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Abstract. We show that the parameters an , bn of a Jacobi matrix have a complete asymptotic
expansion

a2
n − 1 =

K(R)∑

k=1

pk(n)µ−2n
k + O(R−2n), bn =

K(R)∑

k=1

pk(n)µ−2n+1
k + O(R−2n),

where 1 < |µj | < R for j � K(R) and all R, if and only if the Jost function, u, written in terms
of z (where E = z + z−1) is an entire meromorphic function. We relate the poles of u to the µj ’s.
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1. Introduction

In this paper, we are going to consider semi-infinite Jacobi matrices

J =

⎛

⎜⎜⎜⎝

b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠ (1.1)

whose Jacobi parameters have exponential decay (i.e., lim supn→∞(|bn| + |an − 1|)1/n < 1). As
explained in the first two papers of this series [2], [3] (and well known earlier), such a J has an
associated Jost function, u, defined and analytic in a neighborhood of D, where D = {z ∈ C :
|z| < 1}.

As is standard, J describes the recursion relations for orthogonal polynomials on the real line
(OPRL). There is a probability measure, γ , so that the orthonormal polynomials, pn(x) ([14], [10],
[11]), defined by γ obey

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x); (1.2)

γ is the spectral measure for J and the vector (1 0 0 . . . )t and the a’s and b’s can be obtained from
γ by Gram–Schmidt on the moments.

u is defined by γ via the following three facts:
(i) u(z) = 0 for z ∈ D if and only if z + z−1 is an eigenvalue of J.
(ii) The support of dγs , the singular part of dγ , is a finite set of eigenvalues in R\[−2, 2], and

dγ � [−2, 2] = f(x) dx, (1.3)

where for any θ ∈ [0, 2π),

f(2 cos θ) =
1
π

[ | sin θ|
|u(eiθ)|2

]
. (1.4)

(iii) u(0) > 0.
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These determine u by standard theory of nice analytic functions on D. The function u does not
determine γ in many cases. For by (1.3), (1.4), u determines the a.c. part of γ and the positions
of the pure points but not their weights. We prefer to normalize the weights by looking at

M(z) = −
∫

dγ(x)
x − (z + z−1)

(1.5)

and looking at the residues of M at the points where u(z) = 0. Initially, M is defined by (1.5) for
z ∈ D. It is the usual m-function moved to D via the well-known map.

In any event, u plus the weights are spectral data, and our goal here is to produce equivalences
between this spectral data side and the recursion coefficient side.

To state our main theorems, we give the following
Definition. A sequence, (x0, . . . , xn, . . . ), of complex numbers is said to have an asymptotic

expansion up to R > 1 if and only if there exist µ1, . . . , µK(R) in {z : 1<|z|<R} and polynomi-
als p1, . . . , pK(R) such that

lim sup
n→∞

∣∣∣∣xn −
K(R)∑

j=1

pj(n)µ−n
j

∣∣∣∣
1/n

� R−1. (1.6)

We say (x0, . . . ) has a complete asymptotic expansion if it has one for each R > 1.
It is easy to see that the x’s uniquely determine the p’s and µ’s and that the following assertion

holds.
Theorem 1.1. A sequence {xn}∞n=0 has an asymptotic expansion up to R if and only if

f(z) ≡
∞∑

n=0

xnzn (1.7)

is meromorphic in {z : |z| < R} with no singularities in a neighborhood of D and finitely many
poles in the region. The sequence {xn}∞n=0 has a complete asymptotic expansion if and only if f is
entire meromorphic.

Indeed, the poles are at the µj and their orders are one plus the degrees of the pj .
We say a set of Jacobi parameters has an asymptotic expansion up to R if and only if the

sequence
(1,−b1, 1 − a2

1,−b2, 1 − a2
2, . . . ) (1.8)

has an asymptotic expansion up to R. Thus, the function f is

B(z) = 1 −
∞∑

n=0

[bn+1z
2n+1 + (a2

n+1 − 1)z2n+2]. (1.9)

The function B will enter naturally below, but we note the following interpretation: if J0 is the
Jacobi matrix with an ≡ 1, bn ≡ 0, and δJ = J − J0 , then (see Lemma 6.2 of [2])

Tr(δJ(J0 − (z + z−1))−1) = −(z−1 − z)−1

{ ∞∑

n=1

bn(1 − z2n) + 2
∞∑

n=1

(an − 1)(z − z2n+1)
}

. (1.10)

Moreover (see Theorem 2.16 of [9]),

u(z) =
( ∞∏

j=1

aj

)−1

det(1 + δJ(J0 − (z + z−1))−1). (1.11)

Taking into account that a2
n−1 = 2(an−1)+O((an−1)2) and det(1+A) = 1+Tr(A)+O(‖A‖2

1),
we see that if δJ is trace class, then

−(z−1 − z)
( ∞∏

j=1

aj

)
u(z) = c(z) + zB(z) + O(‖δJ‖2

1) (1.12)
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for an affine function c(z). Thus, B(z) is a kind of first-order (Born) approximation to u.
In some ways, our main result in this paper is
Theorem 1.2. The Jacobi parameters have a complete asymptotic expansion if and only if u

is an entire meromorphic function. Equivalently, B(z) is entire meromorphic if and only if u(z) is.
Of course, one wants to understand the relation between the poles of u and those of B . Both

for that understanding and because we will actually use them in our proofs in Sec. 3, it pays to
review our recent results [12] on the analogous problem for orthogonal polynomials on the unit circle
(OPUC). The basics (see [10], [11] for background) associate to a nontrivial probability measure,
µ, on ∂D a sequence of Verblunsky coefficients defined by

Φn+1(z) = zΦn(z) − ᾱnΦ∗
n(z), (1.13)

where Φn are the monic orthogonal polynomials for µ and

Φ∗
n(z) = zn Φn(1/z̄). (1.14)

In place of B , [12] uses

S(z) = 1 −
∞∑

j=1

αj−1z
j (1.15)

and, in place of u, the Szegő function

D(z) = exp
(∫

eiθ + z

eiθ − z
log(w(θ))

dθ

4π

)
, (1.16)

where dµ = w(θ) dθ
2π + dµs . One also defines

r(z) =
D−1(z)

D−1(1/z̄)
. (1.17)

The main theorems of [12] are:

Theorem 1.3 [4]. If lim sup|αn|1/n = R−1 < 1, then r(z) − S(z) is analytic in {z : 1 − δ <
|z| < R3} for some δ > 0.

Remarks. 1. This result is due to Deift–Ostensson [4], but [12] has a new proof. Earlier, [10]
proved the weaker result when R3 is replaced by R2 .

2. The point is that r and S both have singularities on |z| = R. This theorem says they cancel,
as do other singularities in {z : R < |z| < R3}.

3. [12] has explicit examples where r(z) − S(z) has singularities on {z : |z| = R3} and shows
that this is the case generically. So R3 is best possible.

Given a discrete set, Ω ⊂ {z : |z| > 1}, with limit points only at ∞, we define

G
2j−1(Ω) = {µ1 . . . µjµ̄j+1 . . . µ̄2j−1 : µk ∈ Ω}, (1.18)

G(Ω) =
∞⋃

j=1

G
2j−1(Ω). (1.19)

Theorem 1.4 ([12]). S is entire analytic if and only if D−1 is. If T is the set of poles of S(z)
and P the poles of D−1(z), then

T ⊂ G(P ), P ⊂ G(T ). (1.20)

Analogously to Theorem 1.3, we will prove the following theorem in Sec. 2.
Theorem 1.5. Suppose

lim sup
n→∞

(|a2
n − 1| + |bn|)1/2n = R−1 < 1. (1.21)

Then
(1 − z2)u(z) + z2 u(1/z̄) B(z) (1.22)
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is analytic in {z : R−1 < |z| < R2}.

Remarks. 1. [3] has necessary and sufficient conditions on {u, weights} for (1.21) to hold. If
there are no eigenvalues of J outside [−2, 2], the condition is that u is analytic in {z : |z| < R}.

2. The function u is real on R, so u(z̄) = u(z) and thus, (1.22) could be written (1− z2)u(z) +
u(1/z)B(z); we write it as we do for analogy with the OPUC case.

3. The point, of course, is that B has singularities on {z : |z| = R}, so this theorem implies a
cancellation via either zeros of u(1/z̄) or singularities of u. Since u(1/z̄) can have zeros in |z| > 1
(while D(z̄)−1 cannot), the situation is somewhat different from OPUC. We will discuss this further
in Sec. 2.

4. As we will show in Sec. 3, the function in (1.22) often has a singularity at z = R2 , so one
cannot increase the R2 to R3 as one can in the OPUC case. The reason for this difference will
become clear in Sec. 3.

For the analog of Theorem 1.4, we need to define a larger set than G. In our situation, u and B
are real on R so their poles are symmetric about R. So for this, we will suppose Ω ⊂ {z : |z| > 1}
with limit point only at infinity, and

Ω = Ω. (1.23)
In that case, for any m, we define

G
(m)(Ω) = {µ1 . . . µm : µk ∈ Ω}. (1.24)

When (1.23) holds, this agrees with the previous definition if m = 2k − 1,

G̃(Ω) =
[ ∞⋃

m=1

G
(m)(Ω)

]
∪

[
−

∞⋃

m=1

G
(m)(Ω)

]
. (1.25)

Our main results refine Theorem 1.2:
Theorem 1.6. Let J have no spectrum outside [−2, 2], and let u be entire meromorphic and

nonvanishing at z = ±1. Let P be the poles of u and T the poles of B . Then

P ⊂ G̃(T ), T ⊂ G̃(P ). (1.26)

To state the result when there are bound states, we recall and extend a notion from [3]:
Definition. Let u be a meromorphic function and z0 ∈ D a point with u(z0) = 0 (so z0 is real

and z0 + z−1
0 ∈ σ(J)). The point z0 is called a noncanonical zero for J if and only if 1/z0 is not a

pole of u and

lim
z→z0

(z − z0)M(z) �= −(z0 − z−1
0 )

[
u′(z0)u

(
1
z0

)]−1

. (1.27)

Thus, z0 is not noncanonical (which we will call canonical) if u is regular at 1/z0 and equality
holds in (1.27). Here is what we will prove in case there are bound states or u(±1) = 0:

Theorem 1.7. Suppose u is entire meromorphic. Let T be the poles of B . Let P1 be the poles
of u and P2 the {z−1 : z is a noncanonical zero for J}. Let P = P1 ∪ P2 . Then (1.26) holds.

As in [12], one can easily prove results relating meromorphicity of u in {z : |z| < R2�−1} to
meromorphicity of B there.

In Sec. 2, we use the Geronimo–Case equations to prove Theorem 1.5. In Sec. 3, we use the
second Szegő map from OPRL to OPUC to prove Theorem 1.6. In Sec. 4, we extend the analysis
of [3] to obtain Theorem 1.7 from Theorem 1.6.

This research was completed during my stay as a Lady Davis Visiting Professor at Hebrew
University, Jerusalem. I’d like to thank H. Farkas and Y. Last for the hospitality of the Mathematics
Institute at Hebrew University.

It is a great pleasure to dedicate this paper in honor of the 100th anniversary of the birth of Mark
Krein. As a student, I learned of the Krein–Millman theorem but it was only with Krein’s impact
on my own work that I appreciated the tremendous breadth of his accomplishments: trace ideals,
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self-adjoint extensions (especially for quadratic forms), the spectral shift function, and his manifold
contributions to the spectral theory of orthogonal polynomials have had a profound influence on
me.

2. The Geronimo–Case Equations and the R−2 Result

In this section, we will prove Theorem 1.5 using a strategy similar to that used in [12] to prove
Theorem 1.3. There the critical element was the use of Szegő recursion (1.13) and its adjoint, that
is,

Φ∗
n+1(z) = Φ∗

n(z) − αnzΦn(z) (2.1)
at z and 1/z̄ .

Here we will instead use the Geronimo–Case equations [5] in the form introduced in [3]. Define

Cn(z) = znPn

(
z +

1
z

)
, (2.2)

where Pn(x) = (
∏n

j=1 aj)pn(x) is the monic orthogonal polynomial. The equations

Cn(z) = (z2 − bnz)Cn−1(z) + Gn−1(z), (2.3)

Gn(z) = Gn−1(z) + [(1 − a2
n)z2 − bnz]Cn−1(z) (2.4)

are the unnormalized GC equations. With initial condition G0(z) = C0(z) = 1, they define monic
polynomials of degree at most 2n, Cn has the form (2.2), and if

∞∑

n=1

(|a2
n − 1| + |bn|) < ∞, (2.5)

then for |z| < 1,

lim
n→∞ Gn(z) =

( ∞∏

j=1

aj

)
u(z) (2.6)

(see Theorem A.3 of [3]). We set the right side of (2.6) to be ũ(z).
Equations (2.3), (2.4) have a structure somewhat like (1.13), (2.1). The difference is that (1.14)

is replaced by

Cn(z) = z2nCn

(
1
z

)
, (2.7)

as is obvious from (2.2). We write f = Õ(g), where g → 0, if and only if for all ε > 0, |f |/|g|1−ε → 0.
Lemma 2.1. If (1.21) holds, then for z ∈ D

(i) |Gn(z) − ũ(z)| � Õ(R−2n). (2.8)

(ii)
∣∣∣∣Cn(z) − ũ(z)

1 − z2

∣∣∣∣ � Õ([max(|z|, R−1)]2n). (2.9)

Proof. (i) By Theorem A.3 of [3],

lim
n→∞ Cn(z) =

ũ(z)
1 − z2

. (2.10)

By (2.4) and supn|Cn(z)| < ∞, we see

|Gn(z) − ũ(z)| �
∞∑

m=n

|Gm+1(z) − Gm(z)| �
(

sup
n
|Cn(z)|

) ∞∑

m=1

(|1 − a2
n+m| + |bn+m|) = Õ(R−2n),

since the series of bounds converges exponentially.
(ii) By (2.3),

|Cn − Gn−1 − z2Cn−1| � sup
n

|Cn(z)| |bn|,
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so iterating,
∣∣∣∣Cn −

n−1∑

j=0

Gn−j−1z
2j

∣∣∣∣ � |z|2n + sup
n

|Cn(z)|
n−1∑

j=0

|bn−j ||z2j | � Õ(max(|z|, R−1)2n).

By (2.8),
∣∣∣∣

n−1∑

j=0

(Gn−j−1 − ũ)z2j

∣∣∣∣ � Õ(max(|z|, R−1)2n).

Since
∑

j z2ju = (1 − z2)−1u, we have (2.9).
Proof of Theorem 1.5. By (2.4) and (2.7) for |z| > 1,

|Gn+1 − Gn| �
[
sup

n

∣∣∣∣Cn

(
1
z

)∣∣∣∣

]
|z|2n+2[|1 − a2

n| + |bn|], (2.11)

which proves that for 1 < |z| < R, Gn converges uniformly, so by the maximum principle, we have
convergence for |z| < R, so u has an analytic continuation to that region. In that region,

ũ(z) = 1 +
∞∑

n=0

(Gn+1(z) − Gn(z))

= 1 +
∞∑

n=0

((1 − a2
n+1)z

2 − bn+1z)Cn(z) (2.12)

=
ũ(1

z )
1 − 1

z2

(B(z) − 1) + 1 +
∞∑

n=0

fn(z), (2.13)

where

fn(z) = ((1 − a2
n+1)z

2 − bn+1z)z2n

(
Cn

(
1
z

)
− ũ(1

z )
1 − 1

z2

)
. (2.14)

Thus

(1 − z2)ũ(z) + ũ

(
1
z

)
z2B(z) = ũ

(
1
z

)
z2 + (1 − z2) +

∞∑

n=0

(1 − z2)fn(z). (2.15)

Each function fn is analytic in {z : |z| > 1}, so if we can prove that the sum converges uniformly
in {z : 1 < |z| < R2}, we know the left-hand side of (2.15) has an analytic continuation in that
region.

By (2.9), for |z| > 1,
∣∣∣∣Cn

(
1
z

)
− ũ(1

z )
1 − 1

z2

∣∣∣∣ � Õ

(
max

(
1
|z| , R−1

)2n)
;

so ∣∣∣∣z
2n

[
Cn

(
1
z

)
− ũ(1

z )
1 − 1

z2

]∣∣∣∣ � Õ(max(1, |z|R−1)2n)

and thus,
|fn(z)| � Õ(R−2n)Õ(max(1, |z|R−1)2n).

For 1 < |z| < R, this is Õ(R−2n) and so summable. For R � |z| < R2 , it is Õ((|z|R−2)2n) and
so also summable.

If u(±R−1) �= 0, (1.22) tells us that since B has a singularity on the circle of radius R, so
must u. However, if u(R−1) = 0 and/or u(−R−1) = 0, that zero can compensate for a pole in B
and u can have a larger region of analyticity than B . This is exactly what happens in the case of
noncanonical weights, as explained in [3].
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3. The Second Szegő Map and Jost Functions with No Bound States

In [13], [14], Szegő defined two maps from the probability measures on ∂D invariant under
z → z̄ to the probability measures on [−2, 2]; let us call them Sz1 and Sz2 . Both are injective,
but only Sz1 is surjective—and for this reason, Sz1 is the one most often used and studied (see
[11, Sec. 13.1]). Here we will see that Sz2 is also exceedingly useful, especially for studying Jost
functions analytic in a neighborhood of D and nonvanishing on D (i.e., J has no bound states and
no resonance at ±2).

For a.c. measures, the relations are

dµ = w(θ)
dθ

2π
, Sz1(dµ) = f1(x) dx, Sz2(dµ) = f2(x) dx, (3.1)

where w(θ) = w(−θ) and (formulas (13.1.6) and (13.2.22) of [11])

f1(x) = π−1(4 − x2)−1/2w(arccos(x/2)), (3.2)

f2(x) = π−1c2(4 − x2)1/2w(arccos(x/2)), (3.3)

where
c = [2(1 − |α0|2)(1 − α1)]−1/2. (3.4)

Taking into account that Sz1 is a bijection of even measures on ∂D and all measures on [−2, 2], we
see that

dγ ∈ ran(Sz2) ⇐⇒
∫ 2

−2
(4 − x2)−1 dγ(x) < ∞. (3.5)

Proposition 3.1. If dγ has a Jost function u analytic in a neighborhood of D and nonvanishing
on D, then dγ ∈ ran(Sz2).

Proof. Since d(2 cos θ) = −2 sin θ dθ and (4−4 cos2 θ) = 4 sin2 θ, by (1.4) the right side of (3.5)
is equivalent to

1
π

∫ π

0

dθ

|u(eiθ)|2 =
∫ π

0
(sin2 θ)−1f(2 cos θ) sin θ dθ = 2

∫ 2

−2
(4 − x2)−1f(x) dx < ∞,

which is true if |u| is bounded away from zero.
For our purposes, what is critical is:

Theorem 3.2. Let dµ be a nontrivial probability measure on ∂D obeying the Szegő condition
with Verblunsky coefficients {αn}∞n=0 and Szegő function D(z0). Let D(z0) have Jost function u
and Jacobi parameters {an, bn}∞n=1 . Then

bn+1 = α2n − α2n+2 − α2n+1(α2n + α2n+2), (3.6)

a2
n+1 − 1 = α2n+1 − α2n+3 − α2

2n+2(1 − α2n+3)(1 + α2n+1) − α2n+3α2n+1, (3.7)

u(z) = (1 − |α0|2)(1 − α1)D(z)−1. (3.8)

Remark. Formulas of the form (3.6), (3.7) for Sz1 go back to Geronimus [6], [7]. For Sz2 , the
earliest reference I am aware of is Berriochoa, Cachafeiro, and Garćıa–Amor [1]; see also [8].

Proof. (3.6), (3.7) are (13.2.20), (13.2.21) of [11]. To see (3.8), note that, by (1.4) and (3.3),

|u(eiθ)|−2 = πf2(2 cos θ)(sin θ)−1 = 2c2w = 2c2|D|2.
Thus, the absolute value of (3.8) holds if z = eiθ . Since both sides are analytic, nonvanishing on
D, and positive at z = 0, (3.8) holds for all z .

(3.6), (3.7) first of all provide a second proof of Theorem 1.5 in case u is nonvanishing on D

and, more importantly, show generically that R2 is optimal. We note first:



150

Proposition 3.3. We have

B(z) = α0z
−1 + α1 + 1 + (S(z) − 1)(1 − z−2) + Q(z), (3.9)

where, if
lim sup

n→∞
|αn|1/n = R−1, (3.10)

then Q is analytic in {z : |z| < R2}.

Proof. By (1.9), (1.15), and (3.6), (3.7), we have (3.9), where

Q(z) =
∞∑

n=0

α2n+1(α2n + α2n+2)z2n+1 + {α2
2n+2(1−α2n+3)(1 + α2n+1) + α2n+3α2n+1}z2n+2. (3.11)

By (3.10), Q(z) is analytic in {z : |z| < R2}.
Second proof of Theorem 1.5 when u is nonvanishing on D. As we will show below

(see Lemma 3.5), (1.26) implies (3.10). By Theorem 1.3 and (3.8), we conclude that

(z2 − 1)[u(z) − u(1/z̄)S(z)] (3.12)

is analytic in {z : R−1 < |z| < R3}. By Proposition 3.3,

z2B(z) − (z2 − 1)S(z) (3.13)

is analytic in {z : |z| < R2}, so by (3.12), the function in (1.22) is analytic in {z : R−1 < |z| <
R2}.

Example 3.4. Suppose α2n ≡ 0 (true if and only if bn ≡ 0) and α2n+1 = R−(2n+1) . Then, by
(3.10),

Q(z) =
∞∑

n=0

z2n+2R−4n−4 = z2R−4(1 − z2R−4)−1

has poles at z = ±R2 . This shows that (1.22) may not be analytic in any larger annulus than {z :
R−1 < |z| < R2}. It is also clear that by a similar analysis, if B is meromorphic in {z : |z| < R1+ε},
then generically (1.22) will have singularities on the circle of radius R2 . The change from R3 to R2

in going from Theorem 1.3 to Theorem 1.5 is due to the quadratic terms in (3.6), (3.7).
Above we used and below we will need:
Lemma 3.5. Suppose {αn}∞n=0 and {an, bn}∞n=1 are related by (3.6), (3.7), and

lim sup
n→∞

|αn|1/n ≡ R−1
1 < 1, lim sup

n→∞
(|a2

n − 1| + |bn|)1/2n ≡ R−1
2 < 1. (3.14)

Then R1 = R2 . Moreover, {αn} has a complete asymptotic expansion if and only if {an, bn} do,
and if T is the set of powers that enter for {an, bn}∞n=1 (i.e., T is the set of poles of B) and T̃ for
{αn}∞n=0 (i.e., T is the set of poles of S), then

T ⊂ G̃(T̃ ), T̃ ⊂ G̃(T ). (3.15)

Remark. For Sz1 , there are equations similar to (3.6), (3.7) which have solutions where
{an, bn}∞n=1 has rapid decay while α2n+1 ∼ n−1 at infinity. (Indeed, for Sz1 but not Sz2 , this
happens for J0 ; see Example 13.1.3 revisited in [11].) In fact, the results in this paper plus [12]
imply that R−1

1 < 1 if and only if R−1
2 < 1.

Proof. It follows from (3.6) that if R−1
1 , R−1

2 < 1, then R2 = R1 since the nonleading terms
are exponentially small. In addition, if αn has a complete asymptotic expansion, one gets that bn+1

and a2
n+1 − 1 individually have asymptotic expansion in µ−2n

k with µk ∈ ⋃∞
j=1 G

(j)(T̃ ). Since

c1µ
−2n
k = 1

2 (c1 + c2)µ−2n
k + 1

2 (c1 − c2)(−µk)−2n, (3.16)

c2µ
−2n−1
k = 1

2 (c1 + c2)µ−2n−1
k + 1

2 (c1 − c2)(−µk)−2n−1, (3.17)

we can combine into a single expansion by taking −µ’s as well as µ’s.
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For the converse, note that since the α’s decay exponentially,

α2n =
∞∑

m=0

bn+m+1 + O(R−2n),

and similarly for α2n+1 and
∑∞

m=0(a
2
n+m+1 − 1). Plugging this into (3.6) and summing yields α2n

and α2n+1 as explicit sums of products of four or fewer b’s and (1−a2)’s plus an error of O(R−3n).
Iterating gives explicit formulas for α’s as “polynomials” in b and 1− a2 of degree k plus an error
of order O(R−(k+2)n). This shows that if a and b have asymptotic expansion to order R−(k+1)n , so
do α2n and α2n−1 with rates in

⋃∞
j=1 G

(j)(T ). Using formulas like (3.16), (3.17), we can combine
to a single expansion by using −µ’s, so T̃ ⊂ G̃(T ).

Proof of Theorem 1.6 and Theorem 1.2 when u is nonvanishing on D. Since u is
nonvanishing on D, γ ∈ ran(Sz2), so we can define S , αn , etc. If u is entire meromorphic, by (3.8),
so is D−1 . Thus, by Theorem 1.4, S is entire meromorphic, and if T̃ is the set of poles of S , then

T̃ ⊂ G(P ).

By Lemma 3.5, B is meromorphic and

T ⊂ G̃(T̃ ) ⊂ G̃(G(P )) = G̃(P ).

Conversely, if B is entire meromorphic, by Lemma 3.5, so is S , and if T̃ is the set of poles of
S , then

T̃ ⊂ G̃(T ).
By Theorem 1.4, D−1 , and so u, is entire meromorphic and

P ⊂ G(T̃ ) ⊂ G(G̃(T )) = G̃(T ).

4. Coefficient Stripping and Jost Functions with Bound States

As in [3], we will go from the no bound state theorem to the general case (i.e., in our situation,
from Theorem 1.6 to Theorem 1.7) by coefficient stripping, that is, pass from J to the Jacobi matrix
J (m) with Jacobi parameters {an+m, bn+m}∞n=1 . By Theorem 3.1 of [3], if J has a Jost function
analytic in a neighborhood of D, there exists a k with σ(J (k)) = [−2, 2], and by a slight extension of
the argument, we can also suppose its Jacobi function obeys u(k)(±1) �= 0 (for if σ(J (k−1)) = [−2, 2]
and if u(k+1) vanishes at ±1, M (k−1)(z) has a pole there and u(k) = u(k−1)M (k−1) is nonvanishing).
Thus, we claim that we need only prove the following (as we will do below).

Theorem 4.1. If P = P1∪P2 as in Theorem 1.7 and we make the J -dependence explicit, then

P (J) = P (J (1)). (4.1)

Proof of Theorems 1.1 and 1.7 given Theorems 4.1 and 1.6. Theorem 1.7 implies
Theorem 1.1. By (4.1) and induction, P (J) = P (J (k)), where k is chosen as above so Theorem 1.6
is applicable. Now (1.26) for J (k) implies it for J.

As in [3], we will make use of the M -function, its connection to u, and the update relations.
We define (consistently with (1.5))

M (k)(z) = 〈δ1, (z + z−1 − J (k))−1δ1〉 (4.2)

for z ∈ D\{w : w + w−1 ∈ σ(J (k))}. The function M (k) has poles at the set in D with w + w−1 ∈
σ(J (k)), and u(k) has zeros there. The update equations ((2.4), (2.5) of [3]) are (initially for z ∈ D)

u(k+1)(z) = ak+1z
−1u(k)(z)M (k)(z), (4.3)

M (k)(z)−1 = z + z−1 − bk+1 − a2
k+1M

(k+1)(z). (4.4)

Moreover, we have the analytic continuation of (1.4) plus πf(2 cos θ) = Im M(eiθ) for θ ∈ [0, π],

[M(z) − M(1/z̄)] u(1/z̄) u(z) = z − z−1. (4.5)
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Formula (4.5) can be used to meromorphically continue M from D to C if u is entire meromorphic.
Once one makes these continuations, (4.3) and (4.4) extend to all z ∈ C (as meromorphic relations
including possible cancellations of poles and zeros). Formulas (4.3) and (4.4) also show that if u is
entire meromorphic, so is u(1) .

We begin by rephrasing the set P2 :
Proposition 4.2. z0 ∈ C\D is in P2 if and only if
(i) z0 is not a pole of u.
(ii) Both z0 and z−1

0 are poles of M.

Remark. In D, all poles of M are real, so (ii) implies that z0 is real.
Proof. By definition, z0 ∈ P2 if and only if u(z−1

0 ) = 0, z0 is not a pole of u, and (1.27) holds.
Since z−1

0 ∈ D,

u(z−1
0 ) = 0 ⇐⇒ z0 + z−1

0 ∈ σ(J) ⇐⇒ z−1
0 is a pole of M(z).

As shown in [3], by (4.5), if u(z0) = 0, z0 has a pole of M of order two or more and, of course,
(1.27) holds at z−1

0 since the left side is infinite. If u(z0) �= 0, (1.27) is precisely the condition, via
(4.5), that M(z) has a pole at z0 .

We have been careful in considering situations where z0 is a pole of u and z−1
0 is a zero of u.

We need to consider that case separately:
Proposition 4.3. If z0 ∈ C\D is a pole of u and z−1

0 is a zero of u, then z0 is a pole of u(1) .

Proof. Consider (4.5) near z = z0 . Zeros of u in D are simple, so u(z)u(1/z̄) either has a
pole at z0 or a finite nonzero limit. Thus, (4.5) shows M(z) − M(1/z̄) must be regular (perhaps
even zero) at z0 . Since M(1/z̄) has a pole at z0 , M(z) must have a pole there also. It follows that
u(1) = a1z

−1uM has a pole (indeed, at least a second-order pole) at z0 .
Proposition 4.4. If z0 ∈ P2(J), then z0 ∈ P1(J (1)).

Remarks. 1. For z0 within the disk of analyticity of u, this result is in [3]. The proof here is
essentially identical.

2. z0 ∈ P2(J) is essentially a statement of the vanishing of a “resonance eigenfunction,” so
this says that such eigenfunctions cannot have successive zeros because of a second-order difference
equation.

Proof. Suppose first that u(z0) �= 0. By Proposition 4.2, M has a pole at z0 , so u(1) = a1z
−1uM

has a pole at z0 .
If u has a kth-order zero, k ≥ 1, at z0 , u(1/z̄) u(z) has a (k+1)st-order zero, so M(z)−M(1/z̄)

has a (k + 1)st-order pole z0 by (4.5). Since M has simple poles at points in D like 1/z0 , M has
to have a (k + 1)st-order pole at z0 . Thus, u(1) = a1z

−1uM has a pole at z0 .
Proposition 4.5. If z0 ∈ P1(J) and z0 /∈ P1(J (1)), then z0 ∈ P2(J (1)).

Proof. By (4.4), poles of M (1)(z) are precisely at zeros of M(z). Thus, by Proposition 4.2, we
need to prove that

z0 ∈ P1(J), z0 /∈ P1(J (1)) =⇒ M(z0) = M(1/z0) = 0. (4.6)

Since u has a pole at z0 and u(1) = a1z
−1uM does not, M(z0) = 0. By Proposition 4.3,

z0 /∈ P1(J (1)) implies u(1/z̄) �= 0. Thus, u(z) u(1/z̄) has a pole at z0 . Relation (4.5) then implies
that M(z)−M(1/z̄)|z=z0 = 0. Since M(z0) = 0, we conclude M(1/z̄0) = 0. This proves (4.6).

We also need some results that go back from z0 ∈ P (J (1)).
Proposition 4.6. If z0 ∈ P2(J (1)), then z0 ∈ P1(J).

Proof. By Proposition 4.2, z0 and z−1
0 are poles of M (1) , so by (4.4), they are zeros of M. As

in the proof of Proposition 4.4, if u(1) has a kth-order zero (including k = 0, i.e., u(1)(z0) �= 0),
then M (1)(z) has a (k +1)st-order pole there, and so M(z) has a (k +1)st-order zero. This is only
consistent with u(1) = uM if u has a pole at z0 .
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Proposition 4.7. If z0 ∈ P1(J (1)) and z0 /∈ P1(J), then z0 ∈ P2(J).

Proof. By hypothesis, z0 is not a pole of u, and so (i) of Proposition 4.2 holds. So we need only
show that M(z) has poles at z0 and z−1

0 . Suppose u has a kth-order zero at z0 (including k = 0,
i.e., u(z0) �= 0). By (4.3) and the fact that z0 is a pole of u(1) , we see that z0 is a (k + 1)st-order
pole of M(z) and, in particular, a pole of M(z) (since k + 1 � 1).

If k � 1, this is only consistent with (4.5) if (4.5) has a zero at z0 since the possible pole of M

at z−1
0 is of order 1 and cannot cancel the (k + 1)st-order pole at z0 . Thus, u(1/z̄0) = 0, so z−1

0 is
real and a pole of M(z), that is, (ii) of Proposition 4.2 holds and z0 ∈ P2(J).

If k = 0 and M(z) does not have a pole at z̄−1
0 , then M(z) − M(1/z̄) has a pole at z0 , while

u(1/z̄0) �= 0 �= u(z0) (since k = 0 and 1/z̄0 is not a pole), violating (4.5). Thus, M must have a
pole at z̄−1

0 and z0 ∈ P2(J) by Proposition 4.2.
Proof of Theorem 4.1. If z0 ∈ P (J (1)), either z0 ∈ P2(J (1)) ⇒ z0 ∈ P1(J) (by Proposi-

tion 4.6) or z0 ∈ P1(J (1)) ⇒ z0 ∈ P1(J) ∪ P2(J) (by Proposition 4.7). Thus, P (J (1)) ⊂ P (J).
If z0 ∈ P (J), either z0 ∈ P2(J) ⇒ z0 ∈ P1(J (1)) (by Proposition 4.4) or z0 ∈ P1(J) ⇒ z0 ∈

P1(J (1)) ∪ P2(J (1)) (by Proposition 4.5). Thus, P (J) ⊂ P (J (1)).
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