
IMRN International Mathematics Research Notices
Volume 2006, Article ID 19396, Pages 1–32

Jost Functions and Jost Solutions for Jacobi

Matrices, II. Decay and Analyticity

David Damanik and Barry Simon

1 Introduction

Among the most interesting results in spectral theory are those that give equivalent sets

of conditions—one set involving recursion coefficients and the other involving spectral

data. Examples are Verblunsky’s version [28] of the Szegő theorem (see [22]), the strong

Szegő theorem written as a sum rule (see [22]), the Killip-Simon theorem [16] character-

izing L2 perturbations of the free Jacobi matrix, and Baxter’s theorem [1, 22].

Our goal in this paper is to present such an equivalence for Jacobi matrices con-

cerning exponential decay. That is, we consider orthogonal polynomials on the real line

(OPRL) whose recursion relation is

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.1)

for Jacobi parameters {an}∞n=1, {bn}∞n=1. Here pn(x) are the orthonormal polynomials and

p−1(x) ≡ 0 (i.e., a0 is not needed in (1.1) for n = 0).

Equation (1.1) is often summarized by the Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎝

b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠
. (1.2)

By J0 we mean the Jwith an ≡ 1, bn ≡ 0.
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The model of what we will find here is the following result of Nevai and Totik [19]

in the theory of orthogonal polynomials on the unit circle (OPUC).

Theorem 1.1 (Nevai and Totik [19]; see [22][Section 7.1. ]) Let dμ be a probability meas-

ure on ∂D obeying

dμ = w(θ)
dθ

2π
+ dμs. (1.3)

Fix R > 1. Then the following are equivalent.

(1) The Szegő condition holds, dμs = 0, and the Szegő function,D(z), hasD(z)−1

analytic in {z | |z| < R}.

(2)

lim sup
n→∞

∣∣αn

∣∣1/n ≤ R−1. (1.4)

�

The Szegő condition is

∫

log
(
w(θ)

)dθ
2π

> −∞ (1.5)

in which caseD is defined initially on D by

D(z) = exp

( ∫

eiθ + z

eiθ − z
log

(
w(θ)

)dθ
4π

)
. (1.6)

In (1.4), αn are the Verblunsky coefficients, that is, the recursion coefficients for the mon-

ic OPUC,Φn,

Φn+1(z) = zΦn(z) − ᾱnΦ
∗
n(z) (1.7)

with

Φ∗
n(z) = znΦn

(
1

z̄

)
. (1.8)

See [11, 12, 22, 23, 26] for background on OPUC.

Also relevant to our motivation is the following simple result.
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Theorem 1.2. Let dμ be a probability measure on ∂D obeying (1.3). Then the following

are equivalent.

(1) The Szegő condition holds, dμs = 0, and the Szegő function,D(z), hasD(z)−1

a polynomial of exact degree n.

(2) αj = 0 for j ≥ n and αn−1 �= 0. �

Proof. (2)⇒ (1). In this case (see [22, Theorem 1.7.8]), dμ = (dθ/2π)|ϕ∗
n(eiθ)|−2, so D−1 =

ϕ∗
n is a polynomial.

(1) ⇒ (2). D(z)−1 is nonvanishing on D, and so the measure has the form (dθ/

2π)|D(z)|2 and so has αj = 0 for j ≥ n (see [22, Theorem 1.7.8]). ThusD(z)−1 = ϕ∗
n(z), and

since ϕn has degree exactly n,Φ∗
n = Φ∗

n−1 − αn−1zΦn−1 implies that αn−1 �= 0. �

In our work, the spectral measure has the form

dγ(x) = f(x)dx + dγs, (1.9)

where supp f ⊂ [−2, 2]. We say dγs is regular if γs([−2, 2]) = 0 and dγs has finite sup-

port (i.e., no embedded singular spectrum and only finitely many bound states). The m-

function associated to dγ is defined on C\ supp(dγ) by

m(E) =

∫

dγ(x)
x − E

(1.10)

andM is defined on D = {z | |z| < 1} by

M(z) = −m
(
z + z−1

)
. (1.11)

Since z �→ z+z−1 maps D to C∪ {∞}\[−2, 2],M is analytic on D\{z ∈ R∩D | z+z−1 is a point

mass of dγ} with simple poles at the missing points.

The Jost function, u(z), is defined and analytic on D in many cases and deter-

mined first by

∣∣u(eiθ
)∣∣2 ImM

(
eiθ
)

= sin θ, (1.12)

where the functions at eiθ are a.e. limits as r ↑ 1 of the functions at reiθ. The second

condition on u is that for z ∈ D,

u(z) = 0 ⇐⇒ z + z−1 is a point mass of dγ. (1.13)
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If one has the sufficient regularity of ImM on ∂D and γs is regular, (1.12) and

(1.13) determine u via

u(z) =
∏

u(zj)=0

(
z − zj

1 − z̄jz

)
exp

( ∫

eiθ + z

eiθ − z
log

(
sin θ

ImM(θ)

)
dθ

4π

)
. (1.14)

In addition, if the Jacobi parameters obey

∞
∑

n=1

∣∣an − 1
∣∣ + ∣∣bn

∣∣ < ∞, (1.15)

then the Jost function can be directly constructed using variation of parameters (see

Teschl [27]), perturbation determinants (see Killip and Simon [16]), or an approach of

Geronimo and Case [9]. Since this latter approach is not well known and those authors

do not provide the detailed estimates we will need, we have described this approach in

the appendix.

When there are zeros of u in D, then u does not uniquely determine dγ. f is deter-

mined by (1.12) and

f(2 cos θ) =
1

π
ImM

(
eiθ
)

(1.16)

and the positions of the point masses are the zeros, but the weights,wj, of the zeros (i.e.,

the values of γ({Ej}) = wj) are needed. The possible values ofwj are constrained by

∑

j

wj +
2

π

∫π

0

sin2
θ∣∣u(eiθ
)∣∣2dθ = 1 (1.17)

by (1.16), (1.12), and

∫2

−2

f(E)dE = 2

∫π

0

f(2 cos θ) sin θdθ. (1.18)

Thus, modulo some regularity issues, the knowledge of a dγ with regular dγs is

equivalent to the knowledge of u and the finite number of weights wj constrained by

(1.17). Our main goal in this paper is to describe which Jost functions and weights are

associated to an’s and bn’s with a given rate of exponential decay or with finite support.

We will view the Jost function/weights as spectral data. This is justified by the following.

Theorem 1.3. Let u be a real analytic function in a neighborhood of D whose only zeros

in this neighborhood lie in (D ∩ R) \ {0} with those zeros all simple. For each zero in (D ∩
R) \ {0}, let a weight wj > 0 be given so that (1.17) holds. Then there is a unique measure

dγ for which u is the Jost function andwj are the weights. �
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Since this is peripheral to the main thrust of this paper, we do not give a detailed

proof, but note several remarks.

(1) Related issues are discussed in Paper I of this series [5].

(2) One first shows that theM defined by dγ has a meromorphic continuation to

a neighborhood of D; this is done in [23, Theorem 13.7.1].

(3) The methods we use in Sections 2 and 3 then show that the an − 1 and bn

decay exponentially.

(4) Thus, by the results of the appendix, a Jost function, ũ, exists. u/ũ has re-

movable singularities, is nonzero on D, is analytic in a neighborhood of

D, and on ∂D, |u/ũ| = 1. Thus, u = ū.

The perturbation determinant can be defined by

L(z) =
u(z)
u(0)

. (1.19)

This is obviously normalized by

L(0) = 1 (1.20)

which is simpler than (1.17). Of course, u(0) can be recovered from {wj}
N
j=1 and L(z) by

(1.17) and (1.19). We note that when J − J0 is trace class, we have (see [16])

L(z) = det
(
1 +

(
J − J0

)[
J0 −

(
z + z−1

)]−1
)
. (1.21)

Our goal in this paper is to prove four theorems: two in the simple case where

there is no point spectrum and two in the general case. In each pair, one describes finite-

support perturbations and one describes exponential decay. We begin with the case of

no bound states.

Theorem 1.4. If an = 1 and bn = 0 for large n, then L(z) is a real polynomial. Conversely,

any real polynomial L(z) which obeys that

(i) L(z) is nonvanishing on D\{±1};
(ii) if +1 and/or −1 are zeros, they are simple;

(iii) L(0) = 1

is the perturbation determinant of a unique Jacobi matrix and it obeys an = 1 and bn = 0

for all large n. �

Remark 1.5. We say that a polynomial L(z) is real if it takes real values on R.

Remark 1.6. By Theorem A.1, there is a precise relation between the degree of L and the

range of (an − 1, bn).



6 D. Damanik and B. Simon

Theorem 1.7. Let R > 1. If

lim sup
n→∞

(∣∣an − 1
∣∣ + ∣∣bn

∣∣)1/2n ≤ R−1, (1.22)

then L(z) has a real analytic continuation to {z | |z| < R}. Conversely, if L(z) is real analytic

in {z | |z| < R} and obeys (i)–(iii) from Theorem 1.4, then (1.22) holds. �

For bound states, things are more complicated. One way of understanding this

is the following. Consider a finite-support set of Jacobi parameters with 	 bound states.

One can change the 	weights without changing L(z). It is known in that case that chang-

ing a single weight introduces an explicit (in terms of solutions of the original Jacobi

recursion) correction which decays exponentially (see [2, pages 64–66] and [13, 14]). That

means one expects only one out of the 	-parameter family of Jacobi matrices to have Ja-

cobi parameters with finite support. Put differently, there will be many Jacobi matrices

with bound states but only exponentially decaying Jacobi parameters that have polyno-

mial Jost functions. So the key is identifying the weights that single out finite support.

Rather than discussing weights, it is more convenient to use residues of poles of

M. Of course, if zj ∈ D, zj + z−1
j = Ej is a point mass in γ, then

wj = lim
E→Ej

(
E − Ej

)
m(E) =

(
z−1

j − zj
)
z−1

j lim
z→zj

(
z − zj

)
M(z) (1.23)

so the data are equivalent.

Definition 1.8. Let M be the M-function associated to a u and a set of weights. Suppose

that u is real analytic in {z | |z| < R} for some R > 1 and u(zj) = 0 with |zj| > R−1. The

weight at zj is said to be canonical if and only if

w̃j ≡ lim
z→zj

(
z − zj

)
M(z) = −

(
zj − z−1

j

)[
u ′(zj

)
u

(
1

z̄j

)]−1

. (1.24)

Here are our main theorems on the general case.

Theorem 1.9. If an = 1 and bn = 0 for large n, then L(z) is a real polynomial and all the

weights are canonical. Conversely, if L(z) is a real polynomial obeying that

L(z) is nonvanishing on D\R (i ′)

and (ii)-(iii) of Theorem 1.4, then there is at most one set of Jacobi parameters with an =

1 and bn = 0 for n large that has L as perturbation determinant. Moreover, the weights

associated to this set are the canonical ones. If these canonical weights lead to wj > 0,

then there is a set of Jacobi parameters with an = 1 and bn = 0 for large n. �
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Remark 1.10. It is easy to construct polynomials L’s which are not the perturbation de-

terminants of any finite-support Jacobi parameters, although they are perturbation de-

terminants. For example, if L(z0) = L(z−1
0 ) = 0 for some z0 ∈ (0, 1), (1.24) cannot hold.

Thus

L(z) = (1 − 2z)
(
1 −

1

2
z

)
(1.25)

is a perturbation determinant but not for a Jacobi matrix of finite support. There are also

examples where the canonical weights are negative.

Theorem 1.11. Let R > 1. If (1.22) holds, then L(z) has a real analytic continuation to

{z | |z| < R} and the weights of all zj with |zj| > R−1 are canonical. Conversely, if L(z) is

real analytic in {z | |z| < R} and obeys (i ′) and (ii)-(iii), then (1.22) holds if and only if all

weights for zj with |zj| > R
−1 are canonical. �

These four theorems have a direct part (i.e., going from {an, bn}∞n=1 to L(z)) and

an inverse part. The direct parts (except for the importance of canonical weights) are

well known. We provide a proof of all but the canonical weights in the appendix. The

canonical weight result is proven in Section 3.

The inverse parts are more subtle—and the main content of this paper. The no

bound-state results appear in Section 2 and the bound-state results in Section 3. Our ap-

proach is based on the use of coefficient stripping, that is, relating u,M for {an, bn}∞n=1

to u, M for {ãn, b̃n}∞n=1, where ãn = an+1, b̃n = bn+1. Section 2 will rely on a remark-

ably simple contraction argument, Section 3 on the fact that coefficient stripping only

preserves analyticity if weights are canonical.

One can wonder if one cannot at least prove the no bound-state results by ap-

pealing to the Nevai-Totik theory and the Szegő mapping (see [23, Section 13.1]) relating

OPUC and OPRL. Indeed, we will show in Section 2 that our method can be used to prove

the inverse part of their result. There is a difficulty with blind use of the Szegő map, al-

ready seen by the fact that J0 does not map into Verblunsky coefficients with exponential

decay (see [23, Example 13.1.3]). This can be understood by noting that the Jost function,

u, for dγ and the Szegő function,D, for μ = Sz−1(dγ) are related by

D(z)−1 =
2−1/2u(z)
1 − z2

. (1.26)

Thus, D(z)−1 is not analytic where u is, unless u(+1) = u(−1) = 0. In that case, one can

use Nevai and Totik to obtain Theorems 1.4 and 1.7.

There are two strategies for dealing with the general case. First (and our original

proof), one can add extra a’s and b’s at the start to produce u(+1) = u(−1) = 0. Second,
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μ �→ Sz(μ) is one of four maps (see [23, Section 13.2]). Sz2 maps onto all Jacobi matrices

with spectrum on [−2, 2] and with u(1) �= 0 �= u(−1) and has no division factor. Sz3 and

Sz4 divide by 1− z and 1+ z and are onto all matrices with u(−1) �= 0 and u(1) �= 0. In this

way, one can always find a μwith γ = Szj(μ) so theD-function for μ is analytic.

It should also be possible to prove the inverse results we need using the

Marchenko equation. That said, we prefer the approach in Section 2.

Surprisingly, the four main results of this paper appear to be new, although for

Schrödinger operators with Yukawa potentials, there are related results in [20] by New-

ton and in [2] by Chadan and Sabatier. Geronimo [8] has a paper closely related to our

theme here, but he makes an a priori hypothesis aboutM that means that his results are

not strictly Jacobi-parameter hypotheses on one side. So he does not have our results,

although it is possible that one can modify his methods to prove them.

An analog of our results on what are the Jost functions for Jacobi matrices of

finitely supported Jacobi parameters is the study of the sets of allowed resonance posi-

tions for half-line Schrödinger operators with compactly supported potentials. There is

a large literature on this question [6, 7, 17, 18, 21, 29, 30]. In particular in [17, 18], Ko-

rotyaev makes some progress in classifying all Jost functions in this case.

We announced the results in [4] and some of them have been presented in [23],

but we note an error in [23]: Theorem 13.7.4 is wrong because when stating existence of

a finite-range solution, it fails to require that u(z−1
j ) �= 0 and that the canonical weights

be positive.

2 The case of no bound states

Our goal in this section is to prove Theorems 1.4 and 1.7. We suppose we have a set of

Jacobi parameters {an, bn}∞n=1 with Jost function, u(z) ≡ u(0)(z), andM-function,M(z) ≡
M(0)(z).

Associated to Jacobi parameters {ak+n, bk+n}∞k=1, we have corresponding Jost

function, u(n)(z), and M-function, M(n)(z) · u(n)(z) is the solution of a difference

equation at 0, where the solution is asymptotic to zn as n → ∞. It follows that

un(z) = a−1
n znu(n)(z) (2.1)

obeys (see (A.59))

anun+1 +
(
bn −

(
z + z−1

))
un + an−1un−1 = 0. (2.2)
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Moreover (see (A.57) and (A.61)),

M(n)(z) =
un+1(z)
anun(z)

. (2.3)

This leads to the following set of update formulae:

u(n+1)(z) = an+1z
−1u(n)(z)M(n)(z), (2.4)

M(n)(z)−1 = z + z−1 − bn+1 − a2
n+1M

(n+1)(z). (2.5)

SinceM(z) = 〈δ0, (z + z−1 − J)−1δ0〉, we see

M(n)(z)
z

= 1 +O(z) (2.6)

so that (2.5) implies

(
M(n)(z)
z

)−1

= 1 − bn+1z −
(
a2

n+1 − 1
)
z2 +O

(
z3
)

(2.7)

which means that

log

(
M(n)(z)
z

)
= bn+1z +

((
a2

n+1 − 1
)

+
1

2
b2

n+1

)
z2 +O

(
z3
)
. (2.8)

There is an additional feature we will need. Suppose u(z) is real analytic in {z |

|z| < R} for some R > 1. Define

f�(z) = f

(
1

z̄

)
(2.9)

for z ∈ AR = {z | R−1 < |z| < R}. Then we claim that

M(z) −M�(z) =
[
u(z)u�(z)

]−1(
z − z−1

)
. (2.10)

To see this, we note (see (1.12)) that

ImM
(
eiθ
)

=
[
u
(
eiθ
)
u
(
eiθ
)]−1

sin θ. (2.11)

This is (2.10) for z = eiθ, so (2.10) follows by analyticity.

The strategy of our proof will be to control u(n),M(n) inductively using (2.4), (2.5)

for z ∈ D and (2.10) outside D. We will then feed this control into (2.8) to control an+1 − 1

and bn+1.
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We want to use the update equations to confirm that u(n) is real analytic in at

least as big a region as u. This will need the assumption that u is nonvanishing on D

(and will be the key issue to be addressed in the next section).

Theorem 2.1. If u is real analytic in {z | |z| < R} and nonvanishing on D\{+1,−1} with at

most simple zeros at ±1, then the same is true of each u(n). �

Proof. By induction, we only need this for u(1). By (2.10),M is meromorphic on {z | |z| < R}

since we can use (2.10) to define M(z) as a meromorphic function in {z | 1 < |z| < R} and

(2.11) says that the function has matching boundary values on |z| = 1.

Moreover, (2.10) implies the following.

(i) M(z) has a pole at zk with 1 < |zk| < R only if u(z) has a zero there and

the order of the pole is the same as the order of the zero. This is because

u�(z) is nonvanishing near z = zk and M�(z) is regular near z = zk, since

z−1
k ∈ D, and we are supposing no bound states.

(ii) If u vanishes at +1 or −1, M has a first-order pole there (for if M(z) has a

pole at ±1 with real residue,M�(z) has the opposite residue, so M −M�

still has a pole).

Combining this with (2.4), we see that u(1)(z) is real analytic in {z | |z| < R} for any

poles ofM are cancelled by zeros of u. Moreover, u(1) is nonvanishing in D for u is nonva-

nishing on D\{−1, 1} and M(z)/z is nonvanishing since ImM > 0 on D ∩ C+, so ReM > 0

for z ∈ (0, 1) and ReM < 0 for z ∈ (−1, 0). It follows that u(1) is nonvanishing on D\{−1, 1}.

And (ii) above shows that even if u(±1) is zero,M has a compensating pole. �

We will also need the following theorem.

Theorem 2.2. If the Jost function of Jacobi data {an, bn}∞n=1 has finitely many zeros in D

and the only zeros on ∂D are at ±1 and those are simple, then

∣∣an − 1
∣∣ + ∣∣bn

∣∣ −→ 0, (2.12)

M(n)(z) −→ z (2.13)

uniformly on compacts of D. In particular, for each ρ < 1,

sup
|z|≤ρ

∣∣∣∣
M(n)(z)
z

∣∣∣∣ −→ 1. (2.14)

�

Proof. Since the weight of the spectral measure is given by (1.12) and (1.16), the Szegő

condition holds and so does the quasi-Szegő condition of [16]. This plus finite spectrum
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show that
∑

∞

n=1 |an − 1|2 + |bn|2 < ∞ by the work of Killip and Simon [16]. Thus (2.12)

holds.

This implies that the corresponding Jacobi matrix J(n) converges in norm to J0

so the resolvents converge, which implies (2.13). Equation (2.14) is a consequence of

M(n)(z)/z → 1 uniformly. �

We now combine (2.4) and (2.10) to write the critical update equation:

u(n+1)(z) = an+1

(
1 − z−2

)(
u(n)�(z)

)−1
+ an+1z

−2u(n)(z)N�
n(z), (2.15)

where

Nn(z) =
M(n)(z)
z

(2.16)

so

N�
n(z) = zM(n)�(z). (2.17)

Equation (2.15) looks complicated because of the u(n)� term. But consider ex-

panding all functions in a Laurent series near {z | |z| = R1} for 1 < R1 < R. u(n+1)(z)

only has nonnegative powers and u(n)�, and thus (1 − z−2)(u(n)�)−1 only has nonpositive

powers. Thus the first term in (2.15) compensates for the negative powers in the second

term, and that is its only purpose. If we project onto positive powers, it disappears!

We thus define P+ to be the projection in L2(R1∂D, dθ/2π) onto {einθ}∞n=1. Applying

P+ to (2.15), we find

u(n+1)(R1e
iθ
)

− u(n+1)(0) = an+1P+

[(
R1e

iθ
)−2[

u(n)(R1e
iθ
)

− u(n)(0)
]
N�

n

(
R1e

iθ
)]
,

(2.18)

where we used the fact that z−2u(n)(0)N�
n(z) has only negative Laurent coefficients.

Define

|||g|||R1
=

( ∫ ∣∣g(R1e
iθ
)

− g1(0)
∣∣2dθ
2π

)1/2

(2.19)

for functions analytic in a neighborhood of {z | |z| ≤ R1}. Since P+ is a projection in L2, we

obtain

∣∣∣∣∣∣u(n+1)
∣∣∣∣∣∣

R1
≤ an+1R

−2
1

∥∥N�
n

(
R1e

iθ
)∥∥

∞

∣∣∣∣∣∣u(n)
∣∣∣∣∣∣

R1
. (2.20)
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Proof of Theorem 1.4. It is easy to see that u is a polynomial of exact degree k if and only

if u is entire and

lim
R→∞

|||u|||R

Rk
∈ (0,∞). (2.21)

Thus, by (2.20), if u is a polynomial of degree 	 and n > 	/2, then |||u(n)|||R = 0, that is, u(n)

is a constant. But then the weight inM is the free one, that is, aj+n ≡ 1, bj+n ≡ 0 for j ≥ 0.
Of course, L is a polynomial if and only if u is. �

Remark 2.3. This proof and the direction in the appendix allow us to relate the degree of

the polynomial u to the support of J − J0.

Equation (2.20) also implies the following proposition.

Proposition 2.4. For 1 < R1 < R,

lim sup
∣∣∣∣∣∣u(n)

∣∣∣∣∣∣1/n

R1
≤ R−2

1 . (2.22)
�

Proof. Note first that

sup
θ

∣∣N�
n

(
R1e

iθ
)∣∣ = sup

θ

∣∣Nn

(
R−1

1 eiθ
)∣∣ ≤ sup

|z|≤R−1
1

∣∣∣∣
M(n)(z)
z

∣∣∣∣ (2.23)

which goes to 1 by (2.14). Since an → 1 by (2.12),

lim
n→∞

(
n−1
∏

j=0

aj+1

∥∥N�
j

(
Rje

iθ
)∥∥

∞

)1/n

= 1 (2.24)

so (2.20) implies (2.22). �

Proof of Theorem 1.7. If f(z) =
∑

∞

n=1Anz
n, then

|||f|||2R1
=

∞
∑

n=1

∣∣An

∣∣2R2n
1 (2.25)

is monotone in R1, so (2.22) implies, by taking R1 → R, that lim sup |||u(n)|||
1/n
1+ε ≤ R−2.

Since the Cauchy integral formula shows that

sup
|z|≤1

∣∣f(z) − f(0)
∣∣ ≤ |||f|||1+ε, (2.26)
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we see that for every δ > 0,

sup
|z|≤1

∣∣u(n)(z) − u(n)(0)
∣∣|R − δ|−2n −→ 0 (2.27)

which in turn, using u(n)(0) → 1 (by (2.13)), implies

1 = 2

∫π

0

sin2
θ∣∣u(n)

(
eiθ
)∣∣2dθ =

1∣∣u(n)(0)
∣∣2 +O

(
|R − δ|−2n

)
(2.28)

which implies

u(n)(0) = 1 +O
(
|R − δ|−2n

)
. (2.29)

Thus the difference between the free weight and the weight for f(n) isO(|R−δ|−2n),

so

lim sup

(
sup

|z|≤1/2

∣∣∣∣
M(n)(z)
z

− 1

∣∣∣∣
)1/n

≤ R−2. (2.30)

By (2.8),

lim sup
∣∣bn

∣∣1/n ≤ R−2,

lim sup

∣∣∣∣
(
a2

n+1 − 1
)

+
1

2
b2

n−1

∣∣∣∣
1/n

≤ R−2
(2.31)

which imply (1.22). �

This completes what we want to say about OPRL with no bound states. As an

aside, we show how the ideas of this section provide an alternate to the hard (i.e., inverse

spectral) side of the Nevai-Totik theorem, Theorem 1.1. Their proof is shorter but relies

on a magic formula (see [22, equation (2.4.36)])

dμs = 0 =⇒ αn = −κ∞

∫

Φn+1

(
eiθ
)
D
(
eiθ
)−1

dμ(θ). (2.32)

Our proof will exploit or develop the relative Szegő function, δ0D, of [22, Section 2.9]. Our

goal is to prove the following theorem.

Theorem 2.5. Let dμ be a measure on ∂D with dμs = 0 and so that the Szegő condition

holds. SupposeD(z)−1 has an analytic continuation to {z | |z| < R} for some R > 1. Then

lim sup
n→∞

∣∣αn

∣∣1/n ≤ R−1. (2.33)
�
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So we suppose that the Szegő condition holds, which is equivalent to

∞
∑

n=0

∣∣αn

∣∣2 < ∞. (2.34)

Let dμn be the measure with Verblunsky coefficients {αk+n}∞k=0 andD(n) is its Szegő func-

tion. F(n) and f(n) are defined by

F(n)(z) =

∫

eiθ + z

eiθ − z
dμ(n)(θ), (2.35)

F(n)(z) =
1 + zf(n)(z)
1 − zf(n)(z)

. (2.36)

Geronimus’ theorem (see [22]) says that the relation between the f’s is given by the Szegő

algorithm

f(n)(z) ≡ αn + zf(n+1)(z)
1 + ᾱnzf(n+1)(z)

(2.37)

and the equivalent

zf(n+1)(z) =
f(n)(z) − αn

1 − ᾱnf(n)(z)
. (2.38)

In [22, Section 2.9], the relative Szegő function is defined by (ρn = (1 − |αn|2)1/2)

(
δnD

)
(z) =

1 − ᾱnf
(n)(z)

ρn

1 − zf(n+1)(z)
1 − zf(n)(z)

(2.39)

and it is proven that

(
δnD

)
(z) =

D(n)(z)
D(n+1)(z)

(2.40)

which we write as

D(n+1)(z)−1 = D(n)(z)−1
(
δnD

)
(z). (2.41)

It will be useful to rewrite (2.39) using (2.38) to get

(
δnD

)
(z) =

1 − ᾱnf
(n)(z) − f(n)(z) + αn

ρn

(
1 − zf(n)(z)

) . (2.42)
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Using

f(n)(z) =
1

z

F(n)(z) − 1

F(n)(z) + 1
, (2.43)

one finds

(
δnD

)
(z) =

1

2
z−1M(n)(z), (2.44)

where

M(n)(z) = z
(
1 + αn

)(
F(n)(z) + 1

)
−
(
1 + ᾱn

)(
F(n)(z) − 1

)
. (2.45)

Interestingly enough,M(n)(z) for n = 0 appears in the theory of minimal Carathéodory

functions on the hyperelliptic Riemann surfaces that occur in the analysis of OPUC with

periodic Verblunsky coefficients (see [23, (11.7.76)]); a related function appears in

[10] by Geronimo and Johnson. While [22, 23] introduced both δ0D and M(0)(z), its au-

thor appears not to have realized the relation (2.44). δnD is nonsingular at z = 0 since

M(n)(z) = 0 at z = 0 (since F(n)(0) = 1). We note that where [23, Section 11.7] uses M(z),

it could use (δ0D)(z). The difference is the 0 at 0+ is moved to ∞− and the pole at ∞+ is

moved to 0−. We note that the relation betweenM and δ0D is hinted at in (2.39). In gaps

in supp(dμ) in ∂D, δ0D has poles at zeros of 1 − zf and zeros at zeros of 1 − zf1. By (2.36),

δ0D has poles at poles of F and zeros at poles of F(1), which is the critical property thatM

needs in the analysis of [23, Section 11.7].

We will also need the analytic continuation of

Re F(n)(eiθ
)

=
∣∣D(n)(eiθ

)∣∣2, (2.46)

namely,

F(n) +
(
F(n))� = 2D(n)(D(n))�, (2.47)

where � is given by (2.9).

Theorem 2.6. Let R > 1. If D−1 is analytic in {z | |z| < R}, then F is meromorphic there

with singularities precisely at the zeros ofD−1. The order of any pole of F is precisely the

same as the order of the zero of D−1. (δ0D)(z) is meromorphic in the region with poles

precisely at the poles of F with order no greater than those of F. (D(1))−1 is analytic in

{z | |z| < R} thus, and by induction, so is each (D(n))−1. �
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Proof. By (2.47), we can use

F̃ = −F� + 2DD� (2.48)

to define a function meromorphic in {z | R−1 < z < R} with poles in {z | 1 < z < R} precisely

at the zeros ofD−1. Since Re F(eiθ) = w(eiθ) = |D(eiθ)|2,

F̃
(
eiθ
)

= −F
(
eiθ
)

+ 2Re F
(
eiθ
)

= F
(
eiθ
)
, (2.49)

F̃ and F agree there and so F̃ extends F to a meromorphic function in the required region.

By (2.44) and (2.45), (δ0D)(z) is meromorphic in the same region with poles of

order no greater than those of F. ThusD−1(δ0D) is analytic in {z | |z| < R}. �

Now define

A(z) =
1

2

[
z
(
1 + α0

)(
1 − F�(z)

)
+
(
1 + ᾱ0

)(
1 + F�(z)

)]
,

B(z) =
(
1 + α0

)
D� − z−1

(
1 + ᾱ0

)
D�

(2.50)

so, by (2.44), (2.45), and (2.47),

δ0D = z−1A + BD, (2.51)

and thus

[
D(1)]−1

= z−1A
(
D−1 −D(0)−1

)
+ B + z−1AD(0). (2.52)

Proof of Theorem 2.5. For functions continuous on {z | |z| = R1}, define P+ to be the projec-

tion onto positive Fourier terms and |||g||| = ‖P+g‖L2 . Then (2.52) implies, for any R1 < R,

that

∣∣∣
∣∣∣
∣∣∣[D(1)]−1

∣∣∣
∣∣∣
∣∣∣
R1

≤ R−1
1 sup

|z|=R1

∣∣A(z)
∣∣ ∣∣∣∣∣∣D−1

∣∣∣∣∣∣
R1
. (2.53)

By induction,

∣∣∣
∣∣∣
∣∣∣[D(n)]−1

∣∣∣
∣∣∣
∣∣∣
R1

≤ R−n
1 a0 · · ·an−1

∣∣∣∣∣∣D−1
∣∣∣∣∣∣

R1
, (2.54)

where

aj = sup
|z|=R1

∣∣A(j)(z)
∣∣ ≤ 1

2

(
1 +

∣∣αj

∣∣) sup
|z|≤R−1

1

(∣∣(1 − F(j)(z)
)
z−1
∣∣ + ∣∣1 + F(j)(z)

∣∣). (2.55)
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Since
∑

∞

n=0 |αn|2 < ∞, we have sup|z|≤R−1
1

|f(j)(z)| → 0, which implies, by (2.43),

that

sup
|z|≤R−1

1

∣∣(1 − F(j)(z)
)
z−1
∣∣ −→ 0 (2.56)

and thus, by (2.55),

lim sup
j→∞

∣∣aj

∣∣ ≤ 1 (2.57)

so (2.54) implies that

lim sup
n→∞

∣∣∣
∣∣∣
∣∣∣[D(n)]−1

∣∣∣
∣∣∣
∣∣∣
1/n

R1

≤ R−1
1 . (2.58)

By analyticity, this implies (taking R1 → R) that

lim sup
n→∞

∥∥wn − 1
∥∥1/n

∞

≤ R−1, (2.59)

which implies that

lim
n→∞

∣∣αn

∣∣1/n ≤ R−1 (2.60)

since

αn =

∫

e−iθ
(
wn(θ) − 1

)dθ
2π
. (2.61)

�

3 The general case

In this section, we will prove Theorems 1.9 and 1.11. A key piece of the proofs is the fol-

lowing well-known result.

Theorem 3.1. If {an, bn}∞n=1 is a set of Jacobi parameters with spec(J)\[−2, 2] finite, then

there is a k so that {an+k, bn+k}∞n=1 is a set of Jacobi parameters with spec(Jk) ⊂ [−2, 2].

�

Proof. By a Sturm oscillation theorem (see [3, 24]), the number of spectral points in (2,∞)

is the number of sign flips of {Pn(z)}∞n=1 and in (−∞,−2) of {(−1)nPn(−2)}∞n=1. By assump-

tion, these numbers are finite, so for some k, {Pn+k−1(2)}∞n=1 and {(−1)nPn+k−1(−2)}∞n=1

have fixed signs. By a comparison theorem and the oscillation theorem again, it follows

that spec (Jk) ⊂ [−2, 2]. �
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The reason weights have to be canonical is that Theorem 2.1 can fail if there are

zeros in D. This is because u(1) = a1z
−1uM and

M(z) = M�(z) +
(
z − z−1

)[
u(z)u�(z)

]−1
. (3.1)

If zj is a (real) zero in D with |zj| > R−1,M(z) may have a pole at 1/zj due to the (u�)−1

term. uMwill then have a pole (unless u has a zero, which we will see does not help). The

way to avoid this is to arrange forM� to have a compensating pole, and this will happen

precisely if the weight at zj is canonical! Here is the detailed result.

Theorem 3.2. Let u be a Jost function and real analytic in {z | |z| < R} and suppose that

there are finitely many zeros {zj}
N
j=1 in D. Then M is meromorphic in {z | |z| < R} and the

only possible poles ofM in {z | 1 < |z| < R} are at points z−1
j , where |zj| > R

−1. Moreover,

(i) if u has a zero of order k ≥ 1 at z−1
j , thenM has a pole of order k + 1 there;

(ii) if u(z−1
j ) �= 0, then M has a pole at z−1

j if and only if the weight at zj is not

canonical.

In particular, u(1) = uM is analytic in {z | |z| < R} if and only if all weights at those zj with

|zj| > R
−1 are canonical. �

Proof. The zeros at zj are simple, so if u has a zero of order k ≥ 1 at z−1
j , then (u(z)u�(z))−1

has a pole of order k + 1. SinceM�(z) has only simple poles in {z | |z| > 1},M(z) has a pole

of order k + 1. This proves (i).

If u(z−1
j ) �= 0, both (z− z−1)[u(z)u�(z)]−1 andM�(z) have simple poles at z−1

j . Their

residues cancel if and only if (1.24) holds. �

This gets us one step if the weights are canonical. We get beyond that because

automatically weights after that are canonical!

Theorem 3.3. Let u be a Jost function and real analytic in {z | |z| < R}. Let u(1) = a1z
−1uM

and let M(1) obey (2.5). Then z̃j ∈ D with |z̃j| > R−1 implies that u(1)(z̃−1
j ) �= 0 and the

weight ofM(1) is canonical. �

Proof. Zeros of u in D are cancelled by poles of M, so u(1) has zeros precisely at points

z̃j where M(z̃j) = 0. Since [M(z̃j) −M�(z̃j)]u�(z̃j)u(z̃j) = z̃j − z̃−1
j �= 0,M�(z̃j) �= 0. By (2.5),

M(z̃−1
j ) �= 0 implies that M(1)(z) is regular at z̃−1

j . By a small calculation, u(1),M(1) obey

(2.10), so the weight must be canonical. �

Remark 3.4. There is a potentially puzzling feature of Theorem 3.3. If stripping a Jacobi

parameter pair cannot produce noncanonical weights, how can they occur? After all, we

can add a parameter pair before J and then remove it. The resolution is that adding a
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parameter pair also shrinks the region of analyticity if J has a noncanonical weight. Es-

sentially, noncanonical weights produce poles in a meromorphic u(n)(z) with residues

which are a “resonance eigenfunction.” Lack of a canonical weight in u(n) is a sign that

this resonance eigenfunction function vanishes at n, but then it will not at n+ 1 or n− 1.

Proof of Theorem 1.9. If some weight is not canonical,u(1) is not entire, and so the Jacobi

parameters cannot have finite support. If all weights are positive, one can normalize u so

(1.17) holds with the canonical weights and obtain a positive weight since the necessary

canonical weights are all positive. With canonical weights, uM is entire and by (3.1) and

M(z) = O(z) at z = 0,we see thatM(z) = O(1/z) at z = ∞ so long asu(z) = O(z�) with 	 > 2.

Thus u(1) is a polynomial of degree at most 1 less than u. Iterating and using Theorem 3.1,

we eventually get a polynomial of u(k)(z) with no zeros in D and so, by Theorem 1.4, a

finite-range set of {an, bn}. �

Proof of Theorem 1.11. If weights are canonical, we can iterate to a u(k) nonvanishing in

D, and use Theorem 1.7. If some weight is not canonical, u(1) is not analytic in {z | |z| < R},

so (1.22) fails on account of Theorem A.4. �

Appendix

A The Geronimo-Case equations

In this appendix, we provide a proof of basic facts about the Jost functions in the case

of regular bounds on the Jacobi coefficients. We do this primarily because we want to

make propaganda for a lovely set of equations of Geronimo and Case [9] which have not

yet gotten the attention they deserve. It is also useful to keep this paper self-contained.

More well-known approaches to Jost functions involve finding the Jost solution by using

variation of parameters about the free solutions (see, e.g., Teschl [27]) or, going back to

Jost and Pais [15], as perturbation determinants (see, e.g., Killip and Simon [16]).

There is some overlap in our presentation and that of Geronimo and Case [9]

and Geronimo [8], but we feel it might be useful to present the detailed estimates con-

cisely. And we wish to emphasize the a priori derivation of the GC equations (rather than

presenting them and proving that they have asymptotic properties) by identifying what

their ψn (= z−ngn(z) for our gn below) is. In any event, we have put this material in an

appendix since we regard it as a review.

Given a Jacobi matrix, as in (1.2), we define a0 = 1 and look at solutions (fn)∞

n=0

of

anfn+1 +
(
bn − E

)
fn + an−1fn−1 = 0, n = 1, 2, . . . . (A.1)
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Of course, one solution of this is

fn = pn−1(E, J) (A.2)

with pn the orthonormal polynomials associated to J.

If fn and kn are two sequences, we define their Wronskian (we will often drop

the J),

W(f, k; J)(n) ≡ an

(
fn+1kn − fnkn+1

)
. (A.3)

If f, k both solve (A.1), the Wronskian is constant.

Given a Jacobi matrix J, define J̃� by setting ã�+1 = ã�+2 = · · · = 1 and b̃�+1 =

b̃�+2 = · · · = 0 (in [16, 25], J� is defined also setting a� = 1; it is different from J̃�), that is,

J̃� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0

a1 b2 a2

0 a2
. . .

. . .
. . .

. . .
. . .

a�−1 b� a� 0

0 a� 0 1

0 0 1 0

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.4)

un(z; J̃�) solves (A.1) for J̃� with un(z; J̃�) = zn if n ≥ 	 + 1, where z + z−1 = E. un is

called the Jost solution. The Jost function is

u
(
z; J̃�

)
= W

(
p·−1

(
z + z−1; J̃�

)
, u·
(
z, J̃�

))
= u0

(
z; J̃�

)
(A.5)

by taking the Wronskian at n = 1. Since u�(z; J̃�) = a−1
� z�, taking the Wronskian at n = 	,

we find

u
(
z; J̃�

)
= a�

(
p�

(
z + z−1; J̃�

) 1
a�
z� − p�−1

(
z + z; J̃�

)
z�+1

)
. (A.6)

Since the parameters of J̃� and J agree for am, bm,m = 1, 2, . . . , 	, we have pm(z, J)

= pm(z, J�) form ≤ 	. Thus we define

gn(z) = zn
(
pn

(
z +

1

z

)
− anzpn−1

(
z +

1

z

))
(A.7)
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which is a polynomial in z of degree at most z2n. gn(z) is the Jost function for J̃n, that is,

gn(z) = u
(
z; J̃n

)
. (A.8)

It is also natural to define

cn(z) = znpn

(
z +

1

z

)
, (A.9)

a polynomial in z of exact degree 2n.

Clearly, (A.7) becomes

gn+1(z) = cn+1(z) − an+1z
2cn(z). (A.10)

The fundamental equation

an+1pn+1

(
z +

1

z

)
=

(
z +

1

z
− bn+1

)
pn

(
z +

1

z

)
− anpn−1

(
z +

1

z

)
(A.11)

multiplied by zn+1 becomes (using (A.10) for n → n − 1)

an+1cn+1 =
(
z2 − bn+1z

)
cn + gn. (A.12)

Multiplying (A.10) by an+1 and using (A.12), we find

an+1gn+1 =
[(
1 − a2

n+1

)
z2 − bn+1z

]
cn + gn. (A.13)

The last two equations, which we call the Geronimo-Case equations, are the fun-

damental recursion relations with initial conditions

g0(z) = c0(z) = 1. (A.14)

(One checks that g0 = 1 by looking at (A.12) using c0 = 1 and c1 = (z/a1)(z + 1/z − b1).) It

is natural to define the Geronimo-Case update matrix

Un(z) =

(
z2 − bnz 1(

1 − a2
n

)
z2 − bnz 1

)
(A.15)

so (A.12) and (A.13) become

(
cn+1

gn+1

)
=

1

an+1
Un+1

(
cn

gn

)
(A.16)
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or, with

Tn = UnUn−1 · · ·U1,
(
cn(z)
gn(z)

)
=
(
a1 · · ·an

)−1
Tn(z)

(
1

1

)
.

(A.17)

If we use unnormalized functions

Cn(z) = a1 · · ·ancn(z), Gn(z) = a1 · · ·an, gn(z) (A.18)

we have

(
Cn

Gn

)
= Tn

(
1

1

)
. (A.19)

Since we have the normalization conditionsCn(z) = z2n+ lower order,Gn(0) = 1, this has

some similarity to the equations for orthogonal polynomials on the unit circle [11, 12, 22,

23, 26], a motivation for Geronimo and Case [9], but there are numerous differences; for

example, C∗
n(z) = Gn(z) for the reversal operations of the Szegő recursion but not here.

One consequence of this is immediate since u = gn if a� = 1, b� = 0 for 	 ≥ n + 1.

Theorem A.1. If J − J0 is a finite range, then u(z; J) is a real polynomial. If a� = 1, b� = 0

for 	 ≥ n + 1 and an �= 1, then deg(u) = 2n; if an = 1 but bn �= 0, deg(u) = 2n − 1. �

Remark A.2. Indeed, in the case an �= 1, the proof shows that

u(z; J) =

(
1 − a2

n

)
a1 · · ·an

z2n + lower order (A.20)

and if an = 1 but bn �= 0,

u(z; J) = −
bn

a1 · · ·an
z2n−1 + lower order. (A.21)

Proof. We have, if a� = 1, b� = 0 for 	 ≥ n + 1, that

u(z; J) = a−1
n

[(
1 − a2

n

)
z2 − bnz

]
cn−1(z) + gn−1(z). (A.22)

Since deg(gn−1) ≤ 2n − 2 and cn−1(z) = (a1 · · ·an−1)−1z2n−2+ lower order, the result is

immediate. �

Note that if bn = 0, an = 1, then

Un = U(0)(z) ≡
(
z2 1

0 1

)
. (A.23)
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We will make one of three successively stronger hypotheses on the Jacobi coeffi-

cients:

∞
∑

n=1

[∣∣bn

∣∣ + ∣∣a2
n − 1

∣∣] < ∞, (A.24)

∞
∑

n=1

n
[∣∣bn

∣∣ + ∣∣a2
n − 1

∣∣] < ∞, (A.25)

∣∣bn

∣∣ + ∣∣a2
n − 1

∣∣ ≤ CR−2n, (A.26)

for some R > 1. a2
n − 1 will enter in estimates, but since |an − 1| ≤ |a2

n − 1| ≤ (1 +

supn |an|)(|an − 1|) in all these estimates, |an − 1| can replace |a2
n − 1| with no change.

In all cases,
∑

|an − 1| < ∞, so
∏n

j=1 aj is uniformly bounded above and below,

and hence c (resp., g) and C (resp., G) are comparable.

We will first prove bounds and use them to control convergence.

Theorem A.3. (i) Let (A.24) hold. Then for each z ∈ D\{±1},

sup
n

[∣∣Gn(z)
∣∣ + ∣∣Cn(z)

∣∣] ≡ A0(z) < ∞, (A.27)

where A0(z) is bounded uniformly on compact subsets of D\{±1}.
(ii) Let (A.25) hold. Then for some constant A1,

sup
n,z∈D

∣∣Gn(z)
∣∣ ≤ A1, (A.28)

sup
n,z∈D

∣∣Cn(z)
∣∣

1 + n
≤ A1. (A.29)

(iii) Let (A.26) hold and let R > 1. Then there is some constantA2 such that for all

zwith |z| < R,

∣∣Gn(z)
∣∣ + ∣∣Cn(z)

∣∣ ≤ A2(1 + n)
[

max
(
1, |z|

)]2n
. (A.30)

�

Proof. (i) If z �= ±1, U(0)(z) can be diagonalized; explicitly,

L(z)U(0)(z)L(z)−1 =

(
z2 0

0 1

)
, (A.31)

where

L(z) =

⎛
⎝1 −

1

1 − z2

0 1

⎞
⎠ . (A.32)
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Thus for z �= ±1,

L(z)Tn(z)L(z)−1 =
(
K0(z) + Bn(z)

) · · · (K0(z) + B(z)
)

(A.33)

with

K0(z) =

(
z2 0

0 1

)
, Bn(z) = L(z)

(
−bnz 0

−bnz +
(
1 − a2

n

)
z2 0

)
L(z)−1. (A.34)

If |z| ≤ 1, z �= ±1,

∥∥K0(z) + Bn(z)
∥∥ ≤ 1 +

∥∥L(z)∥∥∥∥L(z)−1
∥∥[∣∣1 − a2

n

∣∣ + ∣∣bn

∣∣], (A.35)

so (A.24) implies (A.27) with

A0(z) ≤
(
1 +

1∣∣1 − z2
∣∣
)2

∞
∏

j=1

[
1 +

(
1 +

1∣∣1 − z2
∣∣
)2(∣∣1 − a2

j

∣∣ + ∣∣bj

∣∣)
]
. (A.36)

(ii) Let us show inductively that for all |z| ≤ 1,

∣∣Gn(z)
∣∣ ≤

n
∏

j=1

[
1 + j

(∣∣1 − a2
j

∣∣ + ∣∣bj

∣∣)], (A.37)

∣∣Cn(z)
∣∣ ≤ (n + 1)

n
∏

j=1

[
1 + j

(∣∣1 − a2
j

∣∣ + ∣∣bj

∣∣)]. (A.38)

This implies (A.28) and (A.29) with

A1 =

∞
∏

j=1

[
1 + j

(∣∣1 − a2
j

∣∣ + ∣∣bj

∣∣)]. (A.39)

To prove (A.37) and (A.38), note that hold for n = 0 (where they say that |G0| ≤ 1,

|C0| ≤ 1). If they hold for n, then by (A.13),

∣∣Gn+1(z)
∣∣ ≤ [(n + 1)

(∣∣a2
n+1 − 1

∣∣ + ∣∣bn+1

∣∣) + 1
] n
∏

j=1

[
1 + j

(∣∣1 − a2
j

∣∣ + ∣∣bj

∣∣)] (A.40)
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and by (A.12),

∣∣Cn+1(z)
∣∣ ≤ [(n + 1)

(
1 +

∣∣bn+1

∣∣) + 1
] n
∏

j=1

[
1 + j

(∣∣1 − a2
j

∣∣ + ∣∣bj

∣∣)]. (A.41)

(iii) Since Un(z) is analytic, the maximum principle says that we need only to

prove the estimate for |z| = R − εwith ε small. As in part (i),

∥∥K0(z) + Bn(z)
∥∥ ≤ |z|2

[
1 +

∥∥L(z)∥∥∥∥L(z)∥∥−1(∣∣bn

∣∣ + ∣∣1 − a2
n

∣∣)] (A.42)

from which (A.30) follows. �

Theorem A.4. (i) Let (A.24) hold. Then

u(z; J) = lim
n→∞

gn(z) (A.43)

converges for all z ∈ D\{±1} uniformly on compact subsets of D\{±1}. u is real analytic

on D, continuous on D\{±1}. Moreover, for z ∈ D, Szegő asymptotics hold:

lim
n→∞

cn(z) =
u(z; J)
1 − z2

. (A.44)

(ii) Let (A.25) hold. Then (A.43) holds for all z ∈ D converging uniformly there. u

is continuous on D.

(iii) Let (A.26) hold. Then (A.43) holds for z ∈ {z | |z| < R} uniformly on compact

subsets. �

Remark A.5. In [5], we proved in general that if (A.43) holds, then so does (A.44) for |z|<1.

Proof. Again, since
∏n

j=1 aj is uniformly bounded above and below, it suffices to prove

convergence of Gn and (A.44) in the sense that

lim
n→∞

Cn(z) =
(
1 − z2

)−1
lim

n→∞

Gn(z). (A.45)

By (A.13),

∣∣Gn+1(z) −Gn(z)
∣∣ ≤ (∣∣a2

n+1 − 1
∣∣∣∣z2∣∣ + ∣∣bn+1

∣∣|z|)∣∣Cn(z)
∣∣. (A.46)
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Thus in all cases, the previous theorem implies that

∞
∑

n=0

∣∣Gn+1(z) −Gn(z)
∣∣ < ∞ (A.47)

uniformly on compacts of the appropriate regions.

All that remains is (A.45). We have for |z| < 1,

∣∣Cn −Gn−1 − z2Cn−1

∣∣ ≤ A0(z)
∣∣bn

∣∣. (A.48)

Iterating, we see that

∣∣∣∣∣Cn −

n−1
∑

j=0

Gn−j−1z
2j

∣∣∣∣∣ ≤ |z|2n +A0(z)
n−1
∑

j=0

∣∣bn−j

∣∣|z|2j. (A.49)

For k ≤ n − 1, we have

n−1
∑

j=0

∣∣bn−j

∣∣|z|2j ≤
k−1
∑

j=0

∣∣bn−j

∣∣ + |z|2k
n−1
∑

�=k

∣∣bn−�

∣∣. (A.50)

If we let first n → ∞ and then k → ∞, we see that

n−1
∑

j=0

∣∣bn−j

∣∣|z|2j −→ 0 (A.51)

since
∑

∞

k=0 |bk| < ∞. Thus,

lim
n→∞

∣∣∣∣∣Cn −

n−1
∑

j=0

Gn−j−1z
2j

∣∣∣∣∣ = 0. (A.52)

But we claim that

n−1
∑

j=0

(
Gn−j−1 −G∞

)
z2j −→ 0 (A.53)

by an inequality like (A.50). Thus,

∣∣∣∣Cn −G∞

1 − z2n

1 − z2

∣∣∣∣ −→ 0 (A.54)

proving (A.45). �
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To understand where (A.45) comes from, the above proof actually shows that

T∞ = limn→∞Tn exists if z ∈ D. Since

Tn+1 =
[
U(0)(z) +

(
Un+1(z) −U(0)(z)

)]
Tn, (A.55)

we see that U(0)(z)T∞ (z) = T∞ (z) so U(0)(z)kT∞ (z) = T∞ (z). Since U(0)(z) has eigenvalues

z2 and 1 and |z2| < 1, we see that

P(z)T∞ = T∞ (A.56)

with P(z) the spectral projection for eigenvalue 1, that is, T∞

(
1
1

)
is a multiple of the eigen-

vectors of U(0)(z) with eigenvalue 1. This eigenvector is
(
1/(1−z2)

1

)
, explaining why (A.45)

holds.

If J is a Jacobi matrix, J(�) is the Jacobi matrix with a(�)
n = an+�, b

(�)
n = bn+�. If J

obeys any of (A.24)–(A.26), so do J(�) for all 	, and thus u(z; J(�)) exists in the approximate

region. We define the Jost solution (we will show below that it agrees with our earlier

definition when J = J̃�) by

un(z; J) = a−1
n znu

(
z; J(n)). (A.57)

By the “appropriate region” we mean

D\{±1} if (A.24) holds,

D if (A.25) holds,
{

z | |z| < R
}

if (A.26) holds.

(A.58)

Theorem A.6. (i) un(z; J) defined in the appropriate region obeys

anun+1(z; J) +
(
bn −

(
z + z−1

))
un(z; J) + an−1un−1(z; J) = 0. (A.59)

(ii) In the appropriate region,

lim
n→∞

z−nun(z; J) = 1. (A.60)

(iii) For z ∈ D,

u
(
z; J(1)) = a1z

−1u(z; J)M(z; J), (A.61)
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where for z ∈ D,

M(z) =
(
δ1,
(
z + z−1 − J

)−1
δ1

)
. (A.62)

(iv) The only zeros of u(z; J) in D are at real points βwith β+β−1 a discrete eigen-

value of J. Each zero of u(z; J) in D is simple.

(v) The only zeros of u(z; J) in ∂D are possible ones at ±1. If (A.25) holds, these

zeros are simple in the sense that

u(±1, J) = 0 =⇒ lim
θ↓0

θ−1u
(
eiθ, J

) �= 0. (A.63)

(vi) In case (A.26) holds and u(z0; J) = 0with R−1 < |z0| < 1, then u(z−1
0 ; J) �= 0.

(vii) If (A.24) holds, M(z) has a continuation from D to D\{±1}, which is every-

where finite and nonzero on ∂D\{±1} and

∣∣u(eiθ
)∣∣2 ImM

(
eiθ
)

= sin θ. (A.64)
�

Proof. (i) Since u(z; J̃�) = g�(z; J) → u(z; J), it suffices to prove (A.59) for J ≡ J̃� for the new

definition of u. Let ũn(z; J̃�) temporarily denote the old definition, that is, the solution of

(A.59) with ũn(z; J̃�) = zn for large n. If we prove that un(z; J̃�) = ũn(z; J̃�), clearly (A.59)

holds for the new definition.

Since J(k) shifts by k steps and zn = z−k(zn+k), we have for all n ≥ 1 and k ≥ 1,

ũn

(
z;
[
J̃�
](k)
)

= z−kũn+k

(
z; J̃�

)
. (A.65)

Because ũ0(z; [ J̃�](k)) is computed using ã0 = 1 but ũn(z; J̃�) with ã0 = ak, we have

ũ0

(
z;
[
J̃�
](k)
)

= akz
−kũk

(
z; J̃�

)
. (A.66)

Thus

ũk

(
z; J̃�

)
= a−1

k zku
(
z;
[
J̃�
](k)
)

= u
(
z; J̃�

)
. (A.67)

(ii) Clearly, (A.60) is equivalent to

lim
n→∞

G∞

(
z; J(n)) = 1. (A.68)
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It follows from (A.46) that

∣∣G∞

(
z; J(n)) − 1

∣∣ ≤
∞
∑

j=n+1

[∣∣1 − a2
j

∣∣|z|2 +
∣∣bj

∣∣|z|]∣∣Cj−n

(
z; J(n))∣∣. (A.69)

By Theorem A.3, the right-hand side goes to zero as n → ∞.

(iii) For z ∈ D, un(z; J) is the Weyl solution of (A.59), that is, the unique (up to a

multiple) solution of (A.59) which is 	2 at infinity (since (A.60) implies that un ∼ zn ∈ 	2).
Thus, by general principles, the matrix elements of R(z) ≡ (z + z−1 − J)−1 are

R(z)nm =
pmin(n,m)−1(z)umax(n,m)(z)

W(p, u)
, (A.70)

whereW(p, u) is the Wronskian of p, u. Evaluating theW at n = 0,

W(p, u) = u0(z; J) = u(z; J). (A.71)

Thus (the Weyl formula for the Weyl-Titchmarsh function)

R11(z) =
u1(z; J)
u0(z; J)

(A.72)

=
a−1

1 zu
(
z; J(1)

)
u(z; J)

(A.73)

which is (A.61).

(iv) Since z−nun(z; J) → 1 asn → ∞, u0(z; J) and u1(z; J) cannot have simultaneous

zeros. Thus, by (A.73), zeros of u in D are precisely poles of M(z), and the order of the

zeros is the order of the pole. SinceM has only simple poles in D and precisely at points

with z = β, β + β−1 an eigenvalue of J, u has only simple zeros at the prescribed points.

(v) If z ∈ ∂D, un(z; J) and un(z−1; J) solve the same Jacobi equation, and so their

Wronskian is constant. Since an → 1 and un(z; J) ∼ zn, the Wronskian at infinity is z−z−1;

while at zero, it is given in terms of u0 and u1, so

u1(z; J)u0

(
z−1; J

)
− u1

(
z−1; J

)
u0(z; J) = z − z−1 (A.74)

for z ∈ ∂D. On the other hand, un(z; J) is real if z is real so, by analyticity and continuity,

un(z̄; J) = un(z; J). Since z−1 = z̄ for z ∈ D, (A.74) becomes

Im
(
u1

(
eiθ, J

)
u0

(
eiθ, J

))
= sin θ. (A.75)
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Equation (A.75) implies that for θ �= 0, u0(eiθ, J) �= 0 and if u0(±1) = 0, then with

u ′
0(±1, J) ≡ limθ↓0 u0(eiθ, J)/(iθ),

− Re
(
u1(±1, J)u ′

0(±1, J)) = 1 (A.76)

proving that u ′
0 �= 0.

(vi) un(z−1; J) and un(z; J) obey the same equation, so (A.74) holds. This implies

that it cannot happen that u0(z; J) and u0(z−1; J) are both zero.

(vii) By (A.72),

ImM
(
eiθ
)

=
∣∣u0

(
eiθ, J

)∣∣−2
Im
(
u1

(
eiθ, J

)
u0

(
eiθ, J

))
(A.77)

which, given (A.75), implies (A.64). �

Warning. In [5], we constructed a Jost solution un(z; J) for certain J’s and z ∈ D which

may not obey (A.24). It can happen that for such J’s that u(z; J) has a zero boundary value

as z = reiθ
→ eiθ. This is because while z−nun(z; J) → 1 for z ∈ D, this may not be true for

the boundary values.
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and sufficient condition for Szegő asymptotics, to appear in Inventiones Mathematicae.

[6] L. D. Faddeyev, The inverse problem in the quantum theory of scattering, Journal of Mathe-

matical Physics 4 (1963), 72–104.



Decay and Analyticity 31

[7] R. Froese, Asymptotic distribution of resonances in one dimension, Journal of Differential

Equations 137 (1997), no. 2, 251–272.

[8] J. S. Geronimo, Scattering theory, orthogonal polynomials, and q-series, SIAM Journal on

Mathematical Analysis 25 (1994), no. 2, 392–419.

[9] J. S. Geronimo and K. M. Case, Scattering theory and polynomials orthogonal on the real line,

Transactions of the American Mathematical Society 258 (1980), no. 2, 467–494.

[10] J. S. Geronimo and R. Johnson, An inverse problem associated with polynomials orthogonal on

the unit circle, Communications in Mathematical Physics 193 (1998), no. 1, 125–150.

[11] Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, American Mathe-

matical Society Translations 1954 (1954), no. 104, 79.

[12] , Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials

Orthogonal on the Unit Circle and on an Interval, Consultants Bureau, New York, 1961.

[13] F. Gesztesy, A complete spectral characterization of the double commutation method, Journal

of Functional Analysis 117 (1993), no. 2, 401–446.

[14] F. Gesztesy and G. Teschl, Commutation methods for Jacobi operators, Journal of Differential

Equations 128 (1996), no. 1, 252–299.

[15] R. Jost and A. Pais, On the scattering of a particle by a static potential, Physical Review 82

(1951), 840–851.

[16] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory,

Annals of Mathematics. Second Series 158 (2003), no. 1, 253–321.

[17] E. Korotyaev, Inverse resonance scattering on the half line, Asymptotic Analysis 37 (2004),

no. 3-4, 215–226.

[18] , Stability for inverse resonance problem, International Mathematics Research Notices

2004 (2004), no. 73, 3927–3936.

[19] P. Nevai and V. Totik, Orthogonal polynomials and their zeros, Acta Universitatis Szegediensis.

Acta Scientiarum Mathematicarum 53 (1989), no. 1-2, 99–104.

[20] R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed., Dover, New York, 2002.

[21] B. Simon, Resonances in one dimension and Fredholm determinants, Journal of Functional

Analysis 178 (2000), no. 2, 396–420.

[22] , Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Math-

ematical Society Colloquium Publications, vol. 54, American Mathematical Society, Rhode Is-

land, 2005.

[23] , Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory, American Math-

ematical Society Colloquium Publications, vol. 54, American Mathematical Society, Rhode Is-

land, 2005.

[24] , Sturm oscillation and comparison theorems, Sturm-Liouville Theory. Past and Present

(W. Amrein, A. Hinz, and D. Pearson, eds.), Birkhäuser, Basel, 2005, pp. 29–43.
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[26] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications,

vol. 23, American Mathematical Society, New York, 1939, 3rd ed., 1967.



32 D. Damanik and B. Simon

[27] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Sur-

veys and Monographs, vol. 72, American Mathematical Society, Rhode Island, 2000.

[28] S. Verblunsky, On positive harmonic functions (second paper), Proceedings of the London

Mathematical Society Series 2 40 (1936), 290–320.

[29] M. Zworski, Distribution of poles for scattering on the real line, Journal of Functional Analysis

73 (1987), no. 2, 277–296.

[30] , A remark on isopolar potentials, SIAM Journal on Mathematical Analysis 32 (2001),

no. 6, 1324–1326.

David Damanik: Mathematics 253-37, Division of Physics, Mathematics & Astronomy,

California Institute of Technology, Pasadena, CA 91125, USA

E-mail address: damanik@caltech.edu

Barry Simon: Mathematics 253-37,Division of Physics,Mathematics & Astronomy,

California Institute of Technology, Pasadena,CA 91125,USA

E-mail address: bsimon@caltech.edu

mailto:damanik@caltech.edu
mailto:bsimon@caltech.edu

	1. Introduction
	2. The case of no bound states
	3. The general case
	Appendix
	Appendix A. The Geronimo-Case equations

