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A b s t r a c t .  We provide a very general result which identifies the essential 
spectrum of broad classes of operators as exactly equal to the closure of the 
union of the spectra of suitable limits at infinity. Included is a new result on the 
essential spectra when potentials are asymptotic to isospectral toil. We also recover 
within a unified framework the HVZ Theorem and Krein's results on orthogonal 
polynomials with finite essential spectra. 

t I n t r o d u c t i o n  

One of the simplest but also most powerful ideas in spectral theory is Weyl's 

theorem, of which a typical application is 

T h e o r e m  1.1. I f  V, Ware bounded functions on ~" and 

then 

lim [V(x) - W(x)] = O, 

(1.~) ~o~s(-zx + v)  = ~oss(-zx + w ) .  

(In this Introduction, in order to avoid technicalities, we take potentials 

bounded.) Our goal in this paper is to find a generalization of this result which 

allows "slippage" near infinity. Typical of our results are the following. 

T h e o r e m  1.2, Let V be a bounded periodic function on (-oo, c~) and Hv  the 

operator-d2/dz 2 + V(z) on L2(R). For z > O, define W(z)  = V(z  + v ~)  and let 
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H w  be -d2  / dx 2 + W ( x ) on L 2 ( O, o0) with some selfadjoint boundary conditions at 

zero. Then 

(1.2) ~ess(Hw) = a(Hv) .  

T h e o r e m  1.3. Let a be irrational and let H be the discrete Schri~dinger 

operator on ~2(Z) with potential ~ cos(an). Let ~I be the discrete SchrOdinger 

operator on ~2 ({0,1, 2 , . . .  }) with potential )~ cos(an + V~). Then 

(1.3) ~o~(B) = ~(H).  

Our original motivation in this work was extending a theorem of  Barrios-Ldpez 

[9] in the theory of  orthogonal polynomials on the unit circle (OPUC); see [77, 78]. 

T h e o r e m  1.4 (see Example 4.3.10 of  [77]). Let  {an}n~=0 be a sequence of 

Verblunsky coefficients such that for  some a E (0, 1), one has 

(1.4) lira lanl = a, lira a n + l _  1. 
n----k O o  n - + o o  a n  

Then the C M V  matrix fo r  an has essential spectrum identical to the case an - a. 

This goes beyond Weyl 's  theorem in that an  may  not approach a: rather 

lanl -+ a, but the phase is slowly varying and may  not have a limit. The way 

to understand this result is to realize that an  -~ a is a periodic set of  Verblunsky 

coefficients. For each A 6 0]D (ID = {z : Izl < 1}), the set of  periodic coefficients 

with the same essential spectrum is the constant sequence a n  = Aa. Note that (1.4) 

says in a precise sense that the given a n  approach this isospectral toms. Our aim 

was to prove the following resuk. 

T h e o r e m  1.5. I f  a set o f  Verblunsky coefficients or Jacobi parameters is 

asymptotic to an isospectral torus, then the essential spectrum o f  the correspond- 

ing C M V  or Jacobi matrix is identical to the common essential spectrum of  the 

isospectral torus. 

In Section 5, we make precise what we mean by "asymptotic to an isospectral 

t o m s "  Theorem 1.5 gives a positive answer to Conjecture 12.2.3 of  [78]. 

In the end, we found an extremely general result. To describe it, we recall some 

ideas in our earlier paper [49]. We first consider 3acobi matrices (b n E IL an > 0) 

(1.5) J = 
a2 b3 

�9 �9 o 
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where, in fine with our convention to deal with the simplest cases in this Introduc- 

tion, we suppose there exists K E (0, ~ )  such that 

(1.6) sup ]bn[ + sup [an[ + sup [an1-1 ~ K. 

A right limit point of  J is a double-sided Jacobi matrix J(~) with parameters 
(r) b ( r ) ~  a,, , ~ ~n=-oo so that there is a subsequence n j  w i t h  

(1.7) anj+e --~ a~ ~), b~j+e -+ b~ r) 

as j ~ oo for each fixed g = 0, • •  In [49], we noted that 

P r o p o s i t i o n  1.6. For each right limit point, a (J(~)) C O~ss (J). 

This is a basic result which many, ourselves included, regard as immediate. For 

ff)~ E a(J (~)) and ~(~) is a sequence of  unit trial functions with [1(,1 (r) - A)~ ('~) [1 -4 

0, then for any j(m) ~ oc, [[(J - A)~("~)( �9 + nj(,~))ll -+ 0; and if  j (m)  is chosen 

going to infinity fast enough, then ~(m)(. _ nj(m)) --4 0 weakly, so A E a~(J) .  
Let R be the set of  right limit points. Clearly, Proposition 1.6 says that 

(1.8) U a(J(~)) C a~.ss(J). 
rCT"~ 

Our new realization here for this example is 

T h e o r e m  1.7. / f  (1.6) holds, then 

(1.9) U a(J(~)) = aess(J)- 
rET~ 

R e m a r k .  It is an interesting question whether anything is gained in (1.9) by 

taking the closure-- that  is, whether the union is already closed. In every example 

we can analyze, the union is closed. V. Georgescu has informed us that the methods 

of [27] imply that the union is always closed and that the details of  the proof of  

this fact are the object of a paper in preparation. 

Surprisingly, the proof is a rather simple trial function argument. The difficulty 

with such an argument tried naively is the following. To say that J ( ' )  is a right limit 

point means that there exist L ~  -4 c~ so that J r [n~(m) - L,~, nj(,~) + L,n] shifted 

to [-L,~, Lm] converges uniformly to J(~) [ [ -Lm, Lm]. But L~  might grow very 

slowly with m. Weyl 's criterion says that i f  A ~ aes~ (J), there are trial functions 

~k supported on [nk - / ~ ,  nk +/~k] such that I[(J - A)~kll -+ 0. By a compactness 

argument, one can suppose the n~ are actually nj(,~)'s for some right limit. The 
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difficulty is that L,~ might grow much faster than L,~, so translated ~k's are not 

good trial functions for d(r). 

The key to overcoming this difficulty is to prove that one can localize trial 

functions in some interval of  fixed size L, making a localization error of  O(L-1). 
This is what we do in Section 2. In this idea, we were motivated by arguments in 

Avron et al. [6], although to handle the cont inuum case, we need to work harder. 

The use o f  localization ideas to understand essential spectrum, an implemen- 

tation using double commutators,  is not n e w - - i t  goes back to Enss [23] and was 

raised to high art by  Sigal [74]. Enss and Sigal, and also Agmon [1] and G~rding 

[251, later used these ideas and posifivity inequalities to locate inf Cress (H),  which 

suffices for the HVZ Theorem but not for  some of  our applications. 

What  distinguishes our approach and allows stronger results is that, first, we use 

trial functions exclusively and, second, as noted above, we study all of  cress rather 

than only its infimum. Third, and most  significantly, we do not  limit ourselves to 

sets that are cones near infinity but instead take balls. This gives us small operator 

errors rather than compact  operator errors (although one can modify  our arguments 

and take ball sizes that go to infinity slowly, and so get a compact  localization error). 

This makes the method much more  flexible. 

While this paper is lengthy because of  many different applications, the un- 

derlying idea is captured by  the mantra "localization plus compactness." Here 

compactness means that resolvents restricted to balls of  fixed size translated to 

zero lie in compact  sets. We have in mind the topology of  norm convergence once 

resolvents are multiplied by  the characteristic functions of  arbitrary fixed balls. 

Because we need to control [I(A - A)~I[ 2 and not just  (~, (A - A)~), i f  we used 

double commutators,  we would need to control [j, [j, ( A -  A) 2]]; so, in the continuum 

case, we get unbounded operators and the double commutator  is complicated. For 

this reason, following [6] and [36], we use single commutators  and settle for an 

inequality rather than the equality one gets f rom double commutators.  

After  we completed this paper and released a preprint, we learned of  some 

related work using C*-algebra techniques to compute  cress (H) as the closure of a 

union o f  spectra of  asymptotic Hamiltonians at infinity; see Georgescu-If t imovici  

[27] and M~ntoiu [56]. Further work is in [4, 26, 28, 29, 57, 71]. We also learned 

o f  very recent work of  Rabinovich [67], based in part on [48, 62, 65, 66, 68, 691, 

using the theory of  Fredholm operators to obtain results on the essential spectrum 

as a union of  spectra of  suitable limits at infinity. 

Thus, the notion that in great generality the essential spectra is a union of 

spectra of  limits at infinity is not new. Our contributions are twofold. First, some 

may find our direct p roof  via trial functions more palatable than arguments relying 
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on considerable machinery. Second, the examples of Section 4, Section 5, and 

Section 7(b), (c) are (so far as we know) new, although it is certainly true that the 

methods of [27, 56, 67] can analyze some or even all these examples, in particular, 

we settle Conjecture 12.2.3 of [78]. 

There is obviously considerable overlap in philosophies (which, after all, both 

extend the ideas of the HVZ Theorem) and results in these papers. The techniques 

seem to be rather different, although we suspect a translation of the C*-algebra 

machinery to more prosaic terms may reveal similarities that are, for now, not clear 

to  u s .  

The paper [281 has results stated without reference to C*-algebras (although 

the proofs use them); our Theorems 3.7 and 3.12 are special cases of Theorem 1.1 

of [28]. 

We present the localization lemmas in Section 2 and prove our main results in 

Section 3. Section 4 discusses an interesting phenomena involving Schr6dinger 

operators with severe oscillations at infinity. Section 5 has the applications to 

potentials asymptotic to isospectral tort and includes results stronger than Theo- 

rems 1.2, 1.3, and 1.5. In particular, we settle positively Conjecture 12.2.3 of [78]. 

Section 6 discusses the HVZ Theorem, and Section 7 other applications. Section 8 

discusses magnetic fields. 

We can handle the common Schr6dinger operators associated to quantum theory 

with or without magnetic fields as well as orthogonal polynomials on the real line 

(OPRL) and unit circle (OPUC). 

A c k n o w l e d g e m e n t s .  It is a pleasure to thank D. Damanik and R. Killip for 

usefut discussions, and V. Georgescu, M. Mantoiu, V. Rabinovich, A. Sobolev and 

B. Thaller for useful correspondence. This research was completed during B. S.'s 

stay as a Lady Davis Visiting Professor at The Hebrew University of Jerusalem. 

He would like to thank H. Farkas for the hospitality of the Einstein Institute of 

Mathematics at The Hebrew University. 

2 L o c a l i z a t i o n  e s t i m a t e s  

Here we use localization formulae but with partitions of unity concentrated on 

balls of fixed size in place of the previous applications which typically take j ' s  

homogeneous of degree zero near infinity. Also, we use single commutators. 

Let ~ be a separable Hilbert space and A a selfadjoint operator on ~ .  Let {j~} 

be a set of bounded selfadjoint operators indexed by either a discrete set S, like Z ~, 

or by a c R v . In the latter case, we suppose that j~ is measurable and uniformly 
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bounded in a.  We assume that {j~} is a partition of  unity, namely, 

(2.1) ~ j~ = I or f j~ d'oL = 1 
aES  JokER ~ 

where the convergence of  the sum or the meaning of  the integral is in 

the weak operator topology sense. Two examples which often arise are 

= g2(Z"), r C e2(Z ") real-valued with ~ r  2 = 1, and {jm}meZ~ is multipli- 

cation by r (. - m), or ~ = L 2 (N ~ , d"x) ,  ~ E L 2 (N " , d~x) f-1L ~ (IR ~" , d" x) real-valued 

with r e ( x )  2 d ' x  = 1, and {jy}yeR- is multiplication by r  - y). 

Assume that for each a, j~ maps the domain of A to itself and let q0 be a vector 

in the domain of  A. Observe that 

(2.2) 

IIAj~oll 2 = II(j~A § [A,j~])~o[I 2 

< 2llJ~&oll 2 § 211[A,j~]~oll 2. 

Thus 

Proposit ion 2.1. 

(2.3) 

where  

IIAjo~,ll 2 < 2ll&oll 2 + (~o, C~) 

(2.4) C = 2 ~ -[A,j~] 2. 
o~ 

R e m a r k .  Since [A,j~] is skew-adjoint, - [ A , j ~ ]  2 = [j~, A]*[j~, A] >_ O. 

ProoL 

(2.5) 

and 

(2.3) is immediate from (2.2) since 

llJ~&oll 2 = ~ ( A ~ , j ~ A ~ o )  = If&oil 2 
oz oe 

( 2 . 6 )  II[A, j~]~l l  2 = - ( ~ ,  [A, j~]2~). [] 

T h e o r e m  2.2. 

(2.7) 

There exists a such that  j ~  ~ 0 a n d  

IIA o ll _< { j r llA ll  + II ll } 
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P r o o f .  Denote the quantity in brackets in (2.7) by d. 

E~ IIJ~ll ~, (2.3) implies 

[IIAj.~II 2 - d l l J~ l l  2] _< 0, 

so at least one term with IIJ~ll r 0 is nonpositive. 

To deal with unbounded A's, we  suppose that v ~  is A-bounded. 

T h e o r e m  2,3.  Suppose A is unbounded and 

(2.8) (~p, C~> < ~(IIA~II 2 + 11~[12). 

Then there exists an a with j ~ o  7 ~ 0 such that 

(2.9) ]lAj,~qol[ 2 < { (2 + 5) IIA~II2 } 

P r o o f .  By  (2.3) and (2.8), we have 

I IAj~[I  2 _< (2 + ~)IIA~II 2 + ~11~11 ~. 
O/ 

As before, (2.9) follows. 

Then, since [l~[I 2 = 

[] 

[] 

3 T h e  essent ia l  s p e c t r u m  

This is the central part of  this paper. We begin with Theorem 1.7, the simplest 

of our results. 

P r o o f  o f  T h e o r e m  1.7. We have already proved (1.8) in the remarks after 

Proposition 1.6, so suppose A E aess(J). Recall Weyl 's  criterion, )~ C ~ress(J) if and 

only if there exist unit vectors ~m ~o> 0 with [l(J - A)~,~ I[ ~ 0. 

Given e, pick a trial sequence {~o,~} such that each ~,~ is supported in 

{n: n > m} and 

1 2 2 (3.1) I[(J - ~)~112 <_ ~e  [ l ~ l l  ; 

we can do this by  WeyFs criterion, since f~ ~o> 0 implies ~ < ~ L f j ( n ) l  ~ -~ 0 for 

each m. 

For L = 1, 2, 3 , . . . ,  let 

In - -1  --L--, n = 1 , 2 , . . . , L  

(3.2) ~ r ( n )  = ~L=I-,~ L , n = L , L + I , . . . , 2 L - 1  

0, n > 2L - I 
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and let 

(3.3) c~ = ~ I C L  (n)['2, 
T~ 

so that ct, ~ L 1/e in the sense that for some 0 < a < b < oo, 

aL 1/2 < CL < bL 1/2. (3.4) 

For a = 1, 2 , . . . ,  let 

(3.5) 

Then, by (3.3), 

(3.6) 

j~,L(~) = ~2~r + ~). 

j2  
E a,L ~ 1. 

or 

Since IgaL(n + 1) - ~pL(n)l < L - l ,  we have 

(3.7) 

= ~ s u p ,  la,~l c r l L  -l if  In-m]-- - -  1 and I n -  a -  L I < L, 
[<6~,[j~,L,J]am>l 

to otherwise. 

Therefore,  C ~_ ~ 2[j~,L, d]2 is a 5-diagonal matrix with matrix elements bounded 

by 

(3.8) 2 . 2 ( 2 L ) c [ 2 L - 2 (  sup [a.I) 2, 

where the second two comes from the number of  k's which make a nonzero 

contribution to (~n, [ja,L,.l]gk)(6k, [Ja,L, J]Sm). By (3.4), there is a constant K 

depending on sups[an{ such that 

(3.9) IlCll < KL -2. 

Picking L so that KL- 2 < E2/3, we see by Theorem 2.2 that there exists J,~m such 

that I[J,~=~,~[[ # 0 and 

(3.1o) 

The intervals 

I . ,  = [a. ,  + 1, am + 2L - 1] 

which support j~=~.~ have fixed size and move out to infinity since 

I~  ~ {n : n >_ m - L}. Since the set o f  real numbers with Ib[ + [a I + la[- '  _< K is 

compact  and L is finite, we can find a right limit point ,l (~) such that a subsequence 
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of J IIm translated by am + L converges to J(r) I [1 - L, L - 1]. Using translations 

of the trial functions J~m ~;m, we find g)m such that 

(3.11) lira [l(d(~) - A)r <_ e, 
m--~oo I1r 

which means 

(3.12) dist(A, a(J(r)))  < e. 

Since e is arbitrary, we have )~ E O a('l(r)) . [] 

We have been pedantically careful in the proof  above so that below we can be 

much briefer and just  relate to this idea as "localization plus compactness"  and not 

provide details. 

We turn next to the CMV matrices defined by a sequence o f  Verblunsky coef- 

ficients {Oj}?_ 0 with a j  C ~). We define the unitary 2 x 2 matrix |  = (~ f ~ ) ,  

wherep = (1-[ai '2)  1/2 ,ands  = O0@(- )2@040. - - ,  M = 1 @ O 1 @ 0 3 + . . - ,  where 

1 is a 1 x 1 matrix and | = 6)(aj). Then the CMV matrix is the unitary matrix 

C = s  Given a two-sided sequence {aj}j~=_o~, we define s . . . .  6)-2 @ 6)0 @ 6)2 

and M = (')-1 | ( ')10 6)3 |  on g2(Z), where (-)j acts on the span of(Yj and ~j+~. 

We set d = {2~.  See [77, 781 for a discussion of  the connection o f  CMV and 

extended CMV matrices to OPUC. 

Note that in [77, 78], the symbol d is used for the very different purpose of  

denoting transpose of  C (alternate CMV matrix). 

If {aj }~-=0 is a set of  Verblunsky coefficients with 

(3.13) sup lajl < 1, 
J 

we ca l l  {/~j}jo~==_ oo a fight limit point if there is a sequence mj  SO that for 

= O , + l , . . . ,  

(3.14) lira a,~j ke = fit, 
j - ->  ON3 

and we call d(f4) a fight limit of  C(a). 

T h e o r e m  3.1.  Let C(a) be the CMVmat r i x  o f  a sequence obeying (3.13). Let 

Tt be the set o f  right limit extended C M V  matrices. Then 

(3.15) = U 
7~ 



192 Y. LAST AND B. SIMON 

P r o o f .  The arguments of  Section 2 extend to unitary A if  - [ j~ ,A]  2 

is replaced by [ j~,A]*[j~,A].  Matrix elements of  [j~,C] are bounded by 

suPn,lkl<21jo(n + k) - j~ (n) l  since C has matrix elements bounded by 1 and is 

5-diagonal. Thus, C is 9-diagonal; otherwise, the argument extends with no 

change since {a : I~1 _< supj la j l}  is a compact  subset of  II~. [] 

Next, we remove the condition that suplajt  < 1 in the OPUC case and the 

conditions suplbj] < c~ and inflaj[ > 0 in the OPRL case. The key, of  course, is to 

preserve compactness,  that is, existence of  limit points; to do that, we need only 

extend the notion of  right limit. 

If  {a j}~__~  is a two-sided sequence in ~, one can still define d (a j )  since O(a~) 

makes sense. If lajl  = 1, then pj = 0 and O(c~) -- (oJ -~J~ ) is a direct sum in such 

a way s and 34 both decouple into direct sums on g 2 ( - o o , j ]  @ gz[j + 1, oc), so C 

decouples.  I f  a single a j  has ]aj ] = 1, we decouple into two semi-infinite matrices 

(both related by unitary transforms to ordinary CMV matrices), but if  more than 

one a j  has lajl -- 1, there are finite direct summands. 
OO In any event, we can define C(~j) for {aj}  E )< j=_~  ~ and define right limit 

points of  C(aj)  even if  suplajl = 1. Since matrix elements of  C are still bounded 

by 1, C is still 5-diagonal and )< j~__ _ ~  ~ is compact,  we immediately have 

T h e o r e m  3.2.  With the ex t ended  not ion o f  C, T h e o r e m 3 . 1  holds  even  i f  (3.13) 

fai ls .  

For bounded Jacobi matrices, we still want sup(la,~l + Ibnl) < ~ ,  but we do not 

need infla, d > 0. Again, the key is to allow two-sided Jacobi matrices Jr  with 

some a,~ = 0, in which case Jr  decouples on g2(-e~, n] O g2[n + 1, ee). If  a single 

an = 0, there are two semi-infinite matrices. If  more than one a,~ = 0, there are 

finite Jacobi summands. Again, with no change in proof  except  for the change in 

the meaning of  right limits to allow some a(~ r) = 0, we have 

T h e o r e m  3.3.  Theorem 1.7 remains  true i f  (1.6) is rep laced  by 

(3.16) sup (la~l + Ib~l) < o~ 
n 

so long as  J(~) are a l l owed  wi th  s o m e  a (~) = O. 

In Section 7, we use Theorems 3.2 and 3.3 to complement  the analysis of  Krein 

(which appeared in Akhiezer-Krein  [3]) for  bounded Jacobi matrices with finite 

essential spectrum and of  Golinskii [30] for OPUC with finite derived sets. 

Our commutator  argument requires that I an I is bounded, but one can also handle 

lim suplb,~l = oe. It is useful to make the following 
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D e f i n i t i o n .  Let  A be a possibly unbounded selfadjoint operator. We say that 

+c~ lies in ~res~ (A) i f  a(A) is not bounded above, and - o e  lies in O-e~ (A) i f  a(A) is 

not bounded below. 

We now allow two-sided Jacobi matrices, J ,  with b,~ = +oc and/or bn = , o e  

(and also aN = O). I f  Ib,~l = co, we decouple into g2(-c% n - 1] | g2[n + 1, c~) and 

place b~ in "cres~ (J) ."  With this extended definition, we still have compactness,  that 

is, for any intervals in Z+, I1, I 2 , . . .  o f  fixed finite size g with g-~ ~ j c x ,  J --+ c~, 

there is a subsequence converging to a set o f  Jacobi parameters with possibly 

bn = +oe or bn = - o c .  We therefore have 

T h e o r e m  3.4o Theorem 1.7 remains true i f  (1o6) is replaeed by 

(3.17) sup [anl < oe 
n 

so long as j(r)  are al lowed to have some a(~ ~) = 0 and~or some b (~) = ic~ .  

R e m a r k s .  1. This includes the conventions on when +ce  lies in cre~(J). To 

prove this requires a simple separate argument. Namely,  (~n, J~n) = b~, so bn E 

numerical range o f  J = convex hull o f  a ( J ) .  Thus, i f  b~j -+ :t:oc, then 4-cc C ~r(J). 

2. I f  sup,~la~ I = cv, ae~s can be very subtle; see [43, 44]. 

Next, we turn to Jacobi matrices on Z v (including u = 1), that is, J acts on 

~2(Z') via 

(3.18) (Ju)(n)  = ~ a ( n , m ) U ( m ) + ~ b n u ( n ) ,  
I r a - - n [ = l  n 

where the bn's are indexed by n 6 Z ~" and the a(n,m)'s by bonds {m, n} (unordered 

pairs) with I m -  n I = 1. For  simplicity of  exposition, we suppose 

(3.19) sup (la(,~,m)l + la(.,m)l -a)  +suplbnl  < oe, 
] r n - - n l = l  n 

although we can, as above, also handle some fin-fits with a(~,m) = 0 or some 

lbn] = c~. With no change, one can also control finite-range off-diagonal terms; 

and with some effort  on controlling [j~, J], it should be possible to control infinite- 

range off-diagonal terms with sufficiently rapid off-diagonal decay. 

Let  us call J a limit point of  J at infinity i f  and only i f  there are points nj  E Z v 

with nj -+ oo so that for  every finite k, g, 

(3.20) b,~j+e -+ be, a(~+e,~j+k) --+ 5(k,e). 

Let  Z; denote the set o f  limits J .  
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T h e o r e m  3.5,  Let J be a Jacobi matrix o f  the form (3.18) on g2(Z~). Suppose 

(3.19) holds. Then, 

(3.21) aess(J) = U a(,]). 

P r o o f .  We can define partitions of  unity j~,n indexed by  a E Z"  with j~ (n) -r 0 

only if In - ~} < L and with - ~ a ~ ,  j]2 bounded by  O(L-2) .  With this, the proof  

is the same as in the one-dimensional  case. 

It is often comfort ing to consider only limit points in a single direction. Because 

the sphere is compact,  this is easy. 

D e f i n i t i o n .  Let  e E S ~-1, the unit sphere in R ~ . We say J is a limit point 

in direction e if  the nj in (3.20) obey nj/[nj]  ~ e. We denote the limit points in 

direction e by 1;~. 

Suppose ] is a limit point for J with sequence nj .  Since S ~-1 is compact,  we 

can find a subsequence nj(k) so nj(k)/Inj(k)[ -+ e0 for some e0. The subsequence 

also converges to J ,  so J is a limit point for  direction e0. Thus, 

T h e o r e m  3.6.  Let  J be a Jacobi matrix o f  the form (3.18) on g2 (R"). Suppose 

(3o19) holds. Then 

(3.22) Cress(J)= U U ~r (J). 
e E S  ~'-1 JEE~ 

For example,  if  u = 1, we can consider left and right limit points. 

Finally, we turn to Schr td inger  operators. Here we need some kind o f  com- 

pacmess condition of  the - A  + V that prevents V f rom oscillating wildly at infinity 

(but see the next  section). We begin with a warmup case that is the core of  our 

general case. 

T h e o r e m  3.7.  Let V be a bounded, uniformly continuous funct ion on N ~. For 

each e E S ' ,  call W a limit o f  V in direction e i f  and only i f  there exists xj E R" 

with [xj[ ~ cc and xj / Ix j[  -+ e so that V(xy + y) ~ W(y) .  Then, with Z;~ the limits 

in direction e, 

(3.23) Cro  (-a + v) = U U Cr(-z  + w). 

N e m a r k s .  1. While we have not stated it explicitly, there is a result for 

half-line operators. 

2. Uniform continuity means Ve, ~ ,  so Ix - Yl < 5 ~ IV(x) - V(y)l  < e. It is 

not hard to see this is equivalent to {V(- + y)}ycz~ being equicontinuous. 
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3. This result appears in a more  abstract formulation in Georgescu-I f t imovic i  

[28]. 

P r o o f .  As noted, uniform continuity implies uniform equicontinuity so, by the 

Arzela-Ascol i  theorem (see [70]), given any sequence o f  balls {x : Ix - yj[ _< L}, 

there exist e and W in s such that V(. + yj) -+ W(.) uniformly on {z : Ixl _< L}. 

This is the compactness needed for our argument. 

To handle localization, pick any nonnegative rotation invariant C ~ function ~b 

supported on {x : Ix[ < 1} with f r  2 d~'x = 1. Define j~,r as the operator of  

multiplication by  the function 

j~,L(Y) = L-~'/2r -1 (Y - x)) 

and note that 

/ J~,L d~'x = 1. 

WithA = ( - A + V - A )  a n d C  = 2 f  --[A,jx,L] 2 d'x, we have (2.8) with 5 = O(L-~), 
since C = L-2(clA + c2) for  constants cl and c2 (for C is translation and rotation 

invariant and scale covariant). 

Now (3.23) follows in the usual way. [] 

Our final result in this section concerns Schr6dinger  operators with potentially 

singular V's. As in the last case, we suppose regularity at infinity. In the next 

section, we show how to deal with irregular oscillations near infinity. Recall  the 

Kato class and norm [2, 20] is defined as follows. 

D e f i n i t i o n .  V : R ~ --+ N is said to live in the Kato class K~ if  and only i f  

(3.24) lira [sup f . I x - y l2 - ' lV (y ) l d ' y  ] = 0 .  
a~.O L x d l x - - y l~_a  

(If u = 1, 2, the definition is different. I fu  = 2, I x - y [ 2 - "  is replaced by log[Ix-y[-1],  

and i f  u = 1, we require supx ffx_yl_<llV(y)l dy < ~ . )  The K ,  norm is defined by 

(3.25) IlVll~, = sup [ Ix - y]2-'lV(y)[ d"y. 
a I~-yl_<l 

We introduce here the 

D e f i n i t i o n .  V : E ~ --+ N is called uniformly Kato i f  and only i f  V E K~ and 

(3.26) lira IIV - V(. - Y)[IK. = O. 
y$O 
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Example 3.8.  Let  

(3.27) V(x)  -- sin(x~). 

Then V 6 K~, but for (x0)l large and y = (Tr/2(XO)l,y2, . . . ) ,  [(x0 + y)l] 2 = 

(xo)~ + ~ + O(1/(Xo)l);  so for z near Xo, V(x )  - V ( x  - y) ,,, 2Y(x),  and because 

o f  the ]V(.)I in (3.25), we do not have (3.26). We discuss this further in the next 

section. 

Example 3.9.  We say p is canonical for ~ "  if  p = # / 2  where  p > 3, p > 2 if 

# = 2, a n d p  = l i f p =  1. I f  

(3.28) sup f Iv(y)l  ~ d"y < (X3~ 
z J i z - V l _ < l  

then V E K~, (see [20]). Moreover,  i f  

(3.29) lira [ IV(y)[Pd~y = 0, 

it is easy to see that (3.26) holds because  V is small  at infinity, and (3.26) holds for 

L p norm if  V 6 L p. 

Example 3.10.  I f  7r : R" ~ ~ is a linear map  onto ~u and W 6 K~,, then 

V(x)  = W(Trx) is in K~, and the K~ norm of  V is bounded  by  a 7r-dependent 

constant  t imes the K~, norm of  W. I f  W obeys (3.26), so does V. 

We combine  Examples  3.9 and 3.10 in our study of  the H V Z  theorem. 

Proposition 3.11 .  Let V be a uniformly Kato potential  on ~ and let 

H~ = - A  + (. - x). Then f o r  any sequence xk  --~ oo, there is a subsequence 

Xk(m) and a selfadjoint operator Hc~ such that i f  z E C~[a, co) f o r  some a E I~, then 

(3.30) [I[(H.~(~, - z ) - '  - ( H a  - z ) - l ]xs l l  ~ 0, 

where Xs is the characteristic funct ion o f  an arbitrary bounded set. 

R e m a r k .  Formally,  Ho~ is a Schrbdinger  operator  o f  the fo rm H0 + Voo, but 

Voo, as constructed, is only in the complet ion of  K~, which is known to include 

some distributions (see [31, 55]). 

P r o o f .  It is known that i f  W E K~, then W is - A  form bounded with relative 

bound zero with bounds depending only on K~ norms (see [20]). Thus,  since all 

V~'s have the same K,, norm, we can find a such that H~ >_ a for  all x. It  also means 
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that for each z E C\ [a, ~ ) ,  we can bound [I[W[ 1/2 (H~ - z)--1A 1/eli by cllWII ~ with 

c only z-dependent  and I lVl lK~-dependent -  

Let  ~ be a C ~ function o f  compac t  support  and note (constants are z- or 

[IVlIK.-dependent) 

IIIWI~/~[(H _ ~ ) - 1  ~]11 < I I W ~ / " ( H  - ~ ) - '  I/X, ~ ] ( a  - z ) - l l l  

<_ c l l W ~ / 2 ( n  - z)-~Zxl/211 llV~ll. 

This in turn implies that if $1 is a ball o f  radius r fixed about  x0 and $2 a ball o f  

radius R > r, then 

I[W1M(1 - X s 2 ) ( H  - z ) - lXs~  [1 --+ 0 

as R --+ c~. So, i f  [[(W,~ - W)Xs] IK ,  --+ 0 for all balls and supn IIW,~II~. < ~ ,  then 

I I ( ( - ~ x  + w n  - z )  - 1  - ( - ~  + w - ~ ) - ~ ) x s l l  ~ 0 

for all S. 

In this way, we see that i f  V is uniformly Kato and V~. ~ V~ in K ,  uniformly 

on all balls, then 

(3.31) [l[(Hx~ - z) -a - ( H a  - z)]--aXsl] ~ O. 

The condition that V is uni formly  Kato means  convolutions of  V with a C a 

approximate  identity converge to V in Kv norm. Call the approximat ions  V (m). 

Each is C a with bounded derivatives and so, by the equicontinuity argument  in 

Theorem 3.7, we can find Xjm(n ) and V~ (m) such that 

I [ [ ( -A + V~ (m) - z) -1 - ( - A  + V (m)  - z ) - l ] x s l l  --+ O. 
5m(~) 

Since V~ (m) -+ V~, uniformly in x, a standard e /3  argument  (see [70]) shows that 

one can find Xj(m) such that II[(Hxm - z)  -1  - (n~ . , ,  - z ) - l ] X s l l  is small  for each S 

as m, rn r ~ co. In this way, we obtain the necessary limit operator. [] 

Given V uniformly Kato,  the limits constructed by Proposit ion 3.11 where 

x~/[x~[ -~ e are called limits o f  H in direction e. Again, the next result appears  in 

a more  abstract  setting in Georgescu- I f t imovic i  [28]. 

T h e o r e m  3.12.  Le t  V be  uni formly  Kato. Le t  s  denote  the limits o f  H in 

direction e. Then  

(3.32) aess(H) = [.J U a ( H a ) .  
e Hoo Es 
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The papers that use C*-algebras [27, 56] study h(p) + V in place of  - A  + V. 

These papers only required that h(p) -~ ec as p -+ ec. It seems likely that for 

many such h's, our methods will work. The condition h(p) ~ ec as p --+ ec is 

critical in our approach to ensure that i f  ~ ~ 0 weakly and I](H - E)~n]] -~ O, 

then X{x:lzl<R}qOn -'9" O. 

It is likely that one can develop a theory for h(p) + V(x)  without supposing 

h(p) -+ co or even f (p,  x), but one would need to consider limits at infinity in phase 

space, not just  on configuration space. 

P r o o f .  We pick a so that H~ > a for  all x. Pick z E ( -oo ,  a) and let 

fix = ( H x - z )  -1. As above, II[A~,J~][I <_ cllVJ~[] f o r a n y j ~  in C ~ .  ForA e cress(H), 

let A = (Hx - z) -1 - ()~ - z ) - l .  Theorem 2.2 provides the necessary localization 

estimate. Proposit ion 3.11 provides the necessary compactness.  Then (3.32) is 

proved in the same way as earlier theorems. [] 

4 Schr6dinger  operators  with severe osci l lat ions at 
infinity 

This section is an aside to note that the lack of  uniformity at infinity which 

can occur  i f  V is mere ly  K ,  is irrelevant to essential spectrum. We begin with 

Example  3.8, the canonical example of  severe oscillations at infinity. 

Proposition 4.1.  Let 

(4.1) W(x)  = sin(x 2) 

on (0, oc) and let [to = -d2 /d z  2 with u(O) = 0 boundary conditions. Then 

(1) W(Ho + 1) -1 is not compact; 

(2) (H0 + 1)-I /2W(Ho - 1) -1/2 is compact. 

R e m a r k s .  1. Our p roof  of  (1) shows that W f ( H o )  is noncompact  

for  any continuous f # 0 on (0, oo). 

2. Consideration of  W = V-(~  potentials goes back to the 1970's; 

(see [8, 12, 13, 17, 18, 21, 40, 41, 58, 72, 73, 79]). 

Proof. 

(4.2) 

T h e n  

(1) Let  ~ be a nonzero C~~ oo) function in L 2 and let 

Cn(x) = [(H0 + 1)~](x - n). 

IIW(Ho + 1)-~#~il ~ = / W(x)~o(~ - ~)~ dx 
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__ 1/2 ~9(X) 2 d x  - ~l / cos(2xS)~(x - n)S dx 

1 / d x r  (4.3) ~ ~ ~(x) 2 

by an integration by parts. Since ~n ~> 0, this shows that W(Ho - 1) -~ is not 

compact. 

(2) Since d [ 1 cos(x:)] = sin(x:) + O(x-2),  we see that T~z --~7 

fx y 
Q(x) = lim - W(z)  dz y-+co 

exists and 

(4.4) IQ(x)I _~ c(x + 1) ' 

~ u s  W = [ ~ ,  Q], so 

-~- 1)-1/2W(1] 0 -~- 1) 1 / 2  ( (Ho + ])-1/2 d ldx ) (Q(Ho  + 1) - ' / ' ) )  (Ho + cc, 

where cc stands for the adjoint of  the first theorem. Since (H0 + 1) -1/Sd/dx is 
bounded and Q(Ho - 1) -1/2 is compact  (by (4.4)), (H0 + 1)- I / sW(Ho + 1) -1/2 is 

compact�9 [] 

Thus, oscillations at infinity are irrelevant for the essential spectrum! While 

the slick argument above somewhat obscures the underlying physics, the reason 

such oscillations do not matter has to do with the fact that aess(H) involves fixed 

energy, and oscillations only matter at high energy. Our proof  below implements 

this strategy more directly�9 

We begin by noting that the proof  of  Proposition 3.11 implies the following. 

T h e o r e m  4.2.  Suppose that ~/~ is a sequence o f  multiplicative operators 

satisfying 
(i) for  any c > O, there is C~ such that 

(4.5) (~, IWnl~) _< ~IIV~[I: + C_~[/~II ~ 

for  any n and all ~ E Q ( - A ) ;  

(ii) f o r  any ball S about zero, 

(4.6) I I ( -A  + a ) - ' / 2 x s ( V ~  - V~)(-z..X + 1)-1/211 ~ 0 

as n, m ~ ec. 
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Then for  any ball and z r C\[a, c~), 

(4.7) I ] [ ( - A  + V ~  - z )  - 1  - ( - / X  + W m  --  Z) - J ]x s l l  -4  0. 

Moreover, i f  (4.6) holds as n -4 oc with Vm replaced by some Vow, then 

(4.8) lim [l[(-Ax + V~ - z) -a  - ( - i x  + v ~  - z ) - a ] x s l l  = 0. 
n - - ~  o o  

As an immediate corollary, we obtain 

T h e o r e m  4.3. Let V E K ,  obey 

lira ~up [ I ~ - , v l - ( " - = ) l V ( y ) l d ~ y  == 0. 
n~o~ Izl>R JIz-yl<l 

(4.9) 

Then 

(4.10) ~ e ~ ( - - ~  + V) = [0, ~ ) .  

R e m a r k .  If  (4.9) holds, we say that V is K~ small at infinity. 

P r o o f .  By Theorem 4.2, if x ,  -4 ~ ,  

(4.1 1) II[(-~x + v ( .  - xn)  - z) -1  - ( - i x  - z ) - l ] x s l l  -4  0; 

so, in a sense, - A  is the unique limit point at infinity. The standard localization 

argument proves (4.10). [] 

Here is the key to studying general V E K ,  with no uniformity at infinity. 

P r o p o s i t i o n  4.4. Let Vn be a sequence o f  functions supported in a f ixed ball 

{x : Ix I <_ R}. Suppose that 

(4.12) lim sup f Ix - y]-("-'2)]V,~(y)} d~'y = O. 
a+0 n,~ Jl~-~[<a 

Then there is a subsequence V,~(j) such that 

(4.13) lira I[(-A + 1)-l/2(Vn(j) - gn(k))( - A  + 1)-1/211 = 0 

P r o o f .  Given K,  let PK be the projection in momentum space onto [p] < K 

and QK = 1 - PK. Then (4.12) implies that for any e > 0, 

(4.14) (~, ]V,]~o) _< e[[Vqol] 2 + C~]]qo[] 2 

for a fixed C~ and all n. This implies that 

(4.15) IIIV.I1/2(-A + 1)-1/2QKII2 < e + C~(K 2 + 1) -1/2, 
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(4.18) 

has an 

(4.19) 

By 

(4.20) 

so that 

(4.21) 

S O  

(4.16) l im sup IIIV I1/2(-A + 1) - I /2QKI I  = 0. K--too n 

Thus, by a standard diagonalization argument, it suffices to show that for each 

K, there is a subsequence such that 

(4.17) lim II(-A + 1)-]/2PK(Vn(j)  - Vn(k))PK(--A + 1)-1/211 = 0. 
j,k---+oo 

In momentum space, 

Qn = ( - A  + 1 ) - I / 2 p K V n P K ( - A  + 1) -U2 

integral kernel 

Q~(p, q) = Xipl<K(p)(p 2 + 1 ) - V 2 ~ ' n ( p -  q)Xlql<K(q)(q 2 + 1) 1/2. 

(4.12) and the fixed support hypothesis,  we have 

sup (IIV.IIL, + II~V.l lv)  < o~, 

sup (IVn(k)l + [VV,~(k)D < oz. 

This means {V~(k) : Ikl _< 2K} is a uniformly equicontinuous family, so we can 

find a subsequence such that 

(4.22) lira sup I~/'n(j)(k) - Vn(/)(k)l = 0. 
j,k--+oo ikl<_2 K 

It follows f rom (4.19) that 

f lQn(j) (p, q) - Q,~(,) (p, q) I 2 dpdq -+ O, (4.23) 

so (4.17) holds since the Hi lber t -Schmidt  norm dominates the operator norm. [] 

Given V E Kv, we say that H is a limit point at infinity in direction e i f  there 

exist x,~ -~ c~ with x~/]x,~] ~ e such that for  the characteristic function o f  any ball 

and z E C\[a, oc), we have 

(4.24) lim II[(-A + V ( x  - z . )  - z )  - 1  - (_~ - z ) - l ]x s l l  = o. 
n---~ o o  

Let s denote the set o f  limit points in direction e. Our standard argument using 

Theorem 4.2 and Proposition 4.4 to get compactness implies 

T h e o r e m  4.5.  Let  V E K~. Then 

(4.25) O'ess(--A + V) --- U U ~ 
e ]tEs 
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5 Potent ials  asymptot ic  to i sospectral  tori 

As a warmup,  we  prove  the fol lowing result, which includes Theo rem 1.2 as a 

special case. We consider  functions f : IR v -+ R ~ such that 

(5.1) lim sup I f (x)  - f ( x  + y)[ = 0 
Iz[-+oo lYl<_L 

for  each L. For example ,  i f  f is C 1 outside some ball  and [Vf(x)l  ~ 0 (e.g., 

f ( x )  = v ~ ( x / I x l ) ) ,  then (5.1) holds. 

T h e o r e m  5.1.  Let  V be a funct ion on IR ~, periodic in u independent directions 

such that V is uniformly Kato (e.g., V E L~o c with p a canonical value for  IR ~). 

Suppose that either V is bounded or l f  (x) - f (Y) l < (1 - e)Ix - y I f  or some e > O. 

Let  f obey (5.1)o Let W ( x )  = V ( x  + f (x) ) .  Then 

(5 .2)  Oess( - A  -+- W )  = o-(-z2k -~- V).  

R e m a r k .  The condit ion that V is bounded or f is global ly Lifschitz  is needed 

to ensure that W is locally L ~. We thank V. Georgescu for  pointing out to us the 

need for this condition, which was miss ing in our original preprint. 

P r o o f .  Let  L be the integral lattice generated by  some set of  periods so that 

V( x  + g) = V(x)  i f  ~ E L. Let  rr: R ~ --+ IR~/L be the canonical  projection. 

I f  :c a- E IR ~, since IR~/L is compact ,  we can find a subsequence re(j)  such that 

7r((Xm(j)) + f(x.~(j))) -+ x ~ .  Then 

- A  + W ( .  - x .~(j))  --+ - A  + V ( x  - x ~ ) ,  

so the limits are translates of  - A  + V, which all have the same essential  spectrum. 

N o w  (5.2) is immedia te  f rom Theo rem  3.12. [] 

Our  next  result  includes Theorem 1.3. 

T h e o r e m  5.2.  Let  W :  N d --+ N be bounded and continuous and satisfy 

(5.3) W ( x  + a) = W(x )  

fo r  a ~ Z d. Let  ( a l , . . . ,  ~d) be such that { (a ln ,  a 2 n , . . . ,  adn) : n E Z} is dense in 

R d / Z  d (i.e., 1, c~1,..., ad are rationally independent). Let  f :  Z --+ ]~d be such that 

lira sup I f (n)  - f ( n  + m)l = 0 
n-+oc i m l <  L 

f o r  each L. Set Vo(n) = W(~n)  and 

(5.4) V(n)  = W ( a n  + f (n) ) .  
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On g2(Z), let (hou)(n) = u(n + 1) + u(n - 1). Then 

(5.5) r 4- V) = ff(ho 4- Vo). 

P r o o f .  For each x E ]~d/~d, define 

(5.6) Vx(n) = W ( a n  + x). 

Then a theorem of  Avron-Simon [7] (see [20]) shows that c~(h 0 + Vx) is independent 

of x (and purely essential). Given any sequence n j, find a sequence nj(.~) such that 

f (nj(m)) ~ x ~  in ]~d /~d  Then V ( n  4- nj(~))  --+ Vx~ (n), so by Theorem 1.7, 

aess(ho + V) = U a ( h o  + V,) = a(ho + Vo). 

Next, we turn to Theorem 1.5 in the OPUC case. Any set of  periodic Verblunsky 

coefficients {a~}n~__0 with 

(5.7) a n ~ -  p = a n 

for some p defines a natural function on C\{0}, A(z) = z-P/2Tr(Tp(z)) ,  where Tp 

is a transfer matrix; see Section 11.1 of  [78]. ( I fp  is odd, 2~ is double-valued; see 

Chapter 11 of  [78] for how to handle odd p.) The function A is real on 01D, and 

c%s(C(a)) is a union of  g disjoint intervals, where g < p (generically, s = p). As 

proved in Chapter 11 of  [78], 

(5.8)  {/3 C D p : z~(Z; {/3nmodp}n~=0) : A(Z;  a ) )  z Ta  

is an e-dimensional toms, called the isospectral toreros. Moreover, the two-sided 

CMV matrix, defined by requiring (5.8) for all n C Z, has 

( 5 . 9 )  =  oss(c(a)) 

for any/3 C To. 
/~ oo Given two sequences { n},~=0 and {An}~__0 in I~ ~ define 

( 5 . 1 0 )  a)  - - awl.  
rZ:0 

Convergence in d-norm is the same as sequential convergence. We define 

d(n, T~) = inf d(n,/3). 
~T~  

A sequence 7n is called asymptotic to T~ if  

(5 .11)  l ira = 0. 
m--+oo 

Then the OPUC case of  Theorem 1.5 (settLing Conjecture 12.2.3 of  [78]) asserts 

the following. 
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(5.12) 

Proof. 

(5.13) 

then 

(5.14) 

T h e o r e m  5~ Let  (5.11) hold. Then 

~ o ~ ( c ( { 7 . } ~ 0 ) )  = ~os~(c({~}~=0)). 

The right limit points are a subset of 

c<~ p--1 
{C({ f lnmodp}n=-oo)  : {f l}n=0  e T a } ,  

so by Theorem 3.1 and (5.9), (5.12) holds. [] 

By the same argument using isospectral toil for periodic Jacobi matrices 

[24, 46, 47, 83] and for Schr6dinger operators [22, 52, 59], one has 

T h e o r e m  5.4. I f  T is the isospectral torus o f  a given periodic Jacobi matrix, 

J, and J has dacobi parameters satisfying 

o o  

lim min Z []an+e - ael + [b.+e - /~l]  e-e = 0, 
n-+c<:, g,bcT ~=1 

ae~s(J) = a(J) .  

T h e o r e m  5.5. Let  T be the isospectral torus of  a periodic potential 17o on 

and V on [0, ~ )  in K1 and suppose that 

/5 (5.15) lim inf Iy(v+x)-W(y)le-lyJ@=o. 
I x l ~  WeT 

Then 

(5.16) aess -~x2  + V  = a  -~-Zx 2 +V0 , 

where -d2 / dx 2 + V is defined on L 2 (O, cx~ ) with u( O ) = 0 boundary conditions and 

-d2 / dx 2 + Vo is defined on L 2 (]~, dx ). 

The following provides an alternate proof of Theorem 4.3.8 of [77]. 

oo T h e o r e m  5.6. Let {aj}~= o and { J}j=o be two sequences o f  Verblunsky 

coefficients. Suppose there exist Aj E O• such that 

(5.17) 

(5.18) 

Then 

(5.19) 

0) f l s~  - ~j -+ 0; 

(ii) )~j+l),j --+ 1. 

OL OO ,~ess(C({ Aj=o))  = o.s~(C({,~A?'-o)). 
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P r o o f ,  Let {Tj}~--~ be a fight limit of  {/3j}~_ 0, that is,/3t+,~, -~ 7t for some 

nk. By passing to a subsequence, we can suppose Anj -+ A~, in which case (5.18) 

implies Anj+e -+ Ao~ for each g fixed. By (5.17), {A~33}j~___~ is a fight limit of  

{a/}j% 0. Since a(d({ATj}~=_o~)) is A-independent, (5.19) follows from (3.15). [] 

6 T h e  H V Z  T h e o r e m  

For simplicity of  exposition, we begin with a case with an infinitely-heavy 

particle; eventually we consider a situation even more general than arbitrary N-  

body systems. Thus, H acts on L2(]~ ~(N-1) , dx) with 

N--1 N--I 

(6.1) H = - ~ (2mj)-lAx~ + ~ Voj(xj) + ~ V~j(xj - xi) 
j = l  j = l  l<_i<j<_N--1 

where x = ( x l , . . . ,  XN-1) with xj E ~ u  Here the V's are in K~ with K u vanishing 

at infinity. Let  a denote a partition (C1, �9  Ce) of {0 , . . . ,  N -  1} onto g >_ 2 clusters. 

We say (i j)  c a if  i, j are in the same cluster C c a, and (ij) ~_ a if  i E Ca and 

j C C.~ with k r m. Let  

(6.2) H(a) = H - E Vii (xj - xi) 
ij~a 
i<j 

with x0 - 0. The HVZ Theorem says that 

T h e o r e m  6.1. I f  each Vii is in Ku, Ku vanishing at infinity, then 

(6.3) aess(H) = U a(H(a)).  
a 

Since H(a) commutes with translations of  clusters, H has the form H(a) = 
T a | 1 + 1 | Ha, where T a is a Laplacian on N ~(t-1) . Thus, i f  ~(a) = inf a(Ha),  

then a(H(a)) = [Y](a), oc). SO (6.3) says 

(6.4) aess(H) = [Z, c~), ~ = inf Z(a). 

This result is, of  course, well-known, going back to Hunziker [37], van Winter 

[84], and Zhislin [88], with geometric proofs by Enss [23], Simon [75], Sigal 

[74], and G~rding [25]. Until G~rding [25], all proofs involved some kind of  

combinatorial argument i f  only the existence of  a Ruel le-Simon partition of  unity. 

Like G~rding [25], we are totally geometric with a straightforward proof exploiting 

our general machine. C*-algebra proofs can be found in Georgescu-Ift imevici  

[27, 28] and have a spirit close to our proof below. Rabinovich [67] has a proof  of  
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HVZ using his notion of  invertibility at infinity, which also has overlap with our 

philosophy. 

There is one subtlety to mention. Consider the case # = 1, N -= 3, so ]~u(N-1) __ 

]~2 = { ( X l  ' 2]2) . X l ,  X2 E ~I{}. There are then clearly six special directions: • 0), 

•  1), and •  1 /v~) .  For any other direction ~, if xn/Ix,~l --+ ~, V -+ 0, and 

the limit in that direction is/4o = H({0}, {1}, {2}). 

For e = -{-(!,0), [(x,~)l[ ~ oc and [(Xn)a - ( x n ) 2 [  ~ oc, so the only limit at 

infinity would appear to be H({0, 2}, {1}). But this is wrong! To say xn has limit 

•  says x,~/l:c~ I -+ •  s o  (Zn) 1 ---9 ::t20(3. But it does not say (x,,),, --+ 0, 

only (x,~)2/(x~)l --+ O. For example,  if (x~)2 ~ ~ ,  the limit is H0. As we see (it 

is obvious!),  the limits are precisely H0 and translates of  H({0,  2}, {1}). This still 

proves (6.3), but with a bit of  extra thought needed. 

We want to note a general form for extending HVZ, due to Agm0n [1]. We 

consider linear surjections 7rj : ]~" --+ ]1{m with/~j < v. Let  rv) : ]1{m --+ ]I{ be in K~ 

vanishing in K m sense at infinity. Then 

(6.5) H = - A  + ~ Vj (Trjx) 

J 

is caUed an Agmon Hamiltonian. 

Given e E S "-1 , define 

(6.6) H~ = - A  + ~ Vj(Trjx) =_ - A  + Ve. 
{j:Trje=0} 

Note that since H~ commutes  with x --+ z + )~e, H~ has the form H~ = -A~. | 1 + 

1 | ( -Aea  + Ve), so a(He) = lee, oc), with Ee = inf spec(He). 

In general, i f  [']~ kcr(Trj) # {0}, H has some translation invariant degrees of 

f reedom and can, and should, be reduced; but the H V Z Theorem holds for the 

unreduced case (as well as for the reduced case, since the reduced H which acts 

on R ~ / ~]~ ker(Tr~) has the form (6.5)). So we do not consider reduction in detail. 

By using ~rj to write Vi~ (xi - xj)  in terms of  mass scaled reduced coordinates, 

any N-body  Hamiltonian has the form (6.5), and (6.5) allows many-body forces. 

For the case of  Theorem 6.1, if  e is given, define a to be the partition with (i j)  c a 

if and only if ei = ej (with e0 = 0). Then H~ = H(a) and (6.7) below is (6.3). 

T h e o r e m  6.2.  For any Agmon Hamiltonian, 

(6.7) a~,~s(H)= U a(H~.). 
e~S~ -1 

P r o o f .  If x,~/lx**[ --+ e, we can pass to a subsequence where each 7rjx,~ has a 

finite limit or else has [rrjxnl ~ oc. It follows that the limit at infinity for x~ is a 
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translation (by lim 7rjx~) of H~ or of a limit at infinity of He. Thus, for any H in 

s the set of limits in direction e, 

and so 

o(B) c .(rt,~), 

U ~(~) = ~(H.). 

Thus (6.7) is (4.25). [] 

R e m a r k .  It is not hard to see that as e runs through S "--~, o-(1t~) has only 

finitely many distinct values, so the closure in (6.7) is superfluous. 

Because we control aes~ (H) directly and do not rely on the a priori fact that 

one has only to locate inf a~.ss (H) properly (as do all the proofs quoted above, 

except the original HVZ proofs and Simon [75 ]), we can obtain results on N-body 

interactions in which the particles move in a fixed background periodic potential 

with gaps that can produce gaps in ~ress(H). 

7 Addit ional  appl icat ions 

We turn to some additional applications of our machinery which shed light on 

earlier works. 

(a) Sparse bumps, already considered by Klaus [45] using Birman- 

Schwinger techniques, by Cycon et al. [20] using geometric methods, and 

by Hundertmark-Kirsch [36] using methods which are essentially the same 

as the specialization of our argument to this example. Georgescu-Iftimovici 

[28] also have a discussion of sparse potentials that overlaps our discussion. 

(b) Jacobi matrices with a,~ ~ 0 and CMV matrices with 1~7~1 ~ 1, already 

studied by Maki [54], Chihara [ 14] (Jacobi), and by Golinskii [30] (CMV). 

(c) Bounded Jacobi matrices and CMV matrices with finite essential spectrum, 

already studied by Krein (in 13]) and Chihara 115] (Jacobi case), and by 

Golinskii [30] (CMV case). 

(d) Find the essential spectrum of a CMV matrix if aj+l/aj  ~ 1, strengthening 

results of Barrios-L6pez [9] and Cantero-Moral-Velhzquez [ 11 ]. 

R e m a r k .  Golinskii [30] for (b) and (c) did not explicitly use CMV matrices 

but rather studied measures on aD, but his results are equivalent to statements about 

CMV matrices. 

Here is the sparse potentials result. 
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T h e o r e m  7.1 ([45, 20]). Let W be an L 1 potential  o f  compact  support on 

L e t  . o  < x l  < " "  < X n  < " "  SO X n + l  --  x n  --+ cX). L e t  

(7.1) 
O(3 

V(x) = E W(x - *5). 
j=0 

Then 

(7.2) /--d~ 2 ~ 0 "  . 

R e m a r k s .  1. That W has compact support is not needed. W ( x )  -~ 0 suffi- 

ciently fast (e.g., bounded by x -1-~) will do with no change in proof. 

2. Discrete eigenvalues of - d 2 / d x  2 + W are Limit points of eigenvalues for 
-d2  / dx 2 + 1/. 

3. There is a higher-dimensional version of this argument; see [36]. 

Proof .  The Limits at infinity are -d2  /dx  2 and -d2  /dx  2 + W ( x  - a). Now use 

Theorem 3.12 or Theorem 4.5. [] 

R e m a r k .  This example is important because it shows that one needs a(H) 

and not just ~res~ (H). 

As for a,~ --+ 0: 

T h e o r e m  7.2 ([14]). Let J be a bounded Jacobi matrix with an -+ 0. Let S 

b be the limit points o f {  ~},~=1- Then 

(7.3) a e s s ( J )  = S. 

Proof .  The limit points at infinity are diagonal matrices with diagonal matrix 

elements in S; and by a compactness argument, every s E S is a diagonal matrix 

element of some limit. Theorem 3.3 implies (7.3). [] 

T h e o r e m  7.3 ([30]). Let  C({a~}~_0 ) be a C M V  matrix o f  a sequence of 

Verblunsky coefficients with 

( 7 . 4 )  lim = 1. 
n - - - >  o o  

Let S be the set o f  limit points of {-~ j+la j} .  Then 

( 7 . 5 )  - -  s .  
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P roo f .  By compactness of  0D, i f  s E S, there is a sequence n j  such that a~j+e 

has a limit r for all g and s = -~lf l0.  The limiting CMV matrices have ]~e] = I by 

(7.4), so are diagonal with matrix elements -fie+lilt. Thus, the spectra of  limits lie 

in S; and by the first sentence, any such s E S is in the spectrum of  a limit. Now 

use Theorem 3.2. [] 

Next, we turn to the case of  finite essential spectrum, first for Jacobi matrices. 

T h e o r e m  7.4. Let x l , . . . ,  xe E N be distinct. A bounded Jacobi matrix Y has 

(7.6) aes~(J) = {x:t , . . . ,  xe} 

if and only i f  

(i) 

(7.7) lira 
~Z--+OO 

(ii) I f k  <_ 1 and nj is such that 

a n a n + l  " " " a n + g - 1  = O. 

(7.8) arts "+ O~ a n j + k  ~ O~ 

(7.9) a~j+m -+ 5m 7 ~ O, m = 1 , 2 , . . . , k -  1, 

(7.10) b~s+m ~ bin, m = 1, 2 , . . . ,  k, 

then the finite k • k matrix 

(7.11) Y= " .  ",~ 
, 

"" a k  

has spectrum a k-element subset o f { x 1 , . . . ,  xe }. 

(iii) Each xj  occurs in at least one limit o f  the form (7.11) 

Proof .  By Theorem 3.3, (7.6) holds if  and only if  the limiting J ' s  have spec- 

trum in { x l , . . . ,  xe} and there is at least one j with each x~ in the spectrum. Now J 

is a direct sum of  finite and/or semi-infinite and/or infinite pieces. The semMnfinite 

pieces correspond to Jacobi matrices with nontrivial measures which have infinite 

spectrum. The two-sided infinite pieces also have infinite spectrum. Finite pieces 

of length m, which have a's nonzero, have m points in their spectrum, so no limit 
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can have a direct summand of  length g + 1 or more. Thus, by compactness, (7.7) 

holds, that is, any set of g a's in the limit must have at least one zero. Then (ii) is 

the assertion that the limits have spectrum in {Xa . . . .  , x~}, and (iii) says that each 
[] xj  o c c u r s .  

T h e o r e m  7.5. (a) J o b e y s  

(7.12) O0ss(J) c {xl,. . . ,z~} 

i f  a n d  o n l y  i f  e v e r y  r igh t  l im i t  ,] sa t i s f i e s  

(7.13) I I ( J  - xj) = P(,]) = o. 
j ~ l  

(b) ,1 sa t i s f i e s  (7.12) i f  a n d  o n l y  i f  P (  J )  is  c o m p a c t .  

P r o o f .  (a) Since (7.13) holds if and only if  a ( J )  C { x l , . . . ,  xe}, this follows 

from Theorem 3.3. 

(b) Since P ( J )  has finite width, it is compact if and only if all matrix elements 

go to zero, which is true (by compactness of translates of  J)  if and only if  (7.13) 

holds for all limits. 

We have now come full c i rc le--for  Theorem 7.5(b) is precisely Krein's criterion 

(stated in [3]), whose proof is immediate by the spectral mapping theorem and 

the analysis of  the spectrum of compact selfadjoint operators. However, our 

Theorem 7.4 gives an equivalent, but subtly distinct, way to look at the limits. To 

see this, consider the case g = 2, that is, two limiting eigenvalues xl and x2. 

This has been computed by Chihara [16], who found that necessary and 

sufficient conditions for aess(d)  = { X l ,  X2} are 

2 (7.14) lim (a 2 + a,~_ 1 + (b~ - x , )(b,~ - x.2)) = O, 
n - - + o o  

(7.15) lim (an(bn + bn~-I - x l  - x2) )  = O, 

(7.16) lim (arian+l)  = O. 
n - - +  o o  

(There is a typo in [16]: where we give (b~ - X l ) (bn  - x2)  in (7.14), he gives, "after 

changing to our notation, (bn - x l ) ( b n + l  - x2).) To see this from the point of view 

of ( J  - x l ) ( J  - x2) ,  note that 

9 2 (7.17) (6,~, ( J  - x ~ ) ( J  - x2)6n} = a~ + a,~_j + (bn - x~)(b,~ - x2), 

(7.18) (6n+1, (J  - x l ) ( J  - x2)6n)  = a,~(bn - x2)  + an(bn-rl  - x l  ), 

(7.19) (~-~2,  ( J  - x t ) ( J  - x , ) 6 ~ )  = a n a , + a .  
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If we think in terms o f  l imit  points ,  we get  a d i f fe rent - looking  set o f  equat ions.  

Consider limits,  J .  O f  course,  (7.16) is jus t  

(7.20) 6nG~+l = 0; 

but the condi t ions  on summands  o f  J b e c o m e  

(7.21) G ~ = 6 n - l = 0 ~ b n = z l  or  b ,~=x2 ,  

(7.22) fin # 0 ~ b~+l -~ b,~ xl + x2 and b,~b,~+l -2 --~ - -  a n  z Xl X2. 

Indeed, (7.21) is the rcsult  fo r  1 x 1 blocks,  and (7.22) says 2 x 2 b locks  have 

eigenvalues xl  and x2. It is an interest ing exerc ise  to see that  (7 .20) - (7 .22)  are 

equivalent to 

~2 -2 (7.23) % + a,~+l + (bn - xl)(bn - x2) = O, 

(7.24) ~,~(b,~ + b ,~ l  - x l  - x2) = 0,. 

(7.25) 5,~5,~+1 = 0. 

One can ana lyze  C M V  matr ices  in a way  similar  to the above  analysis .  T he  

analogue o f  T h e o r e m  7.4 is 

T h e o r e m  7 .6 .  Let  A1 , . . . ,  )~e C 0D be distinct. A C M V m a t r i x  C has 

(7 .26)  rTess(C) - -  { A 1 , . . . ,  )~e} 

if and only i f  

(i) 

(7.27) lira P~,Pn ~ 1. �9 Pn+e-1 = O; 
"t?,--+ (X~ 

(ii) i f  k <_ g a n d n j  is such that 

(7.28) p,~j -+  O, Pnj+k L+ O, 

OZnd+m -'+ ~rrz~ m = O, 1 , 2 , . . . , k  - 1, k, 

with I&ml # 1, m = 1 , . . . ,  k - 1 (by (7.28), 16ol = 16kl = 1), then the matrix 

(1 = 1 x 1 unit matrix), 

(7.29) d = [ | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

i f  k is even and 

(7.30) C = [0(6~) |  | 0 ( 6 k - 2 )  | 6 k l ] [ - 6 o l  0 0 ( 6 2 )  <9.. .  | 0(6)~_1)] 

i f  k is odd, has eigenvalues k elements among A1, . . . ,  Ag; 
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(iii) each of  A1, . . . ,  Ae occurs as an eigenvalue o f  some C. 

P r o o f .  Same as Theorem 7.4. 

The analogue of  Theorem 7.5 is 

T h e o r e m  7.7.  Let )~ , . . . ,  Ae E OD be distinct. Then 

(a) C satisfies 

[] 

(7.31) cr~(C) C {Aj , . . . ,  Ae} 

i f  and only if  every right limit ff obeys 

(7.32) I ~ ( d -  Aj) - P(d) = 0; 
j = l  

(b) C satisfies (7.31) if  and only i f  P(C) is compact. 

P r o o f .  Same as Theorem 7.5. [] 

We have come to Golinskii 's OPUC analogue of  Krein's theorem [301. Again, 

it is illuminating to consider the case g = 2. We deal directly with limits o f  ~ ;  call 

them &j. The Theorem 7.6 view of  things is 

(7.33) fSn/]~+l = 0, 

(7.34) tS~ = t5,~+1 = 0 ~ -&n+l&~ = A1 or - ~,~+l&~ = A2, 

(7.35) r r 0 ~ -~n&,~-I - an+lo~,~ = A1 + A2 and ~,~-l&~+l = A1A2. 

Equation (7.35) comes from the fact that the matrix U of  (7.29) is 

(7.36) ( ~ :  _r  ~n0+l) 

where the determinant is & n - l ~ + l  and the trace is -~n~ ,~ - i  - &nc~,~+~. 

From the point o f  view of  Theorem 7.7, using the C M V  matrix is complicated 

since (C - A1)(C - A2) is, in general, 9-diagonal! As noted by Golinskii [30], it is 

easier to use the GGT matrix (see Section 4.1 of  [77]), since it immediately implies 

(7.37) /]n/5~+1 = (~+2,  ~26n) = 0; 

and once that holds, G becomes  tridiagonal! Thus, one gets f rom (&~+l, (9 - A1) 

(~ - A2)&) = 0 that 

(7.38) p n ( - - ( ~ n ~ n - - 1  - -  (~r t -{- l ( i~n - -  A1 - -  A 2 )  ---- 0 ,  
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and from ((in, (~ - A1)(~ - A~)6n) = 0 that 

(7.39) (-~+1c~,~ A 1 ) ( - ~ & ~ - I  A2) -2= - - -  - -  - -  p n O L n + l O ~ n _ l  - -  p 2 + l ~ n _ 2 ~ n +  1 = O. 

Again, it is an interesting exercise to show that (7.33)-(7.35) are equivalent to 

(7.37)--(7.39). 

Finally, we turn to some cases of  CMV matrices recently studied by Cantero, 

Moral, and Velfizquez [11]. In [9], Barr ios-L6pez proved that if  

(7.40) aJ+----L -+ 1 and  ]ajl  -+ a, 
ozj 

then 

(7.41) Cress(C) = Aa ~ {Z E 0113: largzl _> 2arcsin(a)}. 

Of course, they stated their result in terms of  the essential support o f  the underlying 

measure, since C had not yet been introduced when they wrote their paper! 

We can strengthen their result considerably. 

T h e o r e m  7.8. I f  

(7.42) ~ ~ 1 a n d  lira inflaj] = a, 
a j  

then  (7.41) holds .  

R e m a r k .  In [11], which motivated our looking at this example, it is proven 

that a~s~(C) c A~. 

P r o o f .  Since a i + l / a j  -+ 1, every limit has the form ( . . . , /3, /3, /3, . . .  ); and it 

is known (see Example 1.6.12 of  [77]) that such a C~ has 

Since a t > a implies Aa, C ZXa, (7.41) follows from Theorem 3.1. [] 

One can also use our results here to streamline some of  the results contained in 

Section 3 of  [111. 

8 Magnet ic  fields 

A magnetic Hamiltonian acts on N v via 

V 

(8.1) H(~,  V) = - ~ (0j - i ~ )  ~ + V, 
j = l  
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where a is vector-valued. The magnetic field is the two-form defined by 

(8.2) B j k  = Ojak -- Okaj .  

If ), is a scalar function, then 

(8.3) 5 = a + VA 

produces the same B, and one has gauge covariance 

(8.4) g ( a ,  V) = e i a H ( a ,  V ) e  - i~ .  

While the mathematically "natural" conditions on a are either a E L~o,:, V .  a E L~o c, 

or a C Ll2o~, (see [20, 51, 761), for simplicity, we suppose here that B is bounded 

and uniformly H61der continuous, that is, for some (f > 0, 

(8.5) sup I B j k ( x ) l  < oc, sup Ix -- Y l -~ lB~k(X)  -- B j k ( Y ) I  < oc. 
x,j,k j,k,lx y <_l 

It is certainly true that one can allow suitable local singularities. We discuss later 

what (8.5) implies about choices of  a. With this kind of  rcgularity on B, it is easy 

to prove that for a shift between different gauges of  the type we consider below, 

the formal gauge covariance (8.4) is mathematically valid. Indeed, more singular 

gauge changes can be justified (sce Leinfclder  [50]). 

]If aj  --~ 0 at infinity, it is easy to implement  the ideas of  Sections 3 and 4 with 

no change in the meaning of  limit point at infinity; the limits all have no magnetic 

field. But, as is well known, aj ~ 0 requires (vcry roughly speaking) that B go to 

zero at least as fast as Ixl - l -~;  so this does not even capture "all situations where 

Bij -+ 0 a t  infinity. Miller [60] (see also [20, 61]) noted that in two and three 

dimensions, the way to control B --+ 0 at infinity is to make suitable gauge changes 

in Weyl sequences - -and  that is also the key to what we do here. 

We settle for stating a very general limit theorem and make no attempt to apply 

this theorem to recover the rather extensive literature on HVZ theorems and on 

essential spectra in periodic magnetic fields [5, 10, 19, 32, 33, 34, 35, 38, 39, 42, 

63, 64, 82, 85, 86, 87, 89, 90, 91, 92]. We are confident that can be done and that 

the ideas below will be useful in future studies. It should also be possible to extend 

Theorem 5.1 with "slipped periodic" magnetic fields. 

D e f i n i t i o n .  A set of  gauges, as,  depending on x is said to be "regular at 

infinity" if and only if  for every R, we have for some 5 > 0, 

(8.6) sup la~,(y)[ < 2 ,  sup lY - z l - ~ l a : ~ ( y )  - a x ( z ) l  < ,oc. 
Iz-yl_<~ ~:,y,z 

ly--zl<x 
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P r o p o s i t i o n  8.1.  I f  (8.5) holds, there exists  a se t  o f  gauges  regular  at  infinity. 

P r o o f .  The transverse gauge, ~z0, based at x0 is defined by 

[I0' ] (8.7) axo;j (Xo q- y) = E 8Bkj (Xo -k sy) d8 Yk. 
k ' 

That this is a gauge is known (see below). Clearly, if  IXo - Yl < 1/,, 

1 /~ s u p  IIH(x)II ;  I~x0 (y)l < 
x 

and i f ] y - z  I < l a n d [ x 0 - y ] < R ,  

{sup I[B(x)[I + ( /~-  1) ~up 
x ly-zi<_l 

[ly - z l  ~IIB(y) - / 3 (z ) l l ] } .  

[] 

R e m a r k s .  1. We call the choice (8.7) the local transverse gauge. 

2. Transverse gauges go back at least to Uhlenbeck [81], who calls them 

exponential gauges. They have been used extensively by Loss-Thal le r  [53] (see 

also Thaller [80]) to study scattering. 

3. To see that (8.7) is a gauge is a messy calculation if  done directly, but there 

is a lovely indirect argument of  Uhlenbeck [81 ]. Without loss, take x0 = 0. Call a 

gauge transverse if  ~7(0) = 0 and s ~7 = 0. Transverse gauges exist, for if ~0 is any 

gauge and 

(8.8) ~ ( ~ )  = - ~ .  ao (s~)  ds ,  

then ~.  V~ = r o w  = - ~ -  ao(x),  so a = a0 + V~ is transverse. Next, note that i fff  

is a transverse gauge, then 

0 
(8.9) = 0~ raj .  

Integrating (8.9) shows (8.7) with y = 0 is not only a gauge but the unique transverse 

gauge. 

If ax is a set of  gauges regular at infinity, we say H is a limit at infinity of  

H (a, V) in direction ~ if and only if with 

(8.10) (Ux~p)(y) = ~ (y  - x) 
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we have that for  some sequence x , ,  Ix~l ~ ~ ,  X~/lXn[ ~ e, and for  each /~  < to 

and z E C\[a, oo), 

(8.11) Ux.((H(ax. ,V)  - z )  -1 )U~.xn-+-I (ffI - z ) - lXn  

where Xn is the characteristic function of  a ball o f  radius R about  0. As usual, s 

denotes the limits at infinity in direction e. 

T h e o r e m  8.2.  I f V  E K ,  and B satisfies (8.5), then 

(8.12) ~  U U Or(~f)" 

eES~'-I fflEs 

In (8.12), we get the same union if, instead of  all regular gauges at infinity, we 
take only the local transverse gauges. 

Proof .  By using gauge-transformed Weyl sequences as in [20], it is easy to 

see that the right side of (8.12) is contained in Cress(H(a, V)). To complete the 

proof, we need only show that the right side, restricted to local transverse gauges, 

contains aess (H(a, V) ). 
Localization extends effortlessly, since 

[j, H(a, V)] = Vj-  (V - ig) + (V - id). Vj 

and [I(V - ig)~[]2 is controlled by H(a, V). Thus, we only need compactness of 

the gauge-transformed operators. Since (8.6) says that the ax's translated to 0 are 
uniformly equicontinuous, compactness of  the a's is immediate. V's are handled 

as in Section 4. [] 
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