TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY
THEOREM

By

BARRY SIMON*

Abstract. We extend some remarkable recent results of Lubinsky and Levin—
Lubinsky from [—1, 1] to allow discrete eigenvalues outside oess and to allow oess
first to be a finite union of closed intervals and then a fairly general compact set in
R (one which is regular for the Dirichlet problem).

1 Introduction

This paper primarily discusses orthogonal polynomials on the real line (OPRL)
[39, 10, 28]. To set notation, u is a measure of compact support o(du) on R,
positive but not necessarily normalized. Its Lebesgue decomposition is

(1.1) du(z) = w(x) de + dus(x),

where w € L'(R, dx) and ps is Lebesgue singular. Let oess(dp) denote o(dp) with
isolated points removed and o (du) = o(dus).

We denote the monic orthogonal polynomials by P, (z, du) and the orthonormal
polynomials by p,(z,du). The Jacobi parameters {a,, b, }52 ; are defined by the
recursion relation

(12) a:pn(a:) = an+1pn+1(x) + bn+1pn(x) + anpn—l(x)-

We note for later use that

1 1/2
(1.3) po(@) = (—=)
and that (|| - || means L?(R, du) norm)

(1.4) [Pl = a1 anp(R)2.
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The main focus of this paper is the CD (for Christoffel-Darboux) kernel (for
z,y € R)

(1.5) Kn(a,ydp) = po(, dp)pn (v, dp).

=0
We often drop dy or consider several measures, say p, uf, and use K, (z,y), K% (z, y).
Then K, is the integral kernel of the orthogonal projection in L?(R, du) onto the
polynomials of degree at most n. So if @, (z) is such a polynomial, then (the
reproducing property)

(1.6) Qulz) = / Ko(,)Qn(y) duly)

and, in particular (an expression that K, is the kernel of a projection),

(1.7) / K, 9) K (9, 2) dp(y) = Kon(z, 2).

Going back to Faber [7], Fekete [8], and Szegd [38], it has been known that there
are deep connections between potential theory and asymptotics of polynomials;
see Stahl-Totik [37] and Simon [33]. We are especially interested in the potential
theory associated to F = oess(dp). We call E C R a regular set if it is compact,
regular for the Dirichlet problem on C and with an equilibrium measure dpg of the
form pg(x)dx. Thus, writing C(E) for the logarithmic capacity of E, we have

1.8 dy=1

(1.8) /EpE(y) Y

and

(1.9) Gr(w) = [ loels ~slpi(y) dy ~ 0 ()

is continuous on C with
(1.10) Gg(y)=0ifye E Gg(z) >0 ifz ¢ E.

Stahl-Totik introduce the important notion of regular measure on E (following
its use by Ullman [44] for the special case £ = [—1,1]): a measure u of compact
support is called regular if and only if

(1.11) lim (a1 ...a,)"" = C(E),

where E = gess(dp). (They use E = o(du); but since o(du) \ oess(dp) is countable,
it has zero capacity, and so there is no difference.) One reason this is natural is that
it is always true that

(1.12) limsup (a; ...an)"™ < C(E).

n—oo
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An elegant way to see this (c.f. Widom [47] or [33]) is to note that when p(R) = 1,
a1-an = ||Pall2 < ||Th]|leo With T3, the Chebyshev polynomial for E and use
Szegd’s theorem [38] that lim | T, ||/ = C(E).

More generally than (1.12), one has the results of Stahl-Totik [37] (see also
[33]) that

Theorem 1.1 ([37]). If E = cess(dp) and  is regular, then

lim sup [py (2, dp)|'/™ < e9(2)
uniformly on compact subsets of C. In particular, if E is regular, for any ¢, there
exists 0 and C such that
(1.13) sup  |pn(y,du)| < Ce™.

dist(y,E)<é

One connection between K and pg is (an analogue of Theorem 8.2.6 of [28];
see Simon [35])

Theorem 1.2 ([35]). For any regular measure p,
1
(1.14) — K, (z,z)dp — dpg,
n
the equilibrium measure for E = oe(dp), in the sense of weak convergence of
probability measures on supp(dp).

If F is regular, if du given by (1.1) is regular, and if %Kn(x, z) has a uniform
limit as n — oo for x € I some open interval, then by (1.14), that limit must be
pe(z)/w(zr) (and w(z) must be continuous and nonvanishing on I'). This motivates

Definition. We say that ;s has normal limits on a closed interval I = [a, b] if
and only if for any x,, — z € I,

pE(T)
w(x)

(1.15) lKn(:vn,:vn) —
n

with convergence which is uniform in the sense that for any ¢, there exist N and §
such that when n > N and |z, — z| < J, the difference between the right and left
hand sides of (1.15) is less than ¢.

Normal limits for z,, = x have a long history for orthogonal polynomials on
the unit circle (OPUC) and for F = [—1, 1], going back to Szegd, with important
contributions by Erdds, Turdn and Freud. This history is discussed in the fun-
damental paper by Maté—Nevai—Totik [23], who obtained very strong results on
pointwise convergence for p’s supported on [—1, 1] or OPUC supported on OD. The
refinement of allowing z,, — x is one critical idea in a recent paper of Lubinsky
[19], who provides a result on off-diagonal behavior of K, also:
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Theorem 1.3 ([19]). Ler I = [a,b] be a closed interval in (—1,1) and du a
regular measure with support [—1,1] such that supp(dus) N I = (. Suppose that
du(z) = w(x) dx on I, where w is continuous and nonvanishing. Then u has normal
limits on I, and for xq € I and o, 3 € R,

. Ky(wo+ &m0+ Q) sin(mp[_1,1)(w0) (8 — a))
1.16 1 n n- o — :
(1.16) A T Ko (20, 70) 1) (%0) (B — )

uniformly if ||, |8| < A, xo € I for any A > 0.

Remarks. 1. Continuity “on I”” here means continuous at each pointin I as a
function on [—1, 1]; that is, continuity at a, b involves values of w outside but near
[a,b]. Thus, the continuity hypothesis is nonvacuous if ¢ = b, and the theorem is
interesting in that case.

2. The earliest results of the form (1.16) come from the random matrix and
Riemann—Hilbert literatures; see [15].

3. Lubinsky [19] does not use p_1 1)(z0) = (WM)_l for (1.16), but scales
using w(z) K, (v, 2) ~ np—11)(z). This gives a form that makes contact with the
Riemann—Hilbert literature and is also suitable for end points and Freud weights.

4. As explained in Section 4, Levin—Lubinsky [18] use (1.16) to control the
asymptotics of zeros of p,,.

Our goal in this paper is to extend Theorem 1.3 in two ways.
(a) Instead of requiring o(du) = [—1, 1], we want to allow oess(dp) = [—1,1], as is
natural if one makes assumptions on {a,, b, }°°; rather than directly on dp.
(b) We want to replace [—1, 1] by a general finite gap set.

A third important extension involves (1.16) pointwise for a.e. zg € I for situ-
ations where dyu obeys a local Szeg$ condition on /. I had intended to combine
Lubinsky’s strategy with ideas of Maté—Nevai—Totik [23] and especially Totik [40],
but I was informed by Totik that Findley [9] and he [42] have results along this
line. So I decided to focus here only on (a) and (b).

While important, neither of these extensions is especially difficult. Because
of Lubinsky’s clever inequality (see (4.1)), it is necessary only to find a suitable
universal model for F and to control the diagonal kernel.

A key point is to relate K, (z, z) to the Christoffel function,

(1.17) An (o) = min{[| Q|72 (g g, : @(w0) =1, deg @ < n}.

The minimizer is

(1.18) Qn(w,x0) ZK(IOJO)_lZPj(I)pj(ﬂ?O),
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for which
(1.19) An(20) = Kp(z0,20) "

To handle extension (a) is easy. One can eliminate the point masses distant
from E by adding explicit zeros to a trial polynomial and control the point masses
near F with some exponential decay.

The key to (b) is to construct a suitable model that is well-behaved; following
Lubinsky’s strategy (he uses Legendre polynomials as his model), it is easy to
extend Theorem 1.3. Our model is the measure associated to a point in the
isospectral torus associated to £, where the analysis depends on results of Widom
[48], Sodin—Yuditskii [36], Peherstorfer—Yuditskii [26], and Christiansen—Simon—
Zinchenko [5].

The most subtle part of the model is establishing (1.16), which follows from
Jost asymptotics. Jost asymptotics are the key to proving clock behavior for zeros
in [30, 31, 17]. In a sense, using the Levin—Lubinsky strategy, we can regard (1.16)
as a kind of infinitesimal Jost asymptotics.

To obtain control of the diagonal CD kernel, all we need is a single model 1,
obeying

(1) Oess (Mu) =FE;
(ii) w' is continuous and nonvanishing in E;
(iii) for any closed interval I C E™, and ¢ > 0,

(1.20) sup e *"K*(x,x) — 0;
xzel

(iv) for any closed interval I C E™,

Kf T, T
(L.21) lim sup | lim sup %() =1;
€l0 n—o00 Kn(x’ Jj)
(v) for z,, — zo in E™,
Kn nsy n
(1.22) i L@ )

n—0o0 Kn(xooyxoo)

and this is uniform in that for any closed interval I C E™' and any ¢, there
exist § and N such that the ratio in (1.22) is within € of 1 if |x,, — 20| < § and
n > N.
It is known [47, 45, 37, 33] that (ii) implies that x! is regular. Of course, we
have

(1.23) % K (z,2) — p()
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from which (1.20) and (1.21) follow. We state the result in this form to allow for
future work in which the model focuses on a single point in £, where w vanishes
or blows up at some rate.

In Section 3, we prove

Theorem 1.4. Suppose that E is a regular set and there exists a model, it
obeying (1)—(v). Let u be a measure with oess(1) = E, u regular, and w continuous
and nonvanishing on I = [a,b] C E™. Suppose that os(u) N I = 0. Then for any

Ty, — T €1,

K (@n, 2n) w?(x)

1.24
(129 Ki(zp,x,)  w(@)

uniformly in the sense discussed after (1.15).
Remark. By (1.23) and (1.24), we have normal limits on /.
In Section 4, we prove

Theorem 1.5. Suppose that E is a regular set and there exists a model, jit,
obeying (i)-(iv) so that K* obeys (1.16) uniformly for x in compacts of E™, and
lal, 18] < A. Let u be a measure with cess(1t) = E, p regular, and w continuous
and nonvanishing on I = [a,b] C E™. Suppose that os(u) NI = (). Then K obeys
(1.16) uniformly on I and |a| < A, |8] < A.

Given Theorem 1.4, we obtain Theorem 1.5 by following Lubinsky’s argument
virtually word for word. Following Levin—Lubinsky, it also implies uniform clock
behavior of the zeros in I in the sense of Last—Simon [17] (if a < b).

In Section 2, we obtain xf obeying (i)—(v) when FE is a finite union of intervals
and (1.16), therefore accomplishing extensions (a) and (b).

All our arguments extend with little change to finite gap OPUC and to zeros of
paraorthogonal polynomials [3, 4, 11, 14, 32, 49].

During the preparation of this manuscript, I learned that Totik [42] was also
working on extending Lubinsky universality to general sets. After I finished the
above and Sections 2—4 below, Totik and I exchanged manuscripts. His technical
methods are different from what I do in Section 2. After I got his manuscript, I
realized that Lubinsky’s inequality ((4.1) below) is so strong that it is easy to go
from finite gap to general compact sets and prove

Theorem 1.6. Let E C R be an arbitrary regular compact set such that
I = [a,b] C E™. Let u be a measure regular in the sense of Stahl-Totik [37]
such that oess(n) = E and p | [a — €,b + €] is purely absolutely continuous with



TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY THEOREM 351

dp

w = £ continuous and nonvanishing on [a,b]. Let pg(x)dx be the density for the
equilibrium measure for E restricted to 1. (It is not hard to see pg is purely a.c.

on I; see [33].) Then uniformly for x € [a,b],

(1.25) Kp(z,z) — ’;UE(%);

al,|8] < A, one has (1.16), and so (as in Section 4
Sfollowing [18]), clock behavior for the zeros.

and, uniformly for xy € [a,b),

Remark. (1.25) is not new. It is essentially in Totik [40].

The proof of this theorem is sketched in Section 5. We also note there that it
suffices to prove the results in Section 2 when each interval has rational harmonic
measure, so that one can use Floquet theory in place of the more subtle analysis of
[48, 36, 26, 5].

It is a pleasure to thank D. Lubinsky, P. Nevai, V. Totik, and P. Yuditskii for
useful correspondence.

2 Models

Let F be a finite gap set, that is,

k+1
2.1) E = |Jla;. 8],
j=1
where oy < 61 < ag < --- < (41 are reals. Associated with any such F is an

isospectral torus of Jacobi matrices defined by the fact that their m-functions are
Herglotz functions extendable to minimal degree meromorphic functions on the
two-sheeted Riemann surface associated to [Hfill (z — a;)(z — 34)]*/2. For OPUC,

this is discussed, for example, in [29], and for OPRL in [34].
The spectral measure p* for any such Jacobi matrix has the form (see [36, 26, 5])

2.2) dpf = wﬁ(x) dx + dpus,

where dug is a pure point measure with at most one pure point in each gap of £
and none in F and

(2.3) wh >0

and real analytic on E™,
Our goal in this section is the prove the following
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Theorem 2.1. Let ;i be the probability measure associated to a Jacobi matrix
in the isospectral torus for E. Then, uniformly for x in any interval [a,b] in E™,
we have

(1)

(2.4) Kb (z,2) = fg)) n+0(1).

(ii) Uniformly in |a|,|B] < L,

e L e ]

n (8 — ) n

We obtain this from results [48, 36, 26, 5] on Jost solutions, that is, solutions of

(2.6) A 1Unt2 + (bng1 — 2)ung1 + anuyn = 0,

an equation solved by
Up = pn—l(x)-
Jost solutions, u, (), solve (2.6) for x € E and obey (see [48, Theorem 7.3])
1
(2.7) up(z) = " £, (2);

(ii) on any I C E™, £, is analytic in = and its derivatives are uniformly bounded
innandzx € I,

(iii)

(2.8) 0'(x) = mpp(z);
(iv)

(2.9) uo(x) = 1;
v)

(2.10) i () # i ();

(vi) the Wronskian

(2.11) A (Un 1T — Ung1Un)

is n-independent (but z-dependent).
(vii) While we do not need it, we also note that f,,(x) is almost periodic in n.



TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY THEOREM 353

Because of (2.9)/(2.10), u,, and 4,, are linearly independent, so p,, is a linear
combination of wu,4+1 and @,+1. Thus (since (2.9) implies equality at n = 1, and
equality holds at n = 0),

Unt1 — Unt1(T)

(2.12) Pn(z) = uy () —ay(x)
Define
eie(m)fn+1(x)

(2.13) 920) = @) —m ()]

so (2.12) becomes
(214) pn(x) _ gn(x)elnG(w) + gn—(x)efi'rw(:z)7

and the constancy of the Wronskian becomes

(@)

(2.15) Ant1[Gnt1(2)gne”® — g, (2) g1 (z) e ] = c(2),

xz-dependent but not n-dependent.
We also need the CD formula

(2.16) K (,9) = apg | 2ot 00 (ya): :Zn(x)pnﬂ(y)

for z # y and its limit at z = y,

(2.17) K (2, 2) = an g1 [P 41 (2)pn (2) = poya (@), (2)]
Proof of Theorem 2.1. By (ii), (iii), and (v), and (2.14)

(2.18) P (x) = inb (x)[gn ()@ — g, (x) e @] + O(1)

where O(1) is bounded uniformly in « € I and in n. Thus, by (2.14), (2.15), (2.17),
and (2.18),

(2.19) K! (2, x) = 2inb (x)c(z) + O(1).

Therefore, 1 K, (z, z) converges uniformly on I to 2i¢’(z)c(x), so by (1.14),

(2.20) 2i0' (z)c(z) = ’;f(%)

and (2.19) is (2.4).
Similarly, by (2.14), (2.8), and (ii),

g — nl(z) jiarp(xz) | . () ,—ind(z) , —iamp(x) l
(2.21) pn(x—i— n) gn(T)e e +gn(z)e e —|—O(n)
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uniformly in |a| < A.
Plugging this into (2.16) shows that

(2.22) K, (x T ﬁ) _ gy S8 —)mo() o),
n n 00—«
By (2.20) and (2.8), c(z) = 1/2miw(x), s0 (2.22) is (2.5). 0

3 Asymptotics of the Diagonal CD Kernel

Our goal here is to prove Theorem 1.4. The key is an idea of Nevai [24], which
lets one exponentially localize CD minimizers, augmented by the regularity ideas
of Maté—Nevai—Totik [23] and a simple extension that accommodates discrete
spectrum.

Lemma 3.1. Let E be a regular subset of R. Let i, i be two measures, both
regular for E. Let I be a closed interval in E™ with I N [o5(1) U os(uf)] = 0. Fix
C1 larger than the diameter of E. Then for all sufficiently small 6 and each € > 0,
there is a constant Cy and positive integer J depending on p, 1if, and ¢ such that
for all m and ¢,

52 )2z

#
G.D et < sup (w—(”)Am@o,uH@eW(l—@
1

ly—zo|<8 w(y)
forall xg € I, wheren =m + 20 + 2J.

Remarks. 1. While we apply this to w positive and continuous near z, it is
stated in a way that should be applicable to situations where w and w* vanish or
blow up in the same way (the sup in (3.1) is then interpreted as an essential sup).

2. One should be able, as in Lubinsky [20], to accommodate end points with
these methods.

Proof. Let Q,,(x,xo; 1) be the optimal trial function for the CD problem at
xo, that is,

(3.2) Qu(,20; 1) = Ko (w0,20) ™" Y pin(@, 1) pim (w0, 11)-
n=0

By (1.13), there exist 0; and C3 such that
(3.3) sup | Qu(, 205 )| < Cy ™2,

dist(y,E)<d1
xo€l
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We use here the fact that by (1.13), for dist(y, E') < §; with ¢; suitable,
[P (y)] < ce™®

and m < 6e™/6, By shrinking §;, we can also ensure that

(3.4) xo € 1, dist(y, F) < 61 = |xo —y| < Ch.

We now define J to be the number of points z in supp(u*) with dist(z, E) > 61,
which is finite since oess(duf) = E, and let {x; }7_1 be those points. We take for
our trial polynomials for )\, (zg, uf) with n = m + 20 + 2.J,

09 e a1 S T [0,

=1 Tj — 1‘0)

Pick 6 so small that {z : dist(z,I) < ¢} is disjoint from os(u) U os(po). If
y € supp(dut) and |y — x| > 6, we use (3.3) to see that

52\*
(3.6) Q)| < Cyes”? (1 - @) ’
1
where
d (y —x0) ]°
Cy=0C max 1-— _70} )’
* ° yesupp(dut) H( |:(xj - :EQ)

xo€l J=l1

While (3.3) does not hold at z;, the product H}']:1 vanishes at such points. Thus,
fly_m26|Q(y)|2 duf () is bounded by the second term in (3.1).

On the other hand, since the second two factors in (3.4) are bounded by 1 on
[zo — 8,20 + 0], |Q(y)| < |Qm(y)]; so, since there is no singular spectrum there,

#
2 dut J {w (y)} )Pd
/Iy—mg|§6|Q(y)| = |milzlllloﬁé w(y) /y—-’E0§5|Q (y)| H

w(y)
S sup |:—:| )\m Zo, 1),
since adding the part of the integral with |y — x| > J only makes the integral

larger. O

Remark. We emphasize that § and ¢ are independent small numbers; §; is
e-dependent. Thus, in the proof below, we fixed § which determines 7 and can then
take ¢ as small as we wish. Since 7 is fixed, m/n — 1 ase — 0.



356 BARRY SIMON

Proof of Theorem 1.4. Let ;* = 1if be the model obeying (i)—(iv). Once §
is fixed, we can pick n so (1 — 3—2)2’7 < e 2 Thenin (3.1), we pick £ = nem. The
second term in (3.1) is thus O(e™™).

Divide by A\, (%, 1*). By (1.20), the second term in (3.1) goes to zero; and so
(3.1) implies

e Am(@m, ) . wy) \ .o (A
(3.7) lim inf W > |z012f<25<w*(y)) lim inf (/\:n )

Here we have used x,,, — z¢o — 0, so that |z — y| < 26 for m large.

As € | 0, the liminf on the right goes to 1 by (1.21). Thus, by continuity, we
haveasd | 0,

(3.8) i inf S ) = (o)

Now interchange p and p* in (3.1), divide by A, (z,, ") and use the same
arguments to get

)\n n»y
3.9 lim sup 3 ((; :3) < :ji(é?o)).

Taken together, (3.8) and (3.9) complete the proof. All the arguments are uniform
in xg € 1. O

4 Off-Diagonal CD Asymptotics and Clock Behavior

In this section, we prove Theorem 1.5 and note its consequences for zeros of
the OPRL. Given Theorem 1.4, this is essentially a straightforward translation
of [19] and [18]. We note that earlier Freud [10] had noted that the universality
result, (1.16), (which he only had under very restrictive assumptions) implies clock
behavior of zeros.

Proof of Theorem 1.5. Let y < p*. Then, as noted by Lubinsky [19,
eqn. (3.5)], for any x, y,

(4.1) | Kn(z,y) = K (2, 9)* < K (y,9)[Kn (@, 2) = K (2, 2)].

This critical result—which we dub Lubinsky’s inequality—is proven in a few lines
in [19].

Given p and g, let iz be that multiple of the model p* with w(zg) = w(zp). Let
u¥ = sup(p, ). By the lemma below, ! is regular. Thus, by Theorem 1.4, we see
that
Kn(xo+ &, 00 + %)
Ki(zo+ 2,20+ 2)

4.2)

—1
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and

Kn(o + &, 20+ %)

4.3)
K (wo + S, xo + %)

uniformly if |al,|5] < A and z¢ € I.
From this and (4.1), we find (dividing by K (y, y)) that

v B
K (o + 5,70 + 1) .

4.4) —
Kn(x() + %,ﬂfo + g)

also uniformly in |al,|5] < A, zo € I. By (1.16) for K, and (4.2)—(4.4), we have
(1.16) for K,,. O

Remark. The sup of two measures v = sup(y, 1), (see, e.g., Section IX.3 of
Doob [6] or Chapter IX of Jacobs [13] or Luxemburg—Zaanen [21]) is the smallest
measure larger than p, i. It can be constructed as follows: if du = f(dp + dii)
and dji = g(dp + dfi), then dv = max(f, g)(dp + dfz). It can also be defined via the
vector dual lattice construction: if f is continuous and nonnegative, then

v(f) =sup{u(g)+i(h):g>0,h>0,g+h=f},
where g, h are also continuous.

Lemma 4.1. Suppose p, i* are two measures with oess(pt) = 0ess(*) = E and
u < p*. Then u regular implies p* is regular.

Proof. Regularity means

(4.5) i [[Po(,du)|[V" = O(E).

By (1.12),

(4.6) limsup || P, (-, dp*) || < C(E).

Since p < p* and [|Py(-,dv)|| = min{|Qullr2(a) : degQn = n, Qu(z) =

a™ + lower order},

4.7 [P (s dp) || < [[Pn(-, dpt)l-
Now (4.6), (4.7), and

(4.8) lim ||P,(-,dp)|"/™ = C(E)

imply (4.5). O
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Last-Simon [17] define clock behavior and uniform clock behavior. Theo-
rem 1.5 implies

Theorem 4.2. Let 1 be a measure obeying the hypothesis of Theorem 1.5 (so,
in particular, E must have a suitable model). If a = b, there is clock behavior for
the zeros of py(x,du) at a. If a < b, there is uniform clock behavior on 1. The
density of zeros in the clock behavior is pg(x).

Remark. In particular, F can be a finite gap set by Theorem 2.1. Thus, we
recover and vastly generalize the results of [31].

Proof. We need only follow the ideas of [18]. We fix a point z in [.

Step 1. By the CD formula, p"*%@%’) = p;+(1r fory # z if and only if K,,(z,y) = 0.

Thus, with v = %ﬁ‘f;) we see by (1.16) that there is a zero of p,+1(y) — vpu(y)
within m + o(n) of xy. Since zeros of pnﬂ — ~vp, and of p,, interlace, we
np(m) + 0( )of zg € I.

Step 2. By the CD formula, for x # y, if p,, () = 0, then p, (y) = 0 if and only if

K, (z,y) = 0. Thus, by (1.16), there are no two zeros of p, (x) within (1 — s)m

conclude that there are zeros of p,,(z) within

for any ¢ > 0; that is, we have an O(2) lower bound.

Step 3. By the CD formula and (1.16), if p,(zo + a/n) = 0, there exist zeros

which are at zo + & + + o(2) for |k| < K and by Step 2, they are unique.

np(r )
All these arguments are uniform in xy, so we have uniform clock behavior. [

5 General Sets

As explained in the Introduction, this section was written after I saw [42] and
realized that my results plus Lubinsky’s inequality easily allowed one to obtain
universality for intervals with continuous a.c. weight in arbitrary compact sets and
also allowed an alternative to Section 2 that only requires Floquet theory.

Proof of Theorem 1.6. As an open set, R \ F is a union of countably
many maximal open intervals, whose total size, after the two semi-infinite ones
are removed, is finite. Thus, for any ¢ > 0, only finitely many have size larger
than 2/¢; so for any positive integer ¢, E, = {z : dist(z, E) < 1/¢} is a finite gap
compact set.

Let p(z) be the equilibrium density for E (restricted to I) and p,(z) for E,. By
potential theory comparison theorem ideas, dp, | I is nondecreasing; and by some
potential theory using the real analyticity of p, and p on I,

(5.1) pq(x) 1 p(x)
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uniformly on I (see [2, 12, 16, 27, 33, 37, 43] for background on the needed
potential theory; in particular, see Theorems A.15 and A.16 of [33]).

For each ¢, pick a multiple cyp,(z) of the equilibrium measure such that
sup;y cqpq < infrw(z), and let p, = pV cqpq. the measure theoretic max. This
is regular for £, by Lemma 4.1. Thus, if 2,,, — 29 € 1,

m ’ 4 w(x) Y
where w = % The trial functions for p, used in proving (3.8) can be used for p;

that is, we can get upper bounds directly and see that

(5.2) lim sup nA, (zn, p) < w(@)
pq(T)

for each ¢. Since (5.1) is uniform on I, we have

(5.3) lim sup nA, (zn, ) < w(z)
p(x)

uniformly for z € I and z,, — « (as in Section 3, this means that for any ¢, there
are N and ¢ such thatif n > N and |z, — z| < §, then n\, (z,, 1) < 1;(;)) +e).
We can use the polynomials p,(z, x) as trial functions for u, and so still get

(3.1); but, unlike in Section 3, we cannot take ¢ to zero for ¢ fixed and so do not

take ¢//n — 0. Instead for a fixed g, there is 1(q), and we have to take ¢ > nn(q).
But as ¢ — oo, n(q) — 0. We obtain

w(x)

(5.4) (1 +n(q)) liminf nA, (x,, p) > e

~

Since 1(q) — 0 and p,(x) — p(x), we therefore obtain

(5.5 limnA, (Jﬁn, ,u) =

This limit argument is essentially one used several years ago by Totik [40], the
only difference being that we make uniform assumptions (i.e., continuity) on w
and conclude uniformity in (5.5) with variable points.

Now use (4.1) with K* = K9, the CD kernel, for y, > p by construction.
Replace (z,y) by (zo + a/n,x0 + 8/n). Divide by ’f}f’(ﬁfg’)) and take n — oo, using
(1.15) and (1.16) for 1, and (5.4) to get

i Kn(aro—k%,xo—i—%) sin mp,(x0) (6 — )
GO B | o) mplan) (3~ @)

? Pq(mO) _ pq(xO)
= (o) [1 p(on'

Taking ¢ — oo yields the desired limit result. O
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As a final remark, we note that we can use the same approximation idea to go
from finite gap E’s with all rational harmonic measures to general finite gap E’s.
For it is a result of Bogatyrév [1], Peherstorfer [25], and Totik [41] that any finite
gap E with ¢ gaps can be approximated by rational harmonic measure sets £, D E
such that |E, \ E| — 0. The arguments above can get results for general E from
the E,. The point of this remark is that the construction in Section 2 relies on
Jost solutions. For E’s with rational harmonic measures, the Jacobi parameters are
periodic; and Jost solutions can be constructed with Floquet theory rather than the
more elaborate methods of [48, 36, 26, 5].
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