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We apply ideas and methods from classical statistical mechanics to study the P(¢), self-coupled two-dimensional
Boson field theory in the Luclidean region. In particular, we consider correlation inequalities of Griffiths type; the
thermodynamic limit for the pressure, the average interaction and the entropy; and the equilibrium equations for

states associated with a given interaction.

Symanzik [1] has considered quantum field theory
in the Euclidean region and investigated its close anal-
ogy with classical statistical mechanics (CSM). In re-
cent work [2], Nelsen has clarified the connections
between Euclidean and Minkowski field theories, there-
by introducing powerful new techniques*3 into con-
structive quantum field theory [5]. Armed with these
techniques, we have confronted the P(¢), field theory
with the ideas and methods [6] used to study the ther-
modynamic limit in statistical mechanics.

The correspondence between Euclidean field theory
(EFT) and CSM can be understood from a considera-
tion of the Schwinger functions (Euclidean region
Green’s functions) for the P(¢), theory,

S(xy,...,x,)=
_(00xy)..00p) exp [ [ P@O)): dBy])
exp [ [:P(@()):dZy]) .

Here P is the polynomial, bounded below, which de-
fines the interaction energy of the theory, and (...}

is the free expectation value **. We take the configura-
tion space Q to be. roughly speaking, the underlying
space of the Schrodinger representation in which the
fields ¢ (x), x in R2_ form a maximal set of commuting
observables, Then the right-hand side of (1) is just the
interacting expectation value of the observable
#(xy)...¢(x,) with Gibbs density

exp [— [ :P(@(y)):d2y]*S. We emphasize that the re-
sulting statistical mechanics is classical rather than

quantum because the Euclidean fields are commutative.

Indecd. given that the “time” zero fields commute,
then the Euclidean fields at all points must commute
because of Euclidean invariance. After the analytic
continuation to the Minkowski region, the fields of
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course commute only at space-like separated points.

It should be pointed out that eq. (1) is formal; at
best one can hope to take the integrals in (1) over a
finite region A of Euclidean space-*‘time”’. Thus we
define the interaction in A as U(A) = [, : P(¢(»)): d2y
and consider the cutoff Schwinger functions
Salxy,,x,)=Z 7 Ho(x))...0(x,) exp {—U(A)P
where Z, = (exp {\ U(A)} is the “partition function”.
The problem then is to prove the convergence of S, as
A oo This problem of adiabatic switching is the
precise analogue of the problem of the existence of the
thermodynamic limit in statistical mechanics.

* Research partially supported by AFOSR under Contract
F44620-71-C0108.
*1 postal address after September 30, 1972: via A Falcone
70, 80127 Napoli, Italy.

*2 A. Sloan Foundation Fellow.
*3 These techniques have been used to prove the existence of
the vacuum encrgy per unit volume in the P(¢); theorics
[3]. These techniques are also used as onc element in the
proof of the remaining Wightman axioms for P(¢), with
small coupling constant by Dimock et al. [4].

In the space Q the free expectation value is taken with re-
spect to the Gaussian measure in the fields with covariance
defined by the free Green's function, i.c. (<z>(_f) X T4 )]
= (f, (a+m?)™! g) (see [2]). We remark that Q is con-
figuration space and not phase space; the conjugate variables
may be regarded as being included in the measure. Although
we are emphasizing the similarities between EFT and CSM
we wish to point out one important difference: in our for-
mulation the interaction is local whereas the measure is not.
This is just the reverse situation from CSM. However, the
measure connects distant points in an exponentially de-
creasing way (see [7]).

K. Symanzik realizes the correspondence between EFT and
CSM in a somewhat different way from us. He writes the
Schwinger functions in terms of n-functions which have a
particlc structure just like the correlation functions of sta-
tistical mechanics.
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In this letter we wish to report our major results.
Detailed proofs will appear elsewhere [7].

(a) Griffiths inequalities [8].

Theorem 1. Let P be an even polynomial with posi-
tive leading coefficient. Then S(xy,..., x,,) = 0 and

S(Xl, .. "_’,m) S(xl,...,X")S(x,H,l,...,xn+,n)

forall x,,..., X, 4m in R2.
Strictly speaking, these inequalities hold only when

smeared with positive test functions in the x-variables

and with S replaced by S, . They then hold automatical-

ly in the limit A = oo, provided such limits exist. In the
case P(X) = X4, the positivity of S is due to Symanzik
[1] although our proof is very different from his. Our
proof makes use of a general analysis of Griffiths in-
equalities by Ginibre [9] and of a lattice approxima-
tion to the frece Gaussian measure that exhibits its
“ferromagnetic” nature *©.

When P is not necessarily even but merely bounded
below we can prove inequalities of FKG type [10]. An
interesting application of these inequalities and of
theorem 1 is that when P is even the physical mass is
an increasing function of the coefficient of the quadra-
tic term in P [11].

(b) Pressure

Theorem 2. 1If A = o in the sense of Fisher |6, p. 14]
the following limit exists
o, = log Z,

Aww

(1A} = volume of the region A).

The quantity a,, = a,, (P) can be regarded as the
pressure of the system in the thermodynamic limit and
is equal to the negative of the energy per unit volume
in the Minkowski theory [3]. The proof of thecorem 2
is based on the exponential fall-off of the correlation
between distant regions as their separation goes to in-
finity.

(c) Entropy. Following the qualitative suggestions
of perturbation theory and of simple solvable models.
we consider those states f of EFT which can be de-
scribed by a family of functions {f,} in the following
sense: For each finite region A there is associated a
positive normalized function f,, which is a function of
the fields in A. f(A), the expectation in the state f of
an observable A associated with the region A, is given
by f(A)=(Af,> where {-) is the frec expectation
value. The f, satisfy obvious compatibility conditions.
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A state f of this type is called weakly tempered if
for some a < 5 it satisfies a bound of the form

log (f2) <exp IA[*
for large | Al. Given such a state f we define the entropy
in the region A by S, (f) = -- (f4 log f, }. It turns out
that S, (f) has the usual property of monotonicity in A
and satisfies a weak form of subadditivity in A*?
Theorem 3. Let f be a translation invariant weakly
tempered state. Then the limit, s(f), of the entropy
density S, (f)/I Al exists as A = oo in the sense of Fisher.
If we introduce the (A independent') average inter-
action

p(f,P) = CUMNONAI
then the following inequality holds:
s(f) —p(fP)<a.(P). (2)

We expect that the physical vacuum state (or states)
associated with a given interaction P will be weakly
tempered and yield equality in (2) (global variational
principle).

(d) Equilibrium equations. Among the most im-
potant recent discoveries in rigorous statistical mechan-
ics are the DLR equations [12]. These give meaning, in-
dependently of limiting procedures, to the statement
that a state is an equilibrium state for a given interac-
tion at a particular temperature. In general the DLR
equations are equivalent to the variational principle.

Relying on a local version of the Gibbs variational
principle [7], we can express the general state f, asso-
ciated with an interaction P. in the form f,
=exp [ - U(A)] Q, 5. This expression contains a
Gibbsian part exp [ - U(A)] and a “correction™ §25 5
which is concentrated on the boundary A of the
region A and which takes into account the part of the
interaction occurring outside A. Then the compatibility
conditions for the family {f,} immediately give rela-

*6 I Nelson has recently shown that the Griffiths inegualities
imply that the Schwinger functions SR with Dirichlet
boundary conditions are increasing functions of A, thereby
solving the problem of the thermodynamic limit when P
is even.

*7 That is, it A T A" then Sy (N < S, (/) and if A and A’
are disjoint, then S, o () K SA (N +SA (N +r(ALA)
where 7 (A, A") vanishes exponentially in the distance be-
tween A and A'.
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tions among the boundary terms {§2, , } for various

regions A. These relations are the analogues of the DLR

equations in statistical mechanics. In this way one can
give meaning to the statement that a family of
Schwinger functions is associated with a given inter-
action P. This notion is independent of any limiting
procedure and of any equation of motion for fields.

If the Euclidean analogues of the DLR equations
are supplemented by the right boundary conditions
for 5 4 as A = oo, then they could represent an ef-
fective tool for the construction of the relevant
physical states without the use of cutoff procedures.
We expect that once the global variational principle
is established, then the study of its equivalence with
the DLR equations will suggest the right boundary
conditions for the latter.

We hope that the work described above will be the
first step in a much closer working relationship be-
tween constructive field theory and the theory of
statistical mechanics of infinite systems.
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