

n+ j+1x−1
n+ j .

As in the argument in (i), this implies that yn → x−1∞ (1 − z2)−1. ��
Theorem 2.2 (Szegő asymptotics = Jost asymptotics). Let J be a Jacobi
matrix with an → 1, bn → 0, and let z ∈ D be such that z + z−1 is not
an eigenvalue of J. Then w̃n(z) has a nonzero limit if and only if cn(z) has
a nonzero limit, and if either happens,

lim
n→∞ cn(z) = u(z)

1 − z2
(2.14)

where

u(z)−1 ≡ lim
n→∞ w̃n(z). (2.15)

Proof. By (2.8), if λn = a−1
n , xn = cn−1(z), yn = w̃n(z), then Lemma 2.1

implies this result so long as

lim
n→∞ z2nw̃n(z) = 0.

But

z2nw̃n(z) = znwn(z)

goes to zero since both wn → 0 and zn → 0. ��
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3. Renormalized Blaschke products

As explained in the introduction, we need a renormalized Blaschke product
that works for real zeros that only obey

∑
n(1 − |zn|)3 < ∞ rather than the

usual Blaschke condition
∑

n(1 − |zn|) < ∞.
One can make a case that the first renormalization in science was the

Weierstrass product formula – to get an analytic function vanishing at {z j }∞
j=1

with |z j | → ∞, one modifies one’s first guess

F(z) =
∞∏
j=1

(
1 − z

z j

)

to

F(z) =
∞∏
j=1

Wn j

(
z

z j

)
(3.1)

where

Wn(z) = (1 − z) exp
( n∑

k=1

zk

k

)
(3.2)

picking the argument to be the truncation of the power series for − log(1−z).
It is well known, of course, that (3.1) converges if n j is chosen so that∑|r/z j |n j+1 < ∞ for all r > 0. Similarly, if our only goal were to get
a function with zeros in the right place, things would be easy – for one can
show that if z j ∈ D, |z j | → 1 as j → ∞ and w j = z j/|z j |, and if n j is
chosen so that

∑∞
j=1(

1−|z j |
ε

)n j+1 < ∞ for all ε > 0, then

F(z) =
∞∏
j=1

Wn j

(
w j − z j

w j − z

)
(3.3)

is a product converging absolutely to a nonzero function analytic in D with
zeros at {z j}.

We want our Blaschke products to have magnitude one on ∂D and we
will want that for our renormalized Blaschke products.

For p = 0, b(z, p) = z: if p ∈ D, p 
= 0,

b(z, p) = |p|
p

p − z

1 − p̄z
(3.4)

so b(0, p) = |p| > 0. The key, of course, is that b(z, p) = 0 if and only if
z = p and

|b(eiθ , p)| = 1. (3.5)
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If p = (1 − x)ω with |ω| = 1 and x ∈ (0, 1),

b(z, (1 − x)ω) = 1 − x − zω−1

1 − (1 − x)ω−1z

= 1 − x
1−ω−1z

1 + xω−1z
1−ω−1z

. (3.6)

(3.6) shows immediately if |z| < 1 and
∑|x j | < ∞, then

∏∞
j=1 b(z, (1 −

x j)ω j) converges absolutely (and uniformly on |z| < 1 − δ) since the
numerators and denominators in (3.5) separately do.

(3.6) suggests what to do if
∑|x j |n+1 < ∞. Define

bn(z, (1 − x)ω) = Wn
(

x
1−ω−1z

)
Wn
(−xω−1z

1−ω−1z

) . (3.7)

Here is the key fact:

Proposition 3.1. (a) Let δ > 0. Then for |z| < 1 − δ and |x| < δ/2,

|bn(z, (1 − x)ω) − 1| ≤ 4δ−n−1xn+1. (3.8)

(b) For eiθ 
= ω, ∣∣bn(e
iθ , (1 − x)ω)

∣∣ = 1. (3.9)

Warning. One cannot use the maximum principle and (3.9) to conclude
that |bn(z, (1 − x)ω)| ≤ 1. Indeed, for n ≥ 1,

lim
r↑1

|bn(rω, (1 − x)ω)| = ∞.

This is where bn’s differ from ordinary Blaschke factors. They have very
singular inner factors (indeed, for n ≥ 3, ones whose boundary values are
not even signed measures).

Proof. (a) It is known, (e.g., Rudin [36, p. 301]) that

|z| < 1 ⇒ |Wn(z) − 1| ≤ |z|n+1. (3.10)

If |x| < δ/2 and |z| < 1 − δ, then |x/(1 − ω−1z)| ≤ |x/δ| < 1
2 so (3.10)

can be used, and if N and D are the numerator and denominator in (3.7),
|D| > 1

2 . Since ∣∣∣∣ND − 1

∣∣∣∣ ≤ 1

|D| (|N − 1| + |D − 1|)
(3.10) implies that

|bn(z, (1 − x)ω)| ≤ 2

[ ∣∣∣∣ x

(1 − ω−1z)

∣∣∣∣
n+1

+
∣∣∣∣ xω−1z

(1 − ω−1z)

∣∣∣∣
n+1]

which yields (3.8).
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(b) By (3.6), if eiθ 
= ω, b(eiθ , (1 − x)ω) can be defined as a limit and
(3.6) still holds and b(eiθ , ω) = 1. Thus for x small, log b(eiθ , (1 − x)ω) is
analytic in x. By (3.4),

|b(eiθ , p)| =
∣∣∣∣ p − eiθ

1 − p̄eiθ

∣∣∣∣ =
∣∣∣∣ p − eiθ

p̄ − e−iθ

∣∣∣∣ = 1

so for x positive, eiθ 
= ω,

Re log(b(eiθ , (1 − x)ω)) = 0.

It follows that its Taylor coefficients,

log(b(eiθ, (1 − x)ω)) =
∞∑

n=1

γn(e
iθ , ω)xn (3.11)

have γn pure imaginary. Since

bn(e
iθ , (1 − x)ω) ≡ b(eiθ , (1 − x)ω) exp

( n∑
j=1

γ j(e
iθ , θ)x j

)
(3.12)

and γ j is pure imaginary, (3.9) holds. ��
Because we will be interested not in b2 but something related to it by

a finite correction, we need to look in detail at γ1 and γ2. We consider
γ j(z, ω) defined by (3.11) with eiθ → z. By (3.6),

γ1(z, ω) = −
(

1 + ω−1z

1 − ω−1z

)
(3.13)

γ2(z, ω) = −1

2

(1 − (ω−1z)2)

(1 − ω−1z)2
= −1

2

(1 + ω−1z)

(1 − ω−1z)
. (3.14)

Remarkably, γ1/γ2 is independent of ω and z! For reasons that will be clear
below, we want to consider

α(z) = 1 + z2

1 − z2
β(z) = 2z

1 − z2
. (3.15)

Notice that

γ1(z, ω = ±1) = 2γ2(z, ω = ±1) = −(α(z) ± β(z)). (3.16)

Definition. For p ∈ (−1, 1), p 
= 0, and z ∈ D, we define

q(z, p) = b(z, p) exp
(

− α(z) log(|p|) − 1
2 β(z)

(
p − 1

p

))
. (3.17)
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Theorem 3.2. (a) For z near zero and p 
= 0, p real,

log q(z, p) = log b(z, p) − α(z) log b(0, p) (3.18)

− 1

2
β(z)

d

dz
log b(z, p)

∣∣∣∣
z=0

.

(b)

q(z, p) = b2(z, p) exp
(− α(z)A(p) − 1

2 β(z)B(p)
)

(3.19)

where

A(p) = log|p| − (1 − |p|) − (1 − |p|)2

2
(3.20)

B(p) = −(1 − |p|)3

p
. (3.21)

(c) If p ∈ (−1, 1) with 1 − |p| < δ/2 and |z| < 1 − δ, then

|q(z, p) − 1| ≤ (3.22)[
4δ−3 + 5

3 (1 + 4δ−3)δ−1|p|−1 exp
(

5
3 δ−1|p|−1(1 − |p|)3

)]
(1 − |p|)3.

Proof. (a) Writing

b(z, p) = |p| 1 − z
p

1 − z p

we see

log b(z, p) = log|p| + z

(
p − 1

p

)
+ O(z2)

which, given (3.17), is (3.18).
(b) By (3.12) and (3.16),

q(z, p) = b2(z, x) exp(C(p, z))

where

C(p, z) = − α(z) log(|p|) − 1

2
β(z)

(
p − 1

p

)

− α(z)
(
(1 − |p|) + 1

2(1 − |p|)2) (3.23)

− β(z)sgn(p)
(
(1 − |p|) + 1

2 (1 − |p|)2
)
.

Thus (3.19) follows from

p − 1

p
+ sgn(p) [2(1 − |p|) + (1 − |p|)2] = −(1 − |p|)3

p
. (3.24)
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(3.24) follows from writing p = sgn(p)(1 − x) and

sgn(p)

[
(1 − x) − 1

1 − x
+ 2x + x2

]

= sgn(p)

{
(1 − x) −

[
1 + x + x2 + x3

1 − x

]
+ 2x + x2

}

= −sgn(p)
x3

1 − x
= −(1 − |p|)3

p
.

(c) In terms of the function C of (3.23),

|q(z, p) − 1| = |b2(z, p) exp(C(z, p)) − 1| (3.25)

≤ |b2(z, p)| |exp(C(p, z)) − 1| + |b2(z, p) − 1|. (3.26)

We have (3.8) to bound |b2(z, p)−1|. Thus |b2| ≤ 1+|b2 −1| ≤ 1+4δ−3.
Moreover,

|ec − 1| ≤ |c| max(1, |ec|) ≤ |c|e|c|

so (3.22) follows from

|C| ≤ 5
3 δ−1|p|−1(1 − |p|)3. (3.27)

To prove (3.27), note first that |1−z2| ≥ 1−|z|2 = (1+|z|)(1−|z|) ≥ δ.
Thus

|α(z)| ≤ 2

δ
|β(z)| ≤ 2

δ
. (3.28)

Moreover, if |p| = 1 − x, then
∣∣∣∣log|p| − x − x2

2

∣∣∣∣ =
∣∣∣∣

∞∑
j=3

x j

j

∣∣∣∣

≤ 1

3

x3

1 − x

= 1

3

(1 − |p|)3

|p| .

Thus, by (3.24) and (3.28),

|C| ≤ 2

δ

(1 − |p|)3

p

[
1

3
+ 1

2

]
= 5

3δ

(1 − |p|)3

|p|
proving (3.27). ��

Because each bn(z, p) is unbounded on D, the usual methods for con-
trolling products on ∂D do not work; but in the case where the limit points
of zeros only are a finite set, they do. Here is what we will need:
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Theorem 3.3. Let pn be a sequence of reals in (−1, 1) with limn→∞|pn |
= 1 so that

∞∑
n=1

(1 − |pn |)3 < ∞. (3.29)

Let

Bren(z) =
∞∏

n=1

q(z, pn). (3.30)

Then

(i) The product (3.30) converges in C+ = {z ∈ Imz > 0} and defines
a function analytic in D ∪ C+ ∪ C− whose only zeros are at
{pn}∞

n=1.
(ii)

∣∣Bren(e
iθ )
∣∣ = 1 θ ∈ (0, π) ∪ (π, 2π). (3.31)

(iii) If

B(N)
ren =

∞∏
n=N+1

q(z, pn) (3.32)

then for any p < ∞,
∫ ∣∣B(N)

ren (eiθ ) − 1
∣∣p dθ

2π
→ 0. (3.33)

Proof. (i) If z ∈ C+, we have

G(z) ≡ max

(
1

|1 − z| ,
1

|1 + z| ,
|z|

|1 − z| ,
|z|

|1 + z|
)

< ∞.

Thus, if xG(z) < 1, the arguments in Wn in (3.7) are less than 1 and the
same estimates we used to bound |q(z, p) − 1| still work to see

|q(z, p) − 1| ≡ H(z)|1 − p|3 (3.34)

for suitable H(z), and this shows the product converges.
(ii) Since the product converges on ∂D\{±1} and |q(eiθ , pn)| = 1, (3.31)

is immediate.
(iii) Since |B(N)

ren (eiθ )| = 1, by (ii), pointwise convergence implies L p

convergence. The estimate (3.34) implies pointwise convergence to 1 since∑∞
n=N+1|q(z, pn) − 1| → 0. ��
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4. Renormalized Poisson representations

Our goal in this section is to start out with a function, f(z), on D, which has
a complex Poisson representation

F(z) =
∫

P(z, eiθ )g(eiθ )
dθ

2π
(4.1)

where

P(z, eiθ ) = eiθ + z

eiθ − z
(4.2)

and g ∈ L1(dθ/2π), real-valued, and

g(eiθ ) = g(e−iθ ) (4.3)

(so F(z) is real on D ∩ R).
We want to define

H(z) = F(z) − α(z)F(0) − β(z)F ′(0) (4.4)

and show it has a representation

H(z) =
∫

Q(z, eiθ )g(eiθ )
dθ

2π
(4.5)

where Q obeys a bound

|Q(z, eiθ )| ≤ C(z) sin2 θ. (4.6)

This will allow us to extend (4.1) to cases where one only has
∫ |g(eiθ )|

sin2 θ dθ
2π

< ∞. In (4.4), α and β are the functions in (3.15). For this section,
their key property is

α(z) ± β(z) = P(z, eiθ = ±1). (4.7)

To see why (4.6) should hold, note that, by (4.3), in (4.1) we can replace
P(z, eiθ ) by

S(z, eiθ) ≡ 1
2 [P(z, eiθ ) + P(z, e−iθ )] (4.8)

= 1 − z2

1 + z2 − 2z cos θ
. (4.9)

Since S(0, eiθ) = 1 and ∂
∂z S(z, eiθ)

∣∣
z=0

= cos θ, (4.5) holds with

Q(z, eiθ ) = S(z, eiθ) − α(z) − β(z) cos θ. (4.10)

Because of (4.7) and P(z, eiθ = ±1) = S(z, eiθ = ±1), Q vanishes at
eiθ = +1 and at eiθ = −1. Since α is even under θ → −θ and θ → 2π − θ,
these zeros must be quadratic, which is where (4.6) comes from.
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A straightforward calculation shows that, by (4.10),

Q(z, eiθ ) = S(z, eiθ) − 1 + z2

1 − z2
− 2z cos θ

1 − z2

= 1 − z2

1 + z2 − 2z cos θ
− 1 + z2 + 2z cos θ

1 − z2

= −4z2 sin2 θ

(1 − z2)(1 + z2 − 2z cos θ)
(4.11)

= −4z2 sin2 θ

(1 − z)(1 + z)(z − eiθ )(z − e−iθ )
. (4.12)

We summarize with

Theorem 4.1. Let F be given by (4.1) with g ∈ L1(dθ/2π) satisfying (4.3)
and let H(z) be given by (4.4). Then (4.5) holds with Q given by (4.11). In
particular,

|Q(z, eiθ )| ≤ 4 sin2 θ

(1 − |z|)3
. (4.13)

Proof. To get (4.13), note that |1−z2| ≥ 1−|z|2 = (1−|z|)(1+|z|) ≥ 1−|z|
and |z − e±iθ | ≥ 1 − |z|. ��

As a final result about renormalized Poisson representations, we note
that

Theorem 4.2. Let g ∈ L1(sin2 θ dθ
2π

) be real-valued with g(eiθ ) = g(e−iθ ).
Define

F(z) =
∫ 2π

0
Q(z, eiθ )g(eiθ )

dθ

2π
. (4.14)

Then for a.e. θ, limr↑1 F(reiθ ) ≡ F(eiθ ) exists, and for a.e. θ,

ReF(eiθ ) = g(eiθ ). (4.15)

Proof. Given θ0 ∈ (0, π), break the integral in (4.14) into two parts: I1 ≡
(θ0 − δ, θ0 + δ) ∪ (−θ0 − δ,−θ0 + δ) for |δ| < min(θ0, π − θ0) and the
complement, I2. By (4.12), if θ ∈ I2,

|Q(reiθ0 , eiθ | ≤ C sin2 θ (4.16)

uniformly in r and limr↑1 Q(reiθ0 , eiθ ) exists and is pure imaginary. Thus
the part of the integral in (4.14) for θ ∈ I2 has a limit with real part 0; if
z = reiθ0 , r ↑ 1.

On I1, we can rewrite Q as a sum of its four summands ( 1
2 P(z, eiθ ),

1
2 P(z, e−iθ ), α(z), and β(z) cos θ). Clearly, α(reiθ0) and β(reiθ0 ) have limits
which are pure imaginary. By the standard theory of Poisson kernels (Rudin
[36], Duren [13]), the P terms have a limit for a.e. θ0 whose real part is
1
2(g(eiθ0) + g(e−iθ0 )) = g(eiθ0) by the assumed symmetry of g. ��
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5. A necessary and sufficient condition for Jost asymptotics

Our goal in this section is to prove

Theorem 5.1. Let J be a Jacobi matrix with an → 1, bn → 0. Let Q =
{z ∈ D | z + z−1 is an eigenvalue of J}. Then the following are equivalent:

(i) Szegő asymptotics (i.e., zn pn(z + 1
z ) converges to a nonzero limit as

n → ∞) hold for all z ∈ D\Q uniformly on compact subsets of D\Q.
(ii) Szegő asymptotics hold for all z with |z| = ε for some ε > 0 and

uniformly in such z.
(iii) Jost asymptotics (i.e., z−nwn(z) has a nonzero limit) hold for all z ∈

D\Q uniformly on compact subsets of D\Q.
(iv) Jost asymptotics hold for all z with |z| = ε for some ε > 0 uniformly

in such z.
(v) The a’s and b’s obey three conditions:

(α)
∞∑

n=1

|an − 1|2 +
∞∑

n=1

|bn|2 < ∞. (5.1)

(β) limn→∞ a1 . . . an exists and is not zero.
(γ) limn→∞

∑n
j=1 bj exists.

(vi) The spectral measure, µ, on R and orthonormal polynomials obey the
following properties:
(δ)

∫ 2
−2 log(dµac/dE)

√
4 − E2 dE > −∞.

(ε)
∑

n(|E±
n | − 2)3/2 < ∞.

(κ) If the orthonormal polynomials have the form

pn(x) = γn
(
xn − λnxn−1 + · · · ) (5.2)

then limn→∞ γn exists and is nonzero and limn→∞ λn exists.

Remarks. 1. We will see shortly that wn(z) has an nth-order zero at z = 0,
so z−nwn(z) has a removable singularity at z = 0 – and it is that value we
intend when we say the limit exists at z = 0.

2. We will discuss below what happens at the z0’s in Q. (Basically,
zn pn(z + 1

z ) has a zero limit there and, by shifting from Weyl to Jost
solutions, we will also have control at z0’s in Q of the other solutions.)

3. We will see that u(z) ≡ (lim w∞(z))−1 always has a factorization
formula when (v) holds. u will be expressed in terms of “spectral data” and
the limits in (β) and (γ).

Define

M(z, J) = 〈δ1, (z + z−1 − J)−1δ1
〉 = w1(z). (5.3)
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Let J (n) be the Jacobi matrix obtained by removing the first n rows and left
n columns of J . Let

Mn(z, J) = M(z, J (n)) (5.4)

so M0(z, J) ≡ M(z, J). We will often drop the J if it is fixed in some
discussion.

Lemma 5.2.

(i) M(z) = z + O(z2) (5.5)

(ii) Mn(z) = wn+1(z)

anwn(z)
(5.6)

(iii) wn(z) = M(z)(a1 M1(z)) . . . (an−1 Mn−1(z)) (5.7)

(iv) wn(z) = (a1 . . . an)z
n + O(zn+1) (5.8)

(v) Mn(z) = (z + z−1 − bn+1 − a2
n+1 Mn+1(z)

)−1
(5.9)

(vi) log

(
Mn(z)

z

)
= bn+1z + (1

2 b2
n+1 + a2

n+1 − 1
)
z2 + O(z3).

(5.10)

Remark. Some of these equalities are intended in the sense of the field
of meromorphic functions. For example, if � < n and w�(z0) = 0, then
M�(z) has a pole at z0 and M�−1(z) a zero there and they are intended
to cancel in (5.7). Alternatively, these formulae hold initially away from
{z ∈ D | z + z−1 ∈ σ(J (�)) for some � = 0, 1, . . . } and then they have
removable singularities in some cases.

Proof. (i) M(z)/z = 〈δ1, (1 + z2 − z J)−1δ1〉 = 1 + O(z) as z → 0.
(ii) As noted in Sect. 2, wn(z) is normalized by (2.6), that is, by

a1w2(z) + (b1 − z − z−1)w1(z) = −1

and, of course, M(z) = w1(z). (5.6) thus follows from

an+1

(
wn+2

anwn

)
+ (bn+1 − z − z−1)

(
wn+1

anwn

)
= −1

since wn+ j/anwn solves the difference equation for J (n).
(iii) follows from (5.6) and w1 = M.
(iv) is immediate from (5.5) for Mn(z) and (5.7).
(v) follows from (5.6) and the difference equation for w.
(vi) From (5.9) for n = 0 and (5.5) for M1,

M(z)

z
= (1 − b1z − a1z2 + z2 + O(z3)

)−1
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so

log
(

M(z)

z

)
= − log

(
1 − b1z − a2

1z2 + z2 + O(z3)
)

= (b1z + 1
2 b1z2)+ (a2

1 − 1
)
z2 + O(z3).

��
Reduction of Theorem 5.1 to (v) ⇒ (iii). By Theorem 2.2, (i) ⇔ (iii) and
(ii) ⇔ (iv). (iii) ⇒ (iv) is trivial. Thus we need to prove (iv) ⇒ (v) and
(v) ⇔ (vi) to reduce the proof to (v) ⇒ (iii).

The equivalence of (v) and (vi) is easy, given the result of Killip-Simon
[26]. They prove that (α) ⇔ (δ), (ε). The equivalence of (κ) and (β), (γ) is
immediate since the recursion relations for p imply that

an+1γn+1 = γn

−λn+1 = −λn − bn+1

so

γn = (a1 . . . an)
−1 λn =

n∑
j=1

bj . (5.11)

To study (iv) ⇒ (v), define

w̃n(z) = z−nwn(z) M̃n(z) = z−1Mn(z) (5.12)

so, by (5.7),

log w̃n(z) =
n−1∑
j=1

log(aj) +
n−1∑
j=1

log M̃ j−1(z). (5.13)

Convergence of w̃n(z) uniformly on the circle and analyticity of w̃n(z)
implies the derivatives of w̃n(z) at z = 0 all converge. By (5.10) and (5.13),
the terms of order 1, z, z2 yield

lim
n→∞

n−1∑
j=1

log(aj) = ν1 (5.14)

lim
n→∞

n−1∑
j=1

bj = ν2 (5.15)

lim
n→∞

n−1∑
j=1

a2
j − 1 + 1

2
b2

j = ν3 (5.16)
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all exist. Following Killip-Simon [26], we look at (5.16) − 2 × (5.14) to see

lim
n→∞

n−1∑
j=1

G(aj) + 1
2 b2

j = ν3 − 2ν1 (5.17)

where

G(a) = a2 − 1 − 2 log(a).

Since G(a) > 0 for a ∈ (0,∞), the summand in (5.17) is nonnegative, so
(5.17) implies absolute convergence. Since G(a) ≥ (a − 1)2 (for G(1) =
G′(1) = 0 and G′′(a) ≥ 2), (5.17) implies

∞∑
j=1

(aj − 1)2 + 1
2 b2

j < ∞

which is (α). (β) is the exponential of (5.14) and (γ) is (5.15). ��
We now turn towards proving Jost asymptotics when (α), (β), (γ) hold.

We will give three proofs: one in this section using canonical factorization
of M-functions, one in Sect. 6 using renormalized determinants, and one in
Sect. 7 using Levinson-type asymptotic analysis of difference equations.

Our starting point for the proof in this section will be the “nonlocal”
step-by-step sum rule of Simon [42]:

Theorem 5.3. For any Jacobi matrix with an → 1, bn → 0,

{θ | ImMn(θ) 
= 0} = {θ | ImMn+1(θ) 
= 0} (5.18)

(modulo sets of dθ/2π-measure zero). For any p < ∞,

log

(
ImMn(θ)

ImMn−1(θ)

)
∈ L p

(
∂D,

∂θ

2π

)
(5.19)

and

an+1 Mn(z) = zB+
n B−

n (z) exp
(

1

4π

∫
log
(

ImMn(z)

ImMn+1(z)

)(
eiθ + z

eiθ − z

)
dθ

)
.

(5.20)

Here B±
n are alternating Blaschke products (B+ for 0 < p(n)

1,+ < z(n)
1,+ <

· · · < p(n)
�,+ < z(n)

�,+ and B− for 0 > p(n)
1,− > z(n)

1,− > · · · ) with p(n)
j,± + p(n)−1

j,±
the eigenvalues of J (n) and z(n)

j,± + z(n)−1
j,± the eigenvalues of J (n+1).
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Remarks. 1. (5.20) is a special case of a general factorization theorem
for meromorphic Herglotz functions, f , of D. The general theorem has
1

2π
log(| f(eiθ )|). (5.20) then follows from |an+1 Mn|2 = ImMn/ImMn+1,

which is a consequence of (5.9).
2. In our applications, the set in (5.18) is all of ∂D. When this is false,

ImMn/ImMn+1 in (5.19) and (5.20) have to be suitably defined on the
complement of the set in (5.18); see [42] for details.

We define

Ln(z) = log

(
an+1 Mn(z)

z

)
(5.21)

Nn(z) = Ln(z) − α(z)Ln(0) − 1
2 β(z)L ′

n(0) (5.22)

where α, β are given by (3.15). If p(n)
1,± are the poles of Mn closest to z = 0,

we define Ln(z) unambiguously on D\[p(n)

1,+, 1) ∪ (−1, p(n)

1,−] by requiring

Ln(z) analytic and Ln(0) real. Since p(n)
1,± → ±1 as n → ∞, the result

below exponentiated holds on D\{p(0)
j,± | j = 1, 2, . . . }.

Lemma 5.4. Suppose that (α), that is, (5.1) holds. Then for all z ∈
D\[p(0)

1,+, 1) ∪ (−1, p(0)
1,+] = S,

lim
N→∞

N∑
n=0

Nn(z) (5.23)

exists and the convergence is uniform on compact subsets of S.

Proof. By (5.20),

Ln(z) = log B+
n (z) + log B−

n (z) + 1

4π

∫ (
eiθ + z

eiθ − z

)
log

(
ImMn

ImMn+1

)
dθ.

Using (3.18) and (4.4),

Nn(z) =
∑
j,±

[− log q
(
z, p(n)

j,±
)+ log q

(
z, z(n)

j,±
)]

+ 1

4π

∫
Q(z, eiθ ) log

(
ImMn

Imn+1

)
dθ.

(5.24)

Since z(n)
j,± = p(n+1)

j,± , this implies

N∑
n=0

Nn(z) =
∑
j,±

[− log q
(
z, p(0)

j,±
)+ log q

(
z, p(N+1)

j,±
)]

(5.25)

+ 1

4π

∫
Q(z, eiθ ) log

(
ImM

ImMN+1

)
dθ.
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The Killip-Simon [26] P2 sum rule implies

(a)
∫

sin2 θ|log( ImM
sin θ

)| dθ
2π

< ∞
(b)

∑
(1 − |p(0)

j,±|)3 < ∞
(c) limN→∞

∫
sin2 θ|log(

ImMN+1
sin θ

)| dθ
2π

= 0

(d) limN→∞
∑

(1 − |p(N+1)
j,± |)3 = 0.

(a) and (b) and the estimates (3.22) and (4.13) allow us to write (5.25)
as a difference of M(0)/p(0) terms and M(N+1)/p(N+1) terms and then (c),
(d) show that the error terms go to zero. The result is that lim

∑N
n=0 Nn(z)

exists and

lim
n→∞ exp

( N∑
n=0

Nn(z)

)

=
∏
j=±1

q(z, p(0)
j,±)−1 exp

(
1

4π

∫
Q(z, eiθ ) log

(
ImM

sin θ

)
dθ

)
.

(5.26)

The proof shows the convergence is uniform. ��
Proof of Theorem 5.1 (v) ⇒ (iii). By (5.7), with w̃n(z) = z−nwn(z),

anw̃n(z) = exp

( n−1∑
j=0

L j(z)

)
. (5.27)

Since an → 1, w̃n(z) has a nonzero limit (i.e., Jost asymptotics hold) if and
only if

lim
N→∞

N∑
j=0

L j(z)

exists and the convergence of w̃n is uniform if and only if the convergence
of the sum is. Since

L j(0) = log(aj+1)

by (5.5) and

L ′
j(0) = bj+1

by (5.10), we have that

L j(z) = N j(z) + α(z) log(aj+1) + 1
2 β(z)bj+1. (5.28)

By Lemma 5.4,
∑N

n=0 Nn(z) converges uniformly if (α) holds, (β) and
(γ) say that

∑N
n=0 log(an+1) and

∑N
n=0 bj+1 converge so

∑N
n=0 Ln(z) con-

verges uniformly. ��



A condition for Szegő asymptotics 25

If w̃n(z) has a nonzero limit, we define the Jost function by

u(z) = lim
n→∞ w̃n(z)

−1. (5.29)

This agrees with the usual definition if
∑∞

n=1|an − 1| + |bn| < ∞. Thus

u(z) = exp

(
−

∞∑
n=0

Ln(z)

)
(5.30)

and we have proven (by (5.26)) that

Theorem 5.5. If (α), (β), (γ) hold, then

u(z) =
( ∞∏

j=1

aj

)−α(z)

e− 1
2 β(z)

∑∞
j=1 b j

∞∏
j=1,±

q
(
z, p(0)

j,±
)

exp

(
− 1

4π

∫
Q(z, eiθ ) log

(
ImM

sin θ

)
dθ

)
.

(5.31)

In the above,
∏∞

j=1 aj and
∑∞

j=1 bj refer to the conditional limits.
The integral representation (5.31) implies

Theorem 5.6. Let (α), (β), (γ) hold and let

u(z) =
(

lim
n→∞ z−nwn(n)

)−1
.

Then
(i) After removing the removable singularities at {p(0)

j }, u(z) is analytic in

D and u(z0) = 0 (z0 ∈ D) if and only if z0 ∈ {p(0)
j }, that is, if and only

if z0 + z−1
0 is an eigenvalue of J.

(ii) For a.e. θ, limr↑1 u(reiθ ) ≡ u(eiθ ) exists and

ImM(eiθ )|u(reiθ )|2 = sin θ (5.32)

for a.e. θ.

Proof. (i) is immediate from (5.31) and (ii) follows from the fact that α, β
have purely imaginary values on ∂D\{±1} from (3.31) and Theorem 4.2. ��
Remark. However, unlike the case where

∑∞
n=1|an − 1| + |bn| < ∞, u

may not be Nevanlinna. Indeed, if
∑∞

n=1(|E±
n | − 2)1/2 = ∞, u cannot be

Nevanlinna. This is the subject of Sect. 8.
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6. Renormalized determinants

The idea that Jost functions are given by Fredholm determinants goes back
to Jost-Pais [23], and for Jacobi matrices was made explicit by Killip-Simon
[26]. They define the perturbation determinant by

L(z, J) = det
(
1 + δJ

(
J0 − (z + z−1)

)−1)
(6.1)

where

δJ = J − J0 (6.2)

and J0 is the Jacobi matrix associated to an ≡ 1, bn ≡ 0. This definition is
used when z ∈ D and

∞∑
n=1

|an − 1| + |bn| < ∞. (6.3)

In this case, δJ is trace class and the det in (6.1) is the standard trace class
determinant (see Simon [45] and Goh’berg-Krein [17]).

What Killip-Simon [26] prove in their Theorem 2.16 is

Theorem 6.1. For J − J0 trace class, z ∈ D, and z + z−1 /∈ σ(J), we have
that the function M given by (5.4) obeys

M(z, J) = zL(z, J (1))

L(z, J)
(6.4)

and with wn(z), the Weyl solution,

z−nwn(z) →
[∏∞

j=1 aj
]

L(z, j)
. (6.5)

Remarks. 1. (6.4) implies (6.5) using (5.7) and L(z, J (n)) → 1 since
‖J (n) − J0‖1 → 0.

2. (6.5), of course, says that the Jost function is given by

u(z; J) =
[ ∞∏

j=1

aj

]−1

L(z; J). (6.6)

3. Formula (6.4) is an expression of Cramer’s rule since, very formally,
Cramer’s rule says

M(z, J) = det(z + z−1 − J (1))

det(z + z−1 − J)
(6.7)
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and

z = M(z, J (0)) = det
(
z + z−1 − J (1)

0

)
det
(
z + z−1 − J0

) . (6.8)

Moreover,

L(z, J) = det(J − (z + z−1))

det
(

J0 − (z + z−1)
) . (6.9)

(6.7)–(6.9) manipulate to (6.4). Of course, the det’s in (6.7)–(6.9) are all
infinite, but one way to prove (6.4) is to prove (6.7)–(6.9) for cutoff finite
matrices and take limits.

When (5.1) holds, J − J0 may not any longer be trace class, but it is
Hilbert-Schmidt, which suggests that we use the renormalized determinant
for such operators. Such determinants go back to Carleman [2]. They are
discussed in [45,17]. Our approach, due to Seiler [37,38] and used in [45],
relies on the fact that if A is Hilbert-Schmidt, then

B = (1 + A)e−A − 1

is trace class, so we can define

det2(1 + A) ≡ det(1 + B) = det((1 + A)e−A). (6.10)

It obeys (see [45, Chap. 9])

A ∈ �1 → det(1 + A) = det2(1 + A)eTr(A) (6.11)∣∣det2(1 + A) − det2(1 + C)
∣∣ ≤ ‖A − C‖2 exp(Γ2(‖A‖2 + ‖C‖2 + 1))

(6.12)

for a suitable constant, Γ2.
We note (see [43, eqn. (1.2.24)]) that
[(

J0 − (z + z−1)
)−1]

nm
= −(z−1 − z)−1[z|m−n| − zm+n]. (6.13)

Thus[
δJ
(

J0 − (z + z−1)
)−1]

nn
= − (z−1 − z)−1{(an−1 − 1)(z − z2n−1) (6.14)

+ bn(1 − z2n) + (an − 1)(z − z2n+1)
}

which implies:

Lemma 6.2. If δJ is trace class and z ∈ D, then

Tr
(
δJ
(

J0 − (z + z−1)
)−1)

(6.15)

= −(z−1 − z)−1

{ ∞∑
n=1

bn(1 − z2n) + 2
∞∑

n=1

(an − 1)(z − z2n+1)

}
.
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It also explains the relevance of

Proposition 6.3. Suppose an, bn obey (α)–(γ) of Theorem 5.1. Then

T(z; J) = lim
N→∞

[
− (z−1 − z)−1

N∑
n=1

bn(1− z2n)+2
N∑

n=1

(an −1)(z − z2n+1)

]

(6.16)

exists for all z ∈ D and the convergence is uniform for compact subsets
of D.

Proof. z2· ∈ �2 for z ∈ D uniformly on compact subsets, so (α) implies

∞∑
n=1

bnz2n and
∞∑

n=1

(an − 1)z2n+1

converge absolutely to an analytic limit.
(β) plus

∑∞
n=1|an −1|2 < ∞ implies limN→∞

∑N
n=1(an −1) exists, and

this plus (γ) implies the existence of the remaining terms. ��
Definition. If (α)–(γ) of Theorem 5.1 hold, we define

L ren(z, J) = det2
(
1 + δJ

(
J0 − (z + z−1)

)−1)
eT(z;J ). (6.17)

Proposition 6.4. Let z ∈ D. L ren(z, J) = 0 if and only if z + z−1 ∈ σ(J).

Proof. det2(1 + A) = 0 if and only if 1 + A is not invertible (see [45,
Chap. 9]). Since 1+δJ(J0 −(z+ z−1))−1 = (J −(z+ z−1))(J0 −(z+ z−1)),
this happens if and only if z + z−1 ∈ σ(J). ��

By (6.1), (6.11), and (6.15), we have that

Proposition 6.5. If
∑∞

n=1|an − 1| + |bn| < ∞, then

L ren(z, J) = L(z, T ). (6.18)

Theorem 6.6. If (α)–(γ) of Theorem 5.1 hold, then for all z ∈ D so
z + z−1 /∈ σ(J),

M(z, J) = zL ren(z; J (1))

L ren(z; J)
(6.19)

and

z−nwn(z) =
( n−1∏

j=1

aj

)
L ren(z; J (n))

L ren(z; J)
. (6.20)
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Proof. (6.20) is implied by (6.19) and (5.7), so we need only prove (6.19).
Define Jn to be the Jacobi matrix with

a(n)
j =

{
aj j ≤ n − 1
1 j ≥ n

(6.21)

b(n)
j =

{
bj j ≤ n
0 j ≥ n + 1.

(6.22)

Then, by (α),

‖Jn − J‖2 → 0 (6.23)

so ‖δJn − δJ‖2 → 0, so by (6.12),

det2
(
1 + δJn

(
J0 − (z + z−1)

)−1)→ det2
(
1 + δJ

(
J0 − (z + z−1)

)−1)
.

(6.24)

It is easy to see that T(z, Jn) → T(z, J). Thus, using (6.18), uniformly on
compacts of D,

lim
n→∞ L(z, Jn) = lim

n→∞ L ren(z, Jn) = L ren(z, J). (6.25)

The same is true for J (1)
n and J (1). Therefore, since u(z, J) 
= 0, (6.4)

implies (6.19). ��
We therefore have the second proof of the hard part of Theorem 5.1:

Theorem 6.7. Let (α)–(γ) of Theorem 5.1 hold. Then uniformly on compact
subsets of D\{z | z + z−1 ∈ σ(J)},

z−nwn(z) → u(z)−1 (6.26)

where

u(z) =
(

lim
n→∞

n∏
j=1

aj

)−1

L ren(z, J). (6.27)

Proof. By (6.20), this is equivalent to

lim
n→∞ L ren(z, J (n)) = 1 (6.28)

uniformly on compacts. It is easy to see that limn→∞ T(z, J (n)) = 0. Since
‖J (n) − J0‖2 → 0,

det2
(
1 + δJn

(
J0 − (z + z−1)

)−1)→ 1.

This proves (6.28). ��
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7. Geronimo-Case equations

Given a set {an, bn}∞
n=1 of real Jacobi parameters, the Geronimo-Case poly-

nomials cn(z), gn(z) are defined by the recursion relations:

cn+1(z) = a−1
n+1

[(
z2 − bn+1z

)
cn(z) + gn(z)

]
(7.1)

gn+1(z) = a−1
n+1

[((
1 − a2

n+1

)
z2 − bn+1z

)
cn(z) + gn(z)

]
(7.2)

with initial conditions

c0(z) = g0(z) = 1. (7.3)

They were introduced in a slightly different form by Geronimo-Case [16]
who, under a condition that

∑
n[|an −1|+|bn |] < ∞, proved that for z ∈ D,

limn→∞ gn(z) exists and defined it to be the Jost function. In Paper II of our
current series [9], we will reexamine these equations to prove convergence
in D if

∑
n|an − 1| + |bn| < ∞ and, most importantly, identify what cn and

gn are, namely,

cn(z) = zn pn

(
z + 1

z

)
(7.4)

where pn are the orthonormal polynomials. Moreover, if J̃� is defined like
J� (see (6.21)/(6.22)) but with a different cutoff on aj , that is,

ã(�)
j =

{
aj j ≤ �

1 j ≥ � + 1
(7.5)

b̃(�)
j =

{
bj j ≤ �

0 j ≥ � + 1
(7.6)

then

gn(z, J) = u(z, J̃n) (7.7)

the conventional Jost function for J̃n, that is, (limm→∞ z−mwm(z, J̃n))
−1.

Our goal here is to extend Theorem 5.1 by proving:

Theorem 7.1. The following are equivalent:

(a) For some ε ∈ (0, 1), limn→∞ cn(z) exists for |z| = ε uniformly in such z.
(b) For all z ∈ D, limn→∞ cn(z) and limn→∞ gn(z) exist uniformly on

compacts of D, and lim gn(z) is the Jost function u(z; J).
(c) Conditions (α)–(γ) of Theorem 5.1 hold.
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Proof. That (a) ⇒ (c) is just (ii) ⇒ (iv) in Theorem 5.1, and (b) ⇒ (a) is
trivial. So we only need (c) ⇒ (b). Convergence of cn is just (iv) ⇒ (i) of
Theorem 5.1, so we only need convergence of gn . To see this, we use (7.7),
(6.17), and (6.27). ‖ J̃n − J‖2 → 0, so

det2
(
1 + δ J̃n

(
J0 − (z + z−1)

)−1)→ det2
(
1 + δJ

(
J0 − (z + z−1)

)−1)
.

(7.8)

Clearly, T(z; J̃n) → T(z; J). Thus, gn converges to the Jost function for J .
��

The point of this theorem is that we establish the validity of the GC
equations for defining u in the general context of Theorem 5.1. There is
a second point – we want to turn this analysis around and directly use the
GC equations to prove that, when (α)–(γ) hold, cn(z) and gn(z) have limits
for z ∈ D, thereby providing a third proof of the hard part of Theorem 5.1.
The key is the following theorem of Coffman [6]:

Theorem 7.2 ([6]). Let J be a d×d diagonal matrix with entries λ1, . . . , λd
along the diagonal. Let An be a sequence of d × d matrices so

(i)
∞∑

n=1

‖An‖2 < ∞. (7.9)

(ii) J and {J + An}∞
n=1 are all invertible.

Consider solutions yn ∈ Cd of

yn+1 = (J + An)yn (7.10)

with some initial condition y1. Suppose λ j is a simple eigenvalue with
|λ j | 
= |λ�| for � 
= j. Let

Y(n) =
n−1∏
m=1

[λ j + (Am) jj]. (7.11)

Then there exists an initial condition y1 so that

lim
n→∞

yn, j

Y(n)
(7.12)

exists and is nonzero, while for � 
= j,

lim
n→∞

yn,�

Y(n)
= 0. (7.13)
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Remarks. 1. Coffman’s result is a discrete analog of continuum (ODE)
results of Hartman-Wintner [20]. Related work includes Ford [15], Benzaid-
Lutz [1], and Janas-Moszyński [21].

2. Coffman [6] only requires that λ j be a simple eigenvalue and allows
others can have Jordan blocks. In (7.9), he allows 2 to be replaced by
p ∈ [1, 2], but such assumptions imply (7.9)!

3. A pedagogical presentation of Theorems 7.1 and 7.2 will appear in
the second edition of [43]. Until that second edition appears, the section
will be available on the web at http://www.math.caltech.edu/opuc.html.

Corollary 7.3. Let J be a d × d matrix with simple eigenvalues λ1 = 1,
λ2, . . . , λd with |λi| 
= |λ j | if i 
= j and λ2, . . . , λd ∈ D. Let y(0) be the
eigenvector of J with Jy(0) = y(0). Suppose An obeys (7.9) and

lim
N→∞

N∑
n=1

An

exists. Then for any initial condition y1, the solution of (7.10) obeys

lim
n→∞ yn = c(y1)y(0). (7.14)

As a preliminary, note that if
∑N

n=1 an has a limit and

∞∑
n=1

|an|2 < ∞ (7.15)

then
∏N

j=1(1 + an) has a finite limit which is nonzero if all an 
= −1. For∑∞
n=1 log(1 + an) − an is absolutely convergent by (7.15).

Proof. By this remark and Theorem 7.2, there are solutions y(k)
n with

y(k)
n λ−n

k → multiple of eigenvector of J with eigenvalue λk.

(7.14) follows since λ1 = 1 while |λk| < 1 for k 
= 1. ��
Remark. By using Perron’s theorem, one can show that only |λ j | < 1 for
j ≥ 2 is needed, not |λ j | 
= |λk|.

Here is the promised third proof of the hard part of Theorem 5.1:

Theorem 7.4. Let conditions (α)–(γ) of Theorem 5.1 hold. Let cn, gn be
defined by (7.1)–(7.3). Then

(
cn

gn

)
(z) → f(z)

(
(1 − z2)−1

1

)
. (7.16)
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Proof. Let J = ( z2 1
0 1

)
with z ∈ D. J has eigenvalues z2 ∈ D and 1, and the

eigenvector for eigenvalue 1 is ((1 − z2)−11)t . Let

An =
( −bn+1z 0(

1 − a2
n+1

)
z2 − bn+1z 0

)

which obeys the hypothesis of Corollary 7.3 by (α)–(γ). This corollary plus
existence of the limit

∏∞
j=1 aj imply (7.16). ��

Remark. One can also apply Theorem 7.2 directly to the recursion relation
(2.1) to see that there exist solutions ∼ Czn, that is, Jost solutions.

8. L2 Convergence on the boundary

Our goal in this section is to prove:

Theorem 8.1. Let dρ have the form (1.1) and suppose {an, bn}∞
n=1 obey

(α)–(γ) of Theorem 5.1. Then

lim
n→∞

∫ 2

−2

∣∣pn(x) − (sin θ)−1Im(ū(eiθ )ei(n+1)θ )
∣∣2 f(x) dx = 0 (8.1)

with θ = arccos( x
2 ), and

lim
n→∞

∫
|pn(x)|2 dρs(x) = 0. (8.2)

Remark. Unfortunately, there are some errors in the analogous formula in
[44], namely, (13.3.15) should have

ū(x)ei(n+1)θ − u(x)e−i(n+1)θ

2i sin θ
(8.3)

where it has

ū(x)ei(n−1)θ − u(x)ei(n−1)θ

4 sin θ
(8.4)

and pn , not Pn . As a check, when bn ≡ 0, an ≡ 1, pn(2 cos θ) = sin(n+1)θ

sin θ
and u ≡ 1.

Remark. It is desirable to prove the existence of wave operators under
the assumptions of Theorem 8.1. The existence of wave operators for L2

perturbations was indeed established for the one-dimensional Dirac operator
by Denisov [11] and for OPUC by Simon [44, Theorem 10.7.9]. The proofs
rely on the fact that, in both cases, the free evolution is especially simple
and they do not extend immediately to the context of Jacobi matrices or one-
dimensional continuum Schrödinger operators. For the latter case, Christ
and Kiselev have shown solution asymptotics pointwise for almost every
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positive energy and existence of wave operators for potentials in L p, p < 2,
and their ideas should allow one to prove analogous results for Jacobi
matrices. See [5] and references therein to related earlier work by the same
authors. One can use (8.1) to prove that for a.e. θ, the transfer matrix is
bounded along a subsequence. The deeper and interesting open question is
pointwise convergence for a.e. θ. We do not know how to prove this or how
to derive the existence of wave operators from the L2 estimates given in
Theorem 8.1.

Theorem 8.1 is an analog of what Szegő proved in [48] for OPUC and
then translated [49] to exactly this form for OPRL with supp(dρ) ⊂ [−2, 2].
Peherstorfer-Yudistkii [34] proved precisely this when (1.5) and (1.13) hold.
While the underlying core idea behind the proof we use is that of those
authors, our technicalities are much more complex.

For all these proofs, the key is to prove what is essentially a weak L2

convergence that in the current context is

lim
n→∞

∫ 2π

0
einθ pn(2 cos θ)u(eiθ )−1(1 − e2iθ)

dθ

2π
= 1. (8.5)

In the Szegő case, u(z)−1 is an H2-function, so the left side of (8.5) is just
[zn pn(z + 1

z )u(z)−1(1 − z2)]∣∣
z=0, which converges to 1 by the asymptotic

result inside the circle. If there are finitely many bound states, u(z)−1 has
finitely many poles. Using the fact that eigenfunctions go to zero, it is easy to
accommodate the poles. For the case that Peherstorfer-Yuditskii study, the
argument is more subtle but, by cutting off Blaschke products, still involves
a contour integral around the whole unit circle.

In contrast, our u(z)−1 is so singular at ±1 that we do not see how
to directly deal with the integral in (8.1). Instead, we will deal with arcs
by mapping a sector to the unit disk and relating this to distributional
convergence of suitable boundary values of analytic functions. As noted in
the introduction, this argument has some elements in common with work of
Denisov-Kupin [12] which was done subsequently to our work. In turn, we
were all motivated by some arguments of Killip [25].

The technical core of our proof is the following:

Proposition 8.2. Let (α)–(γ) of Theorem 5.1 hold. Fix a sector on D,

S = {z | |z| < 1, 0 < θ0 ≤ arg z ≤ θ1 < π}. (8.6)

Then there exist N and C so that for all n and all z ∈ S,∣∣∣∣zn pn

(
z + 1

z

)
(1 − z2)u(z)−1

∣∣∣∣ ≤ C(1 − |z|)−N . (8.7)

Moreover, C and N are uniformly bounded for S fixed for all {an, bn}∞
n=1

with

sup
N

(∣∣∣∣
N∑

n=1

log(an)

∣∣∣∣+
∣∣∣∣

N∑
n=1

bn

∣∣∣∣
)

+
∞∑

n=1

|an − 1|2 + |bn|2 < K. (8.8)
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Remarks. 1. What is critical is the C and N are n independent. N is also
S independent, but C is S dependent and diverges as S approaches the real
axis, that is, as we approach the singularities at z = ±1.

2. As noted in the introduction, by using ideas of Denisov-Kupin [12],
we can likely prove this with N = 1; we will have N = 5

2 .
3. We defer the proof until the end of the section.

Definition. If f(z) is a function analytic on D, with

f(z) =
∞∑

n=0

f̂ (n)zn (8.9)

and if f obeys

| f(z)| ≤ C(1 − |z|)−N (8.10)

so

| f̂ (n)| ≤ 4C(n + 1)N (8.11)

(obtained by writing f̂ (n) as a contour integral over a circle of radius
1 − (n + 1)−1), we define the distributional boundary values of f by

∫
f(eiθ)g(eiθ )

dθ

2π
≡

∞∑
n=0

f̂ (n)

∫
einθ g(eiθ )

dθ

2π
(8.12)

for C∞ functions g on ∂D.

Power bounds like (8.7) are important because of

Proposition 8.3. Let fn(z) be a sequence of functions analytic on D so that
for some fixed C, N and all n,

| fn(z)| ≤ C(1 − |z|)−N . (8.13)

Suppose fn → f∞ uniformly on compacts of D. Then the distributional
boundary values converge in (weak) distributional sense.

Proof. Let f ∈ C∞(∂D) and ĝ(−n) the integral in (8.12). Write

∞∑
k=0

| f̂n(k) − f̂∞(k)| |ĝ(−k)| ≤ 1 + 2

where 2 = ∑∞
k=K+1 and 1 = ∑K

k=1. Then, by (8.11) and (8.13), for

g fixed, we can choose K so | 2 | < ε. By the assumed convergence,
f̂n(k) → f̂∞(k) for each k, so 1 → 0. ��
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Proposition 8.4. For any sector S of the form (8.6), there is an analytic
bijection ϕ : D→ S and constant C so that

(1 − |ϕ(z)|)−1 ≤ C(1 − |z|)−1. (8.14)

Proof. By compactness, we only need to prove this near points where
|ϕ(z)| = 1. Such points are on the part of ∂D that maps into ∂S ∩ ∂D,
that is, an arc. At interior points, ϕ is locally linear and (8.14) holds, so
we only need to worry about neighborhoods, N, of the points that map to
corners. In suitable local coordinates, ζ , the corner maps to 0, N ∩ D maps
to C+ ∩ {ζ | |ζ | < ε} and ϕ is transformed to ϕ(z(ζ)) = √

ζ mapping
C+ to a 90◦ corner. In these local coordinates, 1 − |ϕ(z)| ∼ Im

√
ζ and

1 − |z| ∼ Imζ , and (8.14) says

1

Im
√

ζ
= 2Re

√
ζ

Imζ
≤ C

Imζ

which is immediate since |ζ | is small. Thus, (8.14) holds locally, and so
globally. ��

Given a sector S of the form (8.6) and ϕ : D→ S, we can define analytic
functions on D,

fn(z) = gn(ϕ(z)) (8.15)

where

gn(z) = zn pn

(
z + 1

z

)
u(z)−1(1 − z2). (8.16)

This allows us to consider boundary values of fn , and so gn , as distributions.
But gn , and so fn, also has pointwise boundary values, and we want to prove
that the distributional boundary value is given by the function. We have

Lemma 8.5. For any sector S of the form (8.6), there is an H2 function h
and a function q analytic in a neighborhood of D ∪ S̄ so that

u(z)−1 = h(z)q(z). (8.17)

Remark. The point is that q(z) is analytic in ∂S, so the boundary values of
u−1 on ∂S are given by the well-studied theory of boundary values of H2

functions [36,13].

Proof. We use the representation (5.31). Define

H(θ) =
{

ImM(eiθ ) eiθ ∈ T ∪ T̄
|sin θ| eiθ /∈ T ∪ T̄

(8.18)
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where T is a slightly enlarged ∂S ∩ ∂D, but not so enlarged that it includes
+1 or −1. Let

h(z) = exp

(
1

4π

∫
eiθ + z

eiθ − z
log

(
H(θ)

sin θ

)
dθ

)
. (8.19)

Since H(θ)

sin θ
> 0 (by (5.32)),

∫
log
(

H(θ)

sin θ

)
> −∞ (8.20)

and, by (5.32) again,

∫ (
H(θ)

sin θ

)
dθ

2π
< ∞ (8.21)

the function (8.19) is inH2 by the standard approximant argument of Szegő
(see [43, Sect. 2.4]).

Thus, we define q(z) = u(z)−1h(z)−1 and need to show that it is analytic
in a neighborhood of D ∪ S. By (5.31), we can write

q(z) = q1(z)q2(z)q3(z)q4(z) (8.22)

where

q1(z) =
( ∞∏

j=1

aj

)α(a)

exp

(
1

2
β(z)

∞∑
j=1

bj

)
(8.23)

is clearly analytic away from ±1. We have that q2 is the inverse of the
renormalized Blaschke product is analytic away from R by Theorem 3.3.
Next,

q3(z) = exp
(

1

4π

∫
Q(z, eiθ ) log

(
ImM

H(θ)

)
dθ

)
(8.24)

is analytic since log( ImM
H(θ)

) is supported on ∂D\(T ∪ T̄ ) and Q(z, eiθ ) has
singularities only at z = ±1,±eiθ . Finally,

q4(z) = exp

(
1

4π

∫
[Q(z, eiθ ) − P(z, eiθ )] log

(
H(θ)

sin θ

)
dθ

)
(8.25)
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is analytic since log( H(θ)

sin θ
) is even, so we can replace Q − P by Q(z, eiθ ) −

1
2 P(z, eiθ ) − 1

2 P(z, eiθ ) and this kernel is only singular at z = ±1. ��
Given θ0 ∈ [0, 2π), let Rθ0 be the region

Rθ0 =
{

z

∣∣∣∣ 1 > |z| >
1

2
, arg(1 − e−iθ0 z) <

π

4

}
(8.26)

a region of nontangential approach to θ0. Define the maximal function,

M(θ0) = sup
z∈Rθ0

|u(z)−1|. (8.27)

Given Lemma 8.5, standard H2 theory [36,13,24] implies that

Proposition 8.6. u(reiθ )−1 has boundary values as r ↑ 1 for a.e. θ ∈
(0, 2π). Indeed, for a.e. θ,

lim
|z|↑1
z∈Rθ0

u(z)−1 = u(eiθ0)−1. (8.28)

Moreover, for every η > 0,
∫ π−η

η

M(θ0)
2 dθ

2π
< ∞. (8.29)

This implies

Proposition 8.7. Let S be a sector of the form (8.6) and fn be given by
(8.15)/(8.16). Let S̃ ⊂ ∂D be the image of ∂S ∩ ∂D under ϕ−1 and let
T fn denote the distribution induced by fn on ∂D. Let t(θ) be a function in
C∞(S̃int). Then

T fn (t) =
∫

S̃
t(θ)gn(ϕ(eiθ ))

dθ

2π
. (8.30)

where gn is defined by the pointwise boundary value of u−1.

Proof. By the definition of (8.12) and the absolute convergence of the sum,

T fn (t) = lim
r↑1

∫
S̃

t(θ)gn(ϕ(reiθ ))
dθ

2π
. (8.31)

By the continuity of ϕ � {reiη | η ∈ supp(t)}, for all r close enough to 1,
ϕ(reiθ ) ∈ Rϕ(eiθ ), so gn(ϕ(reiθ )) → gn(ϕ(eiθ )) by (8.28), and by (8.29)
and |tgn| ≤ 2|t|M sup|t|≤1|zn pn(z + 1

z )|, we have domination by a function
in L2, and so in L1. Thus, (8.30) follows from the dominated convergence
theorem. ��
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Proposition 8.8. For each C∞ function, let S be a sector of the form (8.6)
and ϕ an analytic map of D to S. Let t be a C∞ function with support in
Sint. Then

lim
n→∞

∫
S̃

t(θ)gn(ϕ(eiθ ))
dθ

2π
=
∫

t(θ)
dθ

2π
. (8.32)

Proof. By (8.7) and (8.14), plus Theorem 5.1 (which implies gn(z) → 1
for z ∈ D and so for z ∈ S) and Proposition 8.3, T fn → 1 in distributional
sense. This implies (8.32), given Proposition 8.7. ��

These lengthy preliminaries imply the key to L2 convergence on the
boundary:

Theorem 8.9. Let u(eiθ )−1 be the boundary values of u−1 on ∂D. Let gn be
given by (8.16) on ∂D. Then
(1) ∫ 2π

0
|gn(e

iθ )|2 dθ

2π
≤ 2. (8.33)

(2) gn → 1 in weak-L2(∂D, dθ
2π

).

Proof. (1) We begin with some preliminaries concerning the measure dµac
on ∂D obtained by using θ = arccos( x

2 ) to move the a.c. part of dρ, that is,
f(x) dx to ∂D. Since eiθ → 2 cos θ is 2 − 1 from ∂D to [−2, 2] (see [44,
Sect. 13.15]),

dµac(θ) = |sin θ| f(2 cos θ) dθ. (8.34)

By (5.3) and standard theory of Stieltjes transforms,

f(2 cos θ) = |ImM(eiθ )|
π

(8.35)

so, by (5.32),

dµac = sin2(θ)

|u(eiθ )|2
dθ

π
(8.36)

= 1

2

|1 − e2iθ |2
|u(eiθ )|2

dθ

2π
. (8.37)

Thus, ∫ 2π

0
|gn(e

iθ )|2 dθ

2π
= 2

∫ 2π

0
|pn(2 cos θ)|2 dµac(θ)

= 2
∫ 2

−2
|pn(x)|2 dρac(x)

≤ 2
∫ 2

−2
|pn(x)|2 dρ(x) = 2

proving (8.33).
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(2) By (1), the functions gn are uniformly bounded in L2, so it suffices
to prove that ∫

t(eiθ )gn(e
iθ )

dθ

2π
→
∫

t(eiθ )
dθ

2π
(8.38)

for a total set of t’s. If t is C∞ and supported in some sector S of the form
(8.6), (8.38) follows from Proposition 8.8 (there is a Jacobian to go from
dϕ(θ) to dθ, but it is C∞ on Sint and occurs on both sides of (8.38)). Since
such t’s are total, (2) is proven. ��
Proof of Theorem 8.1. Define in L2([−2, 2], f(x) dx),

j+n (x) = (2 sin θ)−1 u(eiθ ) ei(n+1)θ (8.39)

j−n (x) = j+n (x) (8.40)

where θ(x) ∈ (0, π) is given by x = 2 cos(θ(x)). By (8.35) and (5.32),

f(x) = sin θ

π|u(eiθ )|2 . (8.41)

Thus, by a change of variables,
∫ 2

−2

∣∣ j+n (x)
∣∣2 f(x) dx =

∫ 2

−2

1

4
sin−2 θ|u|2 sin θ

π|u|2 dx

= 1

2

∫ π

0

dθ

π
= 1

2
. (8.42)

On the other hand, by the same change of variables,〈
j−n ,pn

〉
L2( f dx)

=
∫ 2

−2
(2 sin θ)−1 u(eiθ ) einθ eiθ pn(2 cos θ)

sin θ

π|u|2 dx

=
∫ π

0
u(eiθ )−1

[
(1 − z2)zn pn

(
z + 1

z

)∣∣∣∣
z=eiθ

] −1

2i

dθ

π
(8.43)

→ i

2
(8.44)

by Theorem 8.9. (8.43) uses

eiθ 1

2 sin θ
sin θ d(2 cos θ) = eiθ sin θ = −1

2i
(1 − e2iθ ).

Similarly, since pn is real,

〈
j+n , pn

〉
L2( f dx)

→ − i

2
. (8.45)
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Finally, by the same change of variables that led to (8.42),

〈
j+n , j−n

〉
L2( f dx)

= 1

2

∫ π

0
e−2i(n+1)θ u(eiθ )

u(eiθ )

dθ

π
→ 0 (8.46)

since u
ū ∈ L2(∂D, dθ

2π
) and e−2i(n+1)θ) → 0 weakly.

Now,

pn(x) − (sin θ)−1Im(ūei(n+1)θ ) = pn(x) − i−1
[

j+n − j−n
]

(8.47)

so, by (8.42), (8.43), (8.45), and (8.44) (all norms in L2( f dx)),

0 ≤ lim inf ‖LHS of (8.47)‖2

= lim inf
(‖pn‖2 + ∥∥ j+n

∥∥2 + ∥∥ j−n
∥∥2 − 2Re

〈
j+n , j−n

〉
+ 2Re

〈
pn, ij+n

〉− 2Re
〈
pn, ij−n

〉)
= lim inf

(‖pn‖2 + 1
2 + 1

2 − 0 − 1 − 1
)

= lim inf ‖pn‖2 − 1.

Thus, since ‖pn‖2
L2( f dx)

≤ 1, we conclude

lim ‖pn‖2
L2( f dx) = 1

so ‖pn‖L2(dρs) → 0 and, by the above calculation, LHS of (8.47) → 0. ��
Thus, Theorem 8.1 is reduced to the proof of Proposition 8.2, to which

we now turn. As a preliminary, we want to exploit the proof of Lemma 8.5:

Proposition 8.10. Let S be a sector of the form (8.6) and let K be given.
Then there exists C depending only on S and K so that if (8.8) holds, then
for z ∈ S,

|u(z)−1| ≤ C(1 − |z|)−1/2. (8.48)

Proof. As in Lemma 8.5, we construct the factorization (8.17). The proof
shows that ‖h‖H2 and ‖q‖S,∞ ≡ supz∈S|q(z)| are bounded by constants C1
and C2 depending only on K and S.

Let h(z) = ∑∞
j=0 h j z j , then ‖h‖H2 = (

∑∞
j=0|h j|2)1/2, so, by the

Schwarz inequality,

|h(z)| ≤ ‖h‖H2

( ∞∑
j=0

|z|2 j

)1/2

= ‖h‖H2(1 − |z|2)−1/2

≤ C1(1 − |z|)−1/2

so, by (8.17), we have (8.48) with C = C1C2. ��
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Our proof will exploit (2.11) where yn = w̃n and xn = cn−1. We are
interested in controlling u−1xn , which means controlling u−1 y−1

n and ratios
yn/yn− j , that is, the functions u−1w̃−1

n and w̃n/w̃n− j . So we turn first to
u−1w̃−1

n and then w̃n/w̃n− j .
Let J (n) be the Jacobi matrix given after (5.3) and make the J-dependence

of wn explicit. Then:

Proposition 8.11. Let w̃n(z, J) be given by (2.2)/(2.3). Then

w̃n(z, J)−1u(z, J)−1 = anu(z, J (n))−1. (8.49)

In particular, if (8.8) holds, then for any S obeying (8.6), there is a C so

sup
n

∣∣w̃n(z, J)−1u(z, J)−1
∣∣ ≤ C(1 − |z|)−1/2. (8.50)

Remarks. 1. In order to get (8.48), one does not need a bound on supN |∑N
1 bn|

but only on limN |∑N
1 bn| (and similarly for log(an)). But to get (8.50), we

need control on supN limM(
∑N+M

N bn) – and that is why we state (8.8) in
the form we do.

2. One can also prove this result using the fact that uwn is the unique
solution asymptotic to zn.

Proof. By (5.7),

w̃n(z, J) =
(

M(z)

z

)(
a1 M1(z)

z

)
. . .

(
an−1 Mn−1(z)

z

)

from which it follows that

w̃n+k(z, J) = anw̃n(z, J)w̃k(z, J (n)). (8.51)

Taking k to infinity using (2.3) and w̃∞ = u−1, we obtain

u(z, J)−1 = anw̃n(z, J)u(z, J (n))−1

which is (8.49). ��
Proposition 8.12. For any J,

(i)

|w̃n(z, J)| ≤ π

4
|z|−nε−1(1 − |z|)−1 (8.52)

when arg z ∈ (ε, π − ε) and 0 < |z| < 1.
(ii) ∣∣∣∣w̃n+k(z, J)

w̃n(z, J)

∣∣∣∣ ≤ π

4
an|z|−kε−1(1 − |z|−1) (8.53)

when arg z ∈ (ε, π − ε) and 0 < |z| < 1.
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Proof. (i) By (2.2),

|w̃n(z, J)| ≤ ‖(z + z−1 − J)−1‖ |z|−n

≤ |Im(z + z−1)|−1 |z|−n

since σ(J) ⊂ R and J is selfadjoint. But if z = reiϕ with 0 < r < 1,

|Im(z + z−1)| = (r−1 − r)|sin ϕ|. (8.54)

For ϕ ∈ (ε, π − ε),

|sin ϕ| ≥ 2

π
ε (8.55)

and

r−1 − r = (1 − r)(r−1 + 1) ≥ 2(1 − r). (8.56)

Thus (8.52) holds.
(ii) (8.53) follows immediately from (8.52) and (8.51). ��

Proof of Proposition 8.2. By (2.11) and the proof of Theorem 2.2,

|cn(z)| ≤
n−1∑
j=0

a−1
n− j

w̃n+1

w̃n+1− jw̃n− j
z2 j + z2n w̃n+1

w̃1
. (8.57)

Define

A = sup
n

(|an|, |an |−1
)

< ∞
since an → 1. Then, by (8.57),

sup
n

∣∣cn(z)u(z)−1
∣∣ ≤ A(1 − |z|)−1 sup

n, j

∣∣∣∣ w̃n+1z j

w̃n+1− j

∣∣∣∣ sup
n, j

1

|w̃n− ju|
+ sup

n

∣∣∣∣w̃n+1zn

w̃1

∣∣∣∣|u|−1.

(8.58)

By (8.53), with ε chosen so S ⊂ {z | arg z ∈ (ε, π − ε)}, we have

sup
n, j

∣∣∣∣w̃n+1z j

wn+i− j

∣∣∣∣ ≤ πA

4
ε−1(1 − |z|)−1.

By (8.50),

sup
n, j

∣∣∣∣ 1

w̃n− ju

∣∣∣∣ ≤ C(1 − |z|)−1/2.

Thus, (8.58) implies that∣∣∣∣zn pn

(
z + 1

z

)
(1 − z2)u(z)−1

∣∣∣∣ ≤ C(1 − |z|)−5/2

where C depends on S and the constant K in (8.8). ��
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9. Bound states

One knows that with regard to Szegő asymptotics, sometimes simple-
looking assumptions are really quite restrictive: for instance (see, e.g., [44,
Chapter 13]), if supp(dµ) ⊂ [−2, 2], then (β) of Theorem 5.1 implies all
of (α)–(γ) and all the other hypotheses of that theorem. Also (see [46]), if
(β) holds and f is given by (1.1), then

N±∑
j=1,±

(∣∣E±
j

∣∣− 2
)1/2

< ∞ (9.1)

if and only if ∫ 2

−2
(log f )(4 − x2)−1/2 dx > −∞. (9.2)

Here we want to show that (β), (γ) alone do not imply spectral restrictions.
In particular, we want to show that for each q < 3

2 , there is a Jacobi matrix
obeying (α)–(γ) where

N±∑
j=1,±

(∣∣E±
j

∣∣− 2
)q = ∞. (9.3)

Of course, by [26], (α) implies

N±∑
j=1,±

(∣∣E±
j

∣∣− 2
)3/2

< ∞. (9.4)

Our construction will have an ≡ 1 and bn nonzero in blocks. In [44,
Sect. 13.9], examples with bn nonzero in a sequence of isolated points are
constructed where (α)–(γ) hold and (9.3) holds for p arbitrarily close to 1.
So this section improves that result. Our construction is closely related to
that in Theorem 5.12 of [7].

Pick α in ( 1
2 , 1) and p so that

α

1 − α
> p >

α

2 − α
. (9.5)

We will eventually take α to 1
2 and p − α

2−α
→ 0. Pick M0 and C1 so for

m ≥ M0, the distances between the blocks Bm ≡ [m p+1 − C1m p, m p+1 +
C1m p] for m = M0, M0 +1, . . . are each at least 2. This is easy to do if one
fixes C1 < 1

2 (p + 1). We should use [C1m p], but for notational simplicity,
we will pretend that C1m p is an integer. We pick bn by

bn =
⎧⎨
⎩

n−α n ∈ B2k, 2k ≥ M0

−n−α n ∈ B2k+1, 2k + 1 ≥ M0

0 otherwise.
(9.6)
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Lemma 9.1. an ≡ 1 and bn in (9.6) obey (α)–(γ) of Theorem 5.1.

Proof. Since |bn| ≤ n−α and α > 1
2 , condition (α) holds and (β) is trivial.

So we only need to check (γ). Since d
dn n−α = −αn−α−1, if n ∈ Bm, then

|n−α − m−(p+1)α| ≤ Cm−(p+1)(α+1)m p

= Cm−[(p+1)α+1].

Thus,
∣∣∣∣
∑

n∈Bm

|bn| − 2C1m−α(p+1)+p

∣∣∣∣ ≤ C2m−1m−α(p+1)+p. (9.7)

We claim

α(p + 1) > p (9.8)

which implies, first, that the estimate on the right of (9.7) is absolutely
summable and, second, that

∑
m(−1)mm−α(p+1)+p is conditionally summ-

able, proving (γ).
To prove (9.8), note that it is equivalent to α > p(1 − α) or p < α

1−α
,

which is true by (9.5). ��
For m even, we will pick ϕm to be the trial vector supported in Bm, which

is 1 at the center of Bm (i.e., at n = m p+1), 0 at the end points, and constant
slope in between. For m odd, we do the same construction and then multiply
by (−1)n.

Consider m even first. Since an ≡ 1,

〈ϕm, (J0 − 2)ϕm〉 = −
∑

n

|ϕm(n + 1) − ϕm(n)|2 (9.9)

≥ −m p

[
C

m p

]2

= −C2m−p (9.10)

since the slope ∼ m−p and there are O(m p) nonzero terms in the sum
(9.9). On the other hand, since bn > C3m−α(p+1) on Bm and, on average,
|ϕm|2 ≥ 1

4 on Bm,

〈ϕm, bϕm〉 ≥ C3m pm−α(p+1). (9.11)

It is easy to see that p > α
2−α

is equivalent to 2p > α(p + 1), so for
m ≥ M1 for some M1,

〈ϕm(J0 + b − 2)ϕm〉 ≥ 1
2 C3m pm−α(p+1). (9.12)
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Since ‖ϕm‖2 ≤ C4m p, we see that

〈ϕm, (J0 + b − 2)ϕm〉
‖ϕm‖2

≥ C4m−α(p+1) (9.13)

for m even. Similarly, for m odd,

〈ϕm, (J0 + 2 + b)ϕm〉
‖ϕm‖2

≤ −C4m−α(p+1). (9.14)

Since 〈ϕm, ϕk〉 = 0 = 〈ϕm, (J0 + b)ϕk〉 for m 
= k, a variational argument
proves for m large, ∣∣∣∣E±

m

∣∣− 2
∣∣ ≥ 1

2 C4m−α(p+1). (9.15)

Thus, (9.3) holds if qα(p + 1) < 1. Taking α ↓ 1
2 , p ↓ 1

3 , we see
q ↑ (( 1

2 )( 4
3))

−1 = 3
2 . Thus,

Theorem 9.2. For any q < 3
2 , there is a set of Jacobi parameters for which

(α)–(γ) of Theorem 5.1 hold, but for which (9.3) also holds.

10. A remark on Schrödinger operators

In this section, we want to show how the ideas of Sect. 6 provide a simple
proof of

Theorem 10.1. Suppose V ∈ L2(0,∞) and

lim
x→∞

∫ x

0
V(y) dy (10.1)

exists. Then for any κ with κ > 0, there is a solution of

−u′′ + Vu = −κ2u (10.2)

so that

lim
x→∞ eκxu(x) = 1. (10.3)

This result is not new. It was proven by Hartman-Winter [20] using
sophisticated ODE asymptotic methods. Even with the simplification of
Harris-Lutz [19], the proof is involved (see Eastham [14] for a particularly
clear discussion of this proof). Here, as in Sect. 6, we will use renormalized
determinants to construct u. The same argument shows that if (10.1) does
not have a finite limit, then there is a solution so u(x)/ exp[ f(x)] → 1,
where

f(x) = −κx + 1

2κ

∫ x

0
V(y) dy (10.4)

also a result of Hartman-Wintner [20].
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In the argument below, we will use unfactorized kernels (i.e., VG0) rather
than factorized kernels (i.e., V 1/2G0|V |1/2). By using factorized kernels, one
should be able to extend this theorem to the case where V ∈ L2 is replaced
by
∑

n(
∫ n+1

n |V(x)| dx)2 < ∞.
The starting point is a formula of Jost-Pais [23] for the Jost function

extended to get the Jost solutions.

Proposition 10.2. Let G0(−κ2) be the operator (H0 + κ2)−1 where H0 is
− d2

dx2 with u(0) boundary conditions, so G0 has integral kernel

G0(x, y;−κ2) = (2κ)−1[e−κ|x−y| − e−κ(x+y)]. (10.5)

For any V ∈ L2 of compact support and any x0 > 0, let K(x0; κ) be the
operator with integral kernel

K(x, y; x0; κ) = V(x + x0)G0(x, y;−κ2). (10.6)

Then K is trace class and

u(x0) ≡ e−κx0 det(1 + K(x0; κ)) (10.7)

obeys (10.2), and for x large,

u(x) = e−κx . (10.8)

Remark. (10.8) is trivial since V has compact support, which means K ≡ 0
for x0 large.

Proof. This is essentially Proposition 2.9 of [41]. That paper uses a factor-
ized kernel, but by the Birman-Solomyak theorem (see [45, Chap. 4], K is
trace class, and so the determinants are equal. As noted, (10.8) is immediate.

��
Proposition 10.3. If V ∈ L2 and (10.1) holds, then K(x0; κ) is Hilbert-
Schmidt and

u(x0) = e−κx0 det2(1 + K(x0; κ)) exp

(
(2κ)−1

∫ ∞

x0

V(y)[1 − e−2κy] dy

)
.

(10.9)

Moreover, u obeys (10.2).

Proof. If V has compact support, (10.9) is just (10.7) since Tr(K(x0; κ)) =∫∞
x0

V(y)(2κ)−1[1−e−2κy] dy and we have (6.11). Given general V, let VL(x)
be given by

VL(x) =
{

V(x) x ≤ L
0 x > L

and uL given by (10.1). Since V ∈ L2, KL(x0, κ) → K(x0; κ) in Hilbert-
Schmidt norm, so det2 converges. By (10.1), the exponentials converge.
Thus, uL → u. This means u is a distributional solution of (10.2) and so,
by elliptic regularity, a solution L2 at infinity. ��
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Proof of Theorem 10.1. K(x0; κ) → 0 in Hilbert-Schmidt norm as x0 → ∞,
so det2(1 + K(x0; κ)) → 1. The integral goes to 0 as x0 → ∞. Thus,
u(x0)eκx0 → 1. ��

The point here is that it is natural to try to construct u as a limit of uL’s,
and then prove asymptotics of u. The fact that we have an explicit formula
in terms of renormalized determinants allows us to control both the limit as
L → ∞ and then as x → ∞.
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