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Abstract

We prove several results about zeros of paraorthogonal polynomials using the theory of rank one pertur-
bations of unitary operators. In particular, we obtain new details on the interlacing of zeros for successive
POPUC.
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1. Introduction

This note concerns an aspect of the theory of orthogonal polynomials on the unit cir-
cle (OPUC); for background, see [4,7–9,11]. Given a nontrivial probability measure, dμ, on
∂D = {z ∈ C | |z| = 1}, we let Φn(z) (we use Φn(z, dμ) when dμ needs to be explicit) be the
monic orthogonal polynomials. They obey the Szegő recursion relations

Φn+1(z) = zΦn(z) − ᾱnΦ
∗
n(z), (1.1)

Φ∗
n(z) = znΦn(1/z̄), (1.2)

where {αn}∞n=0 ∈ D
∞ are the Verblunsky coefficients. dμ ↔ {αn}∞n=0 sets up a one-one corre-

spondence between D
∞ and nontrivial probability measures (Verblunsky’s theorem).
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Given β ∈ ∂D, the paraorthogonal polynomials (POPUC) are defined by (Note: [7] uses β

where (1.3) uses −β̄; (1.3) is the right convention.)

Φn(z, dμ;β) = zΦn−1(z, dμ) − β̄Φ∗
n−1(z, dμ). (1.3)

More generally, we will consider a sequence {βn}∞n=1 ∈ ∂D and

Φ̃n(z) = Φn(z, dμ;βn). (1.4)

POPUC were introduced at least as early as Jones, Njåstad, and Thron [6]. About five years
ago, Cantero, Moral, and Velázquez [1] and Golinskii [5] realized that zeros of POPUC shared
many properties of zeros of OPRL and independently proved a number of basic results about
these zeros. Cantero et al. [3] recently proved additional results. The basic tool in [1,5] is the
Christoffel–Darboux formula; [3] also exploits the CMV matrix. Our goal in this paper is to
use the theory of rank one perturbations of unitary matrices to recover many of the basic results
about zeros of POPUC and prove some new results. In particular, we will illuminate the issue of
interlacing of the zeros of successive POPUC.

First, some notation. Given distinct z,w ∈ ∂D, (z,w) is the set of points, ζ , in ∂D with

Arg(z) < Arg(ζ ) < Arg(w), (1.5)

where a branch of Arg is chosen so 0 < Arg(w) − Arg(z) < 2π . An ordered set of points
(z1, . . . , z�) ∈ ∂D� is called cyclicly ordered if each (zj , zj+1)

�
j=1 and (z�, z1) contain no

other zj ’s. The ordering is fixed by such cyclicity up to a single choice. We will always assume
zeros of POPUC are cyclicly ordered.

Two cyclicly ordered sets (z1, . . . , z�) and (w1, . . . ,w�) in ∂D
� are said to strictly interlace

if after a cyclic permutation of w’s, we have wj ∈ (zj , zj+1), j = 1,2, . . . , � − 1, w� ∈ (z�, z1).
This, of course, implies zj ∈ (wj−1,wj ), j = 2,3, . . . , �, and z1 ∈ (w�,w1).

For {αj }∞j=0, the second kind polynomials, Ψn(z, dμ) are defined, as usual, to be the Φn’s
associated to α̃j = −αj (dμ). We define

Ψn(z, dμ;β) = zΨn−1(z, dμ) − β̄Ψ ∗
n−1(z, dμ). (1.6)

We can now state our main results:

Theorem 1.1. [1,5] If (w0,w1) is an interval disjoint from supp(dμ), then for any choice of β

and any n, Φn(z, dμ;β) has at most one zero in (w0,w1).

The following has also been proven by Wong [12]:

Theorem 1.2. Let (z1, . . . , zn) be the zeros of some Φn(z, dμ;β) and (w1, . . . ,wn) of
Ψn(z, dμ;−β). (Note: −β , not β .) Then these zeros strictly interlace.

Theorem 1.3. [1,5] Fix dμ and n and distinct β,β ′ in ∂D. Then the zeros of Φn(z, dμ;β) and
Φn(z, dμ;β ′) strictly interlace.

The power of our approach is shown by the refined version we obtain relating zeros of Φ̃n+1
and Φ̃n. We will need the following computed sequence in ∂D:

λn = β̄n+1β̄n

(
βnαn − 1

β̄nᾱn − 1

)
. (1.7)
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Theorem 1.4. For each n, one of two possibilities holds:

(i) Φ̃n and Φ̃n+1 have no zeros in common. In that case, λn is not a zero of either, and
{zeros of Φ̃n} ∪ {λn} strictly interlace {zeros of Φ̃n+1}.

(ii) Φ̃n and Φ̃n+1 have a single zero in common. In that case, λn is that zero and {zeros of Φ̃n}
strictly interlace {zeros of Φ̃n+1} \ {λn}.

Corollary 1.5. If Φ̃1, Φ̃2, Φ̃3, . . . have a common zero at λ, then βn are given inductively by

β1 = λ̄, (1.8)

βn+1 = λ̄β̄n

(
βnαn − 1

β̄nᾱn − 1

)
. (1.9)

Example 1.6. α ≡ 0. Then βn = λ̄n and Φ̃n(z) = zn − λn precisely the POPs with a zero at λ for
all n.

The key to our proofs is the connection of Φ̃n to CMV matrices [2,7,10]. Φ̃n is the determinant
of a suitable finite CMV matrix, and so its zeros are the eigenvalues. All our results concern what
happens to eigenvalues of unitary matrices under rank one perturbations. Section 2 discusses
general rank one perturbations, and Section 3 the application to POPUC.

It is a pleasure to thank María José Cantero and Lilian Wong for useful discussions.

2. Rank one perturbations

Rank one perturbations of unitaries are discussed in Sections 1.3.9, 1.4.16, 3.2, 4.5, and 10.16
of [7,8], and some of the results in this section are spread through that material.

If U and V are two unitaries on a finite- or infinite-dimensional Hilbert space and U − V is
rank one, we pick a unit vector ϕ ∈ ker(U − V )⊥ and note there must be λ ∈ ∂D with

V ϕ = λUϕ (2.1)

and thus

V − U = (λ − 1)〈ϕ, ·〉Uϕ. (2.2)

It is convenient to define for z ∈ D and A unitary

FA,ϕ(z) =
〈
ϕ,

A + z

A − z
ϕ

〉
, (2.3)

fA,ϕ(z) = z−1(1 − F(z)
)(

1 + F(z)
)−1

. (2.4)

F is a Carathéodory function (ReF(z) > 0 on D, F(0) = 1) and f a Schur function (|f (z)| < 1
on D). The spectral measure for A,ϕ is given by

FA,ϕ(z) =
∫

eiθ + z

eiθ − z
dμA,ϕ(z). (2.5)

It is not hard to see that

Proposition 2.1. Let ϕ be a cyclic vector for a unitary A (i.e., {Akϕ}∞k=−∞ is total). An interval
(w0,w1) in ∂D is disjoint from σess(A) if and only if f has an analytic continuation through
(w0,w1) with |f (z)| = 1 on that interval. In that case:
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(a) Arg(f ) is strictly monotone increasing on (w0,w1).
(b) The only spectra of A on (w0,w1) are simple eigenvalues precisely at the points z where

zf (z) = 1. (2.6)

Arg(f ) is increasing since |f (z)| < 1 in D and |f (z)| = 1 on (w0,w1) implies
∂|f (reiθ )|/∂r � 0 on (w0,w1). So by the Cauchy–Riemann equations, ∂Arg (f (eiθ ))/∂θ � 0.
(b) holds since

F(z) = 1 + zf (z)

1 − zf (z)
(2.7)

has poles at points where (2.6) holds.
When (2.2) holds, a direct calculation (see (1.4.90) and the end of Section 3.2 in [7]) shows

that

Proposition 2.2. If (2.2) holds, then

fV,ϕ(z) = λ−1fU,ϕ(z). (2.8)

We immediately have

Theorem 2.3. Let (2.2) hold. If (w0,w1) ∩ σ(U) = ∅, then V has at most one eigenvalue in
[w0,w1] and no other spectrum there.

Proof. Let K be the cyclic subspace for U and ϕ. Since U = V on K⊥ which is invariant for
both, we can suppose ϕ is cyclic. In that case, picking z0 ∈ (w0,w1) and then Arg(z(f (z)))

so Arg(z0f0(z0)) ∈ (0,2π), we see Arg(z(f (z)) ∈ (0,2π) on all of (w0,w1) since (2.6) has
no solution there. By the strict monotonicity of Arg(f ), zf (z) = λ has at most one solution in
[w0,w1], so by Propositions 2.1 and 2.2, V has at most one eigenvalue there. �
Proposition 2.4. Let U,V be unitaries on C

n so (2.2) holds for λ �= 1 and for ϕ cyclic for U .
Then the eigenvalues of U and V strictly interlace.

Proof. Since U has a cyclic vector, its spectrum is simple so zf (z) = 1 has n solutions. Since
Arg(z(f )) is strictly monotone, zf (z) = λ has n solutions which interlace the solutions of
zf (z) = 1. �

One can say something about the case where ϕ is not cyclic.

Proposition 2.5. Let U,V be unitaries on Cn so (2.2) holds. Let z0, z1 be two eigenvalues of U .
Then V has an eigenvalue in [z0, z1] (= (z0, z1) ∪ {z0, z1}).

Proof. Let K be the cyclic subspace of (U,ϕ) which is invariant for U . If z0 and z1 are eigenval-
ues of U �K, V has an eigenvalue in (z0, z1) by Proposition 2.4. If not, since U �K⊥ = V �K⊥,
either z0 or z1 is an eigenvalue of V . �

Finally, we have a specialized result that is precisely what we need to prove Theorem 1.4:
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Proposition 2.6. Let U = U1 ⊕ U2 on K1 ⊕K2, two finite-dimensional subspaces of H, a space
of dimension n. Let ϕj (j = 1,2) be cyclic vectors for Uj on Kj . Let ϕ = aϕ1 ⊕ bϕ2 where
(a, b) �= (0,0) and |a|2 + |b|2 = 1. Let V be given by (2.2) with λ �= 1. If U1 and U2 have �

eigenvalues in common, then V has these � common values as eigenvalues and its other n − �

eigenvalues strictly interlace those of U .

Proof. Since ϕj is cyclic for Uj , any simple eigenvalue of U is in the cyclic subspace generated
by U,ϕ. Moreover, any common eigenvalue is a simple eigenvalue for U � K where K = cyclic
subspace of ϕ. Thus U � K has all the eigenvalues of U but with multiplicity 1. The eigenvalues
of V � K strictly interlace by Proposition 2.4. The eigenvalues of V � K⊥ = U � K⊥ are exactly
the common eigenvalues. �
Remark. ϕ is cyclic if and only if � = 0.

3. Zeros of POPUC and finite CMV matrices

Given a sequence {γn}∞n=0 of elements in D, one defines the CMV matrix C({γn}∞n=0) on �2

by

C = LM, (3.1)

L= Θ(γ0) ⊕ Θ(γ2) ⊕ · · · , (3.2)

M = 11×1 ⊕ Θ(γ1) ⊕ Θ(γ3) ⊕ · · · , (3.3)

where 11×1 is the one-dimensional identity matrix, and Θ is given by

Θ(γ ) =
(

γ̄ τ

τ −γ

)
, (3.4)

τ = (
1 − |γ |2)1/2

. (3.5)

It is a fundamental result of Cantero, Moral, and Velázquez [2] (see also [7, Section 4.2])
and see [10] for other references) that if dμ is a nontrivial probability measure on ∂D, χn is the
basis of L2(∂D, dμ) obtained by applying Gram–Schmidt to 1, z, z−1, z2, z−2, . . . , and αn(dμ)

are the Verblunsky coefficients of dμ, then C({αn(dμ)}∞n=0) is the matrix of multiplication by z

on L2(∂D, dμ) in χn basis. Note in this case that γn ∈ D (rather than some γn ∈ ∂D), in which
case we call C a proper CMV matrix.

If |γ | = 1, then τ = 0, and Θ(γ ) is a direct sum of two 1 × 1 matrices, and so, if
|γn−1| = 1, C breaks into a direct sum of an n × n matrix and an infinite piece. The finite piece,
Cn({γ0, . . . , γn−1}), is called a finite CMV matrix. It is not hard to show that (see, e.g., [10]):

Proposition 3.1. If γn ∈ D for all n, then δ0 ≡ (1,0, . . .)t is a cyclic vector for C({γn}∞n=0). If

γ0, . . . , γn−2 ∈ D, γn−1 ∈ ∂D, then δ0 is a cyclic vector for Cn({γm}n−1
m=0).

Moreover (see [7, Section 4.2]),

Proposition 3.2. If α0, . . . , αn−2 ∈ D and β ≡ αn−1 ∈ ∂D, then

Φn(z, dμα;β) = det
(
z − Cn

({αj }n−1
j=0

))
. (3.6)

In particular, the zeros of Φ̃n are the eigenvalues of a finite CMV matrix.
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Finally, we need the following, which generalizes Lemma 4.5.1 of [7]:

Lemma 3.3. Let α ∈ D and β ∈ ∂D. Then

Θ(α) −
(

β 0
0 x

)
(3.7)

is rank one if and only if

x = β̄

(
βα − 1

β̄ᾱ − 1

)
. (3.8)

Proof. A 2 × 2 matrix is rank one if and only if det(A) = 0. Since

det

(
Θ(α) −

(
β 0
0 x

))
= (ᾱ − β)(−α − x) − (

1 − |α|2), (3.9)

we see (3.7) is rank one if and only if RHS of (3.9) = 0, which is solved by (3.8). �
Note: |x| = 1, so

(
β 0
0 x

)
is unitary.

Proof of Theorem 1.1. Let C be the CMV matrix, C({αn(dμ)}∞n=0), of dμ. Given n and β ,
pick x so Θ(αn−1) − (

β 0
0 x

)
is rank one, and let C̃ be the matrix obtained from C by replacing

Θ(αn−1) by
(

β 0
0 x

)
. Then C̃ is unitary (by the note after Lemma 3.3) and C − C̃ is rank one.

Thus, by Theorem 2.3, C̃ has at most one eigenvalue in (w0,w1). But C̃ is a direct sum of
Cn({α0, . . . , αn−2, β}) and another matrix, so Cn has at most one eigenvalue in (w0,w1). By
Proposition 3.2, zeros of Φ̃n are eigenvalues of Cn. �
Proof of Theorem 1.2. Let α̃n−1 ≡ β . By Theorem 5.2 of [10] (see also [7, Theorem 4.2.9]),

Cn({−α̃m}n−1
m=0) is unitarily equivalent to C̃n ≡ L({α̃m}n−1

m=0)M̃({α̃m}n−1
m=0) where M̃ differs

from M by having −11×1 in place of 11×1. Thus, Cn({αm}n−1
m=0) − C̃ is rank one, and Theo-

rem 1.2 follows from Propositions 2.4 and 3.1. �
Proof of Theorem 1.3. If

αj = α′
j = αj (dμ), j = 0, . . . , n − 2, (3.10)

αn−1 = β, α′
n−1 = β ′, (3.11)

then C({αm}n−1
m=0) − C({α′

m}n−1
m=0) is obviously rank one. Moreover, δn−1 is a cyclic vector since

Cn run backwards is essentially another Cn (with the initial 11×1 replaced by ᾱn−111×1) or Ct
n.

Thus, Theorem 1.3 follows from Proposition 2.4. �
Proof of Theorem 1.4. Let Cn+1 (respectively Cn) be the (n + 1) × (n + 1) (respectively n × n)
finite CMV matrix whose characteristic polynomial is Φ̃n+1 (respectively Φ̃n). By Lemma 3.3,
a rank one perturbation turns Cn+1 into Cn ⊕ λn11×1 where λn is given by (1.7). The vector in
the perturbation is aδn−1 + bδn, so Proposition 2.6 applies and proves Theorem 1.4. �
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As a final result:

Theorem 3.4. Let m > n. Then strictly between any pair of zeros of Φ̃n is a zero of Φ̃m.

Proof. Let Cn,Cm be as in the last proof. By a rank one perturbation, Cm can be changed to
Cn ⊕ Qm−n. Now apply Proposition 2.6. �
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