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We apply ideas and methods  from classical statistical mechanics to s tudy the P(@)2 self-coupled two-dimension',d 
Boson field theory in the Euclidean region. In particular, we consider correlation inequalities of  Griffi ths type; the 
the rmodynamic  limit for the pressure, the average interaction and the entropy;  and the equilibrium equat ions for 
states associated with a given interaction. 

Symanzik [1] has considered q u an t u m field theory 
in the Euclidean region and investigated its close anal- 
ogy with classical statistical mechanics (CSM). In re- 
cent work [2], Nelsen has clarified the connect ions  
between Euclidean and Minkowski field theories, there- 
by int roducing powerful new techniques .3 into con- 

structive quan tum field theory [5]. Armed with these 
techniques,  wc have confronted  the P(O)2 field theory 
with the ideas and methods  [6] used to s tudy the ther- 
modynamic  limit in statistical mechanics. 

The correspondence between Euclidean field theory 
(EFT)  and CSM can be unders tood from a considera- 
tion of  the Schwinger funct ions (Eucl idean region 
Green's  funct ions)  for the P(O)2 theory, 

S ( x  I . . . . .  Xn ) = 

(O(x I )...4)(Xn) exp [ f : P(O(y)) :  d2y])  
- ( i)  

(exp [ f : P ( ¢ ( y ) ) : d 2 y ] )  

Here P is the polynomial ,  bounded  below, which de- 
fines the interact ion energy of  the theory,  and ( . . . )  
is the free expectat ion value , a .  We take the configura- 
tion space Q to be. roughly speaking, the under ly ing 
space of the Schrodinger representation in which the 

fields ~(x),  x in R 2. form a tnaximal set of commut ing  
observables, Then the right-hand side of  ( I ) is just  the 
interacting expectat ion value of  the observable 

~b(x I ). . .4)(Xn) with Gibbs density 
exp [ -  f : P ( ~ ( y ) ) : d 2 y ] * S .  We emphasize that the re- 
suiting statistical mechanics is classical rather than 
quan tum because the Euclidean fields are cotmnutat ive.  
Indeed, given that the " t ime"  zero fields commute ,  
then the Euclidean fields at all points must commute  
because of Euclidean invariance. After the analytic 
cont inua t ion  to the Minkowski region, the fields of  

course connnu te  only at space-like separated points. 
It should be pointed out that eq. ( I )  is formal; at 

best one can hope to take the integrals in (1) over a 
finite region A of Euclidean space-"t ime".  Thus we 
define the interact ion in A as U(A) =fix :P(¢(Y)):  d2y 
and consider the cutof f  Schwinger funct ions 

SA(x I . . . . .  x n) = Z ~  I (~(x  I )...¢P(Xn) exp { -  U(A)}) 
where Z A = (exp { U(A)}) is the "par t i t ion funct ion" .  
The problem then is to prove the convergence o f S  A as 
A ~ oo. This problem of adiabatic switching is the 
precise analogue of  the problem of  tile existence of  the 
thermodynamic  limit in statistical mechanics. 
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,3 These techniques have been used to prove the existence of 

tile vacuum energy per unit volume in the P(~)2 theories 
131. These techniques are also used as one element in the 
proof of the remaining Wightman axioms for P(~)2 with 
small coupling constant by Dimock et al. 141. 

,4 In the space Q the free expectation value is taken with re- 
spect to the Gaussian measure in the fields with covariance 
defined by the free Green's function, i.e. (~(f)~(g)> 
= (./i (A+m2) - I  g) (see [21 ). We remark that Q is con- 
figuration space and not phase space; the conjugate variables 
may be regarded as being included in the measure. Although 
we are emphasizing the similarities between EFT and CSM 
we wish to point out one important difference: in our for- 
mulation the interaction is local whereas the measure is not. 
This is just the reverse situation from CSM. llowever, the 
measure connects distant points in an exponentially de- 
creasing way (see [7] ). 
K. Symanzik realizes the correspondence between EFT and 
CSM in a somewhat different way from us. He writes the 
Schwingcr functions in terms of n-functions which have a 
particle structure just like the correlation functions of sta- 
tistical mechanics. 
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In this letter we wish to report our major results. 
Detailed proofs will appear elsewhere 171. 

(a) Grif f i ths  inequalit ies [8]. 
Theorem 1. Let P be an even polynomial  with posi- 

tive leading coefficient. Then S ( x  I . . . . .  Xn) >i 0 and 

S(Xl . . . . .  Xn+m ) ~ S(Xl  . . . . .  Xn ) S(Xn+ 1 . . . . .  Xn+m ) 

for all x 1 , . . . ,  Xn+ m in R 2. 

Strictly speaking, these inequalities hold only when 
smeared with positive test functions in the x-variables 
and with S replaced by S A. They then hold automatical- 
ly in the limit A ~ 0% provided such limits exist. In the 
case P ( X )  = X 4, the positivity of  S is due to Symanzik 
[1] although our proof  is very different from his. Our 
proof  makes use of  a general analysis of  Griffiths in- 
equalities by Ginibre [9] and of  a lattice approxima- 
tion to the free Gaussian measure that exhibits its 
"ferromagnetic" nature ,6 

When P is not necessarily even but merely bounded 
below we can prove inequalities of  FKG type [10]. An 
interesting application of  these inequalities and of  
theorem 1 is that when P is even the physical mass is 
an increasing function of the coefficient of  the quadra- 

tic term i n P  [I 1]. 
(b) Pressure 
Theorem 2. I f A ~  ,~ in the sense of  Fisher [6, p. 14] 

the following limit exists 
1 

a~  = lim i ~  IOgZA 
A ~  

( IAI  = volume of  the region A). 
The quanti ty a=  = a=  (P)  can be regarded as the 

pressure of  the system in the thermodynalnic limit and 
is equal to the negative of the energy per unit volume 
in the Minkowski theory [3]. The proof  of  theorem 2 
is based on the exponential  fall-off of  the correlation 
between distant regions as their separation goes to in- 

finity. 
(c) Entropy .  Following the qualilative suggestions 

of perturbation theory and of  simple solvable models. 
we consider those s t a t e s f o f  EFT which can be de- 
scribed by a family of  functions (fA} in the following 
sense: For each finite region A there is associated a 
positive normalized function)'i~ , which is a function of 
the fields in A. f ( A ) ,  the expectat ion in the s t a t e f  of 
an observable A associated with the region A, is given 
by f ( A )  = ( A f  A) where ( • ) is the free expectation 
value. The fA satisfy obvious compatibi l i ty  conditions. 

A state f o f  this type is called weakly tempered if 
t for some ~ < ~- it satisfies a bound of  the form 

log ( f2 )~<  exp IAI ~ 

for large IA[. Given such a s t a t e f w e  define tile entropy 

in the region A by S A ( f )  . . . .  (fA 1ogfA )" it turns out 
that S A ( f )  has the usual property of monotonic i ty  in A 
and satisfies a weak form of subadditivity in A. .7 

Theorem 3. Let f b e  a translation invariant weakly 
tempered state. Then the limit, s ( f ) ,  of the entropy 
density S a (f)/I  AI exists as A -~ oo in the sense of  Fisher. 

If we introduce the (A independent!)  average inter- 

action 

o ( f , P )  = (U(A) fA) / IAI  

then the following inequality holds: 

s ( f )  - p ( f , P )  < c,~ (P). (2) 

We expect that the physical vacuum state (or states) 
associated with a given interaction P will be weakly 
tempered and yield equality in (2) (global variational 
principle). 

(d) Equil ibrium equations.  Among the most im- 
potant recent discoveries in rigorous statistical mechan- 
ics are the DLR equations [12]. These give meaning, in- 
dependently of  limiting procedures, to the statement 
that a state is an equilibrium state for a given interac- 
tion at a particular temperature, in general the DLR 
equations are equivalent to the variational principle. 

Relying on a local version of  the Gibbs variational 
principle [7], we can express the general state f ,  asso- 
ciated with an interaction P. in the f o r m f  A 
= exp [ - U(A)] g2aA. This expression contains a 
Gibbsian part exp [ -U(A)] and a "correct ion" ~aA 
which is concentrated on the boundary / )A of the 
region A and which takes into account the part of the 
interaction occurring outside A. Then the compatibi l i ty 
conditions for the family {fA} immediately give rela- 

*6 E. Nelson has recently shown that the Griffiths inequalities 
the Schwinger functions S D with Dirichlet imply that 

boundary conditions are increasing functions of A. thereby 
solving the problem of the thermodynamic limit when P 
is even. 

,7 That is, if A C A' then SA,(f) ~ S A(f) and if A and A' 
are disjoint, then S Au A, (f)  <~ S A (]') + SA,(]) + r(A, A )  
where r(A, A') vanishes exponentially in the dislance be- 
tween A and A'. 
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tions among the boundary  terms {f2 a A } for various 

regions A. These relations are the analogues o f  the DLR 

equat ions  in statistical mechanics.  In this way one can 

give meaning to the s ta tement  that a family o f  

Schwinger funct ions is associated with a given inter- 

action P. This no t ion  is independent  of  any l imiting 

procedure and of  any equat ion of  mot ion  for fields. 

If the Euclidean analogues o f  the DLR equat ions  

are supplemented  by the right boundary  condi t ions  

for ~2 a A as A ~ oo, then they could represent an ef- 

fective tool for the cons t ruc t ion  o f  the relewmt 

physical states wi thout  the use o f  c u t o f f  procedures.  

We expect  that once the global variational principle 

is established, then the study of  its equivalence with 

the DLR equat ions  will suggest the right boundary  

condi t ions  for the latter. 

We hope that the work  described above will be the 

first step in a much closer working relat ionship be- 

tween construct ive field theory  and the theory  of  

statistical mechanics  of  infinite systems. 
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